
Dirichlet process mixture inconsistency
for the number of components

Jeffrey W. Miller
and

Matthew T. Harrison

Brown University
Division of Applied Mathematics

NIPS 2013, Lake Tahoe



DPs are often used to infer the number of groups
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The DPM is great as a flexible prior on densities . . .

. . . what about for estimating the number of groups?
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Finite mixture model

(π1, . . . , πk) ∼ Dirichlet(α, . . . , α)

θ1, . . . , θk
iid∼ H

X1, . . . , Xn
iid∼ f(x) =

k∑
i=1

πi pθi(x)
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Dirichlet process mixture model

(π1, π2, . . . ) ∼ Stick-breaking process

θ1, θ2, . . .
iid∼ H

X1, . . . , Xn
iid∼ f(x) =

∞∑
i=1

πi pθi(x)

Ferguson (1983), Lo (1984), Sethuraman (1994),

West, Müller, and Escobar (1994), MacEachern (1994)
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Finite mixture

5 tables (i.e. components)
3 occupied tables

Dirichlet process mixture

∞ tables (i.e. components)
4 occupied tables
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What if we use a DPM on data from finite mixture?

It is known that in many cases the posterior concentrates at the true density f0,

P (‖f − f0‖L1 < ε | X1:n) −−−→
n→∞

1 ∀ε > 0,

(often at essentially the minimax-optimal rate), for any sufficiently regular f0.
(Contributions by: Ghosal, van der Vaart, Scricciolo, Lijoi, Prünster, Walker, James,

Tokdar, Dunson, Bhattacharya, Wu, Ghosh, Ramamoorthi, Ishwaran, and others.)

In fact, the posterior on the mixing distribution concentrates (in Wasserstein
distance) at the true mixing distribution (Nguyen, 2013).

Does the posterior on the number of occupied tables concentrate at the
true number of components? i.e.

P (#occupied = k0 | X1:n)
?−−−→

n→∞
1
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Outline

1 Empirical evidence
2 Theoretical results
3 Intuition
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Some interesting experiments
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Tiny extra clusters often appear in posterior samples.

Empirically, this is well-known (e.g. West, Müller, and Escobar, 1994).
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Bivariate Gaussian mixture with 4 components

True cluster assignments Sample from the posterior

Tiny extra clusters often appear in posterior samples.
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Bivariate Gaussian mixture with 4 components

True density Posterior predictive density

These tiny clusters have negligible impact on density estimates . . .

Miller & Harrison DPM inconsistency for the number of components



Bivariate Gaussian mixture with 4 components

Posterior on the number of occupied tables

. . . but they do affect the posterior on the number of occupied tables.

Will it eventually concentrate at the true value?

Miller & Harrison DPM inconsistency for the number of components



Bivariate Gaussian mixture with 4 components

Posterior on the number of occupied tables

. . . but they do affect the posterior on the number of occupied tables.

Will it eventually concentrate at the true value?

Miller & Harrison DPM inconsistency for the number of components



Theoretical results
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Theorem (M. & Harrison, 2013)

Under mild regularity conditions, if X1, X2, . . . are i.i.d. from a finite
mixture with k0 components, then the DPM posterior on the number of
occupied tables Tn satisfies

lim sup
n→∞

P (Tn = k0 | X1, . . . , Xn) < 1

with probability 1.

This implies inconsistency.

We assume the concentration parameter α is fixed.

This generalizes to Pitman–Yor process mixtures.

See Miller & Harrison (2013) arXiv:1309.0024 for details.
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This implies inconsistency of Dirichlet process mixtures over:
1 a large class of continuous exponential families, including

I multivariate Gaussian
I Exponential
I Gamma
I Log-Normal
I Weibull with fixed shape

2 essentially any discrete family, including
I Poisson
I Geometric
I Negative Binomial
I Binomial
I Multinomial
I (and many more)
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To be clear: It’s fine to use DPMs . . .

1 as a flexible prior on densities
(viewing the latent variables as nuisance parameters)

2 or if the data-generating process is well-modeled by a DPM
(and in particular, is not a finite mixture!)
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Intuition
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The wrong intuition

It is tempting to think that the prior on the number of occupied tables is
the culprit, since it is diverging as n→∞.

However, this is not the fundamental reason why inconsistency occurs.
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The right intuition

Given that there are t occupied tables, the conditional distribution of their
sizes n1, . . . , nt is

P (n1, . . . , nt | Tn = t) ∝ n−11 · · ·n
−1
t I(

∑
ni = n).

CDF of n1 given Tn = 2 occupied tables

Key observation

As n grows, this becomes concentrated in the “corners”. In other words,
the DPM really likes to have one or more tables with very few customers.
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The DPM really likes to have one or more tables with very few customers.

This explains the tiny extra clusters, since (it turns out) they do not
significantly reduce the likelihood.
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Solutions?

What if we . . .

put a prior on the concentration parameter?

ignore tables with very few customers? (busy waiter strategy)

put a prior on the number of components?

This works in principle (Nobile, 1994), but . . .

beware of misspecification.
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Summary

The DPM posterior on the number of occupied tables should not be used
to estimate the number of components in a finite mixture.
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