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Hidden Markov models (HMMs) are a surprisingly powerful tool for modeling a wide
range of sequential data, including speech, written text, genomic data, weather patterns, fi-
nancial data, animal behaviors, and many more applications. Dynamic programming enables
tractable inference in HMMs, including finding the most probable sequence of hidden states
using the Viterbi algorithm, probabilistic inference using the forward-backward algorithm,
and parameter estimation using the Baum–Welch algorithm.

1 Setup

1.1 Refresher on Markov chains

• Recall that (Z1, . . . , Zn) is a Markov chain if

Zt+1 ⊥ (Z1, . . . , Zt−1) | Zt

for each t, in other words, “the future is conditionally independent of the past given
the present.”

• This is equivalent to saying that the distribution respects the following directed graph:

Z1 Z2 Z3 · · · Zn

• A Markov chain is a natural model to use for sequential data when the present state Zt
contains all of the information about the future that could be gleaned from Z1, . . . , Zt.
In other words, when Zt is the “complete state” of the system.

• If Zt is sufficiently rich, then this may be a reasonable assumption, but oftentimes
we only get to observe an incomplete or noisy version of Zt. In such cases, a hidden
Markov model is preferable.

1.2 Hidden Markov models

• A hidden Markov model is a distribution p(x1, . . . , xn, z1, . . . , zn) that respects the
following directed graph:

Z1 Z2 Z3 · · · Zn

X1 X2 X3 · · · Xn
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In other words, it factors as

p(x1:n, z1:n) = p(z1)p(x1|z1)
n∏
t=2

p(zt|zt−1)p(xt|zt).

• It turns out that in this case, it is equivalent to say that the distribution respects the
following undirected graph:

Z1 Z2 Z3 · · · Zn

X1 X2 X3 · · · Xn

• Z1, . . . , Zn represent the “hidden states”, and X1, . . . , Xn represent the sequence of
observations.

• Assume that Z1, . . . , Zn are discrete random variables taking finitely many possible
values. For simplicity, let’s denote these possible values by 1, . . . ,m. In other words,
Zt ∈ {1, . . . ,m}.

• Assume that the “transition probabilities” Tij = P(Zt+1 = j | Zt = i) do not depend
on the time index t. This assumption is referred to as “time-homogeneity.” The m×m
matrix T in which entry (i, j) is Tij is referred to as the “transition matrix.” Note that
every row of T must sum to 1. (A nonnegative square matrix with this property is
referred to as a “stochastic matrix”.)

• Assume that the “emission distributions” εi(xt) = p(xt | Zt = i) do not depend on the
time index t. While we assume the Z’s are discrete, the X’s may be either discrete or
continuous, and may also be multivariate.

• The “initial distribution” π is the distribution of Z1, that is, πi = P(Z1 = i).

1.3 Example

• m = 2 hidden states, i.e., Zt ∈ {1, 2}

• Initial distribution: π = (0.5, 0.5)

• Transition matrix:

T =

[
.9 .1
.2 .8

]
• Emission distributions:

Xt | Zt = i ∼ N (µi, σ
2
i )

where µ = (−1, 1) and σ = (1, 1).
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2 Overview of dynamic programming for HMMs

• There are three main algorithms used for inference in HMMs: the Viterbi algorithm,
the forward-backward algorithm, and the Baum–Welch algorithm.

• In the Viterbi algorithm and the forward-backward algorithm, it is assumed that all of
the parameters are known—in other words, the initial distribution π, transition matrix
T , and emission distributions εi are all known.

• The Viterbi algorithm is an efficient method of finding a sequence z∗1 , . . . , z
∗
n with

maximal probability given x1, . . . , xn, that is, finding a1

z∗1:n ∈ argmax
z1:n

p(z1:n|x1:n).

Naively maximizing over all sequences would take order nmn time, whereas the Viterbi
algorithm only takes nm2 time.

• The forward-backward algorithm enables one to efficiently compute a wide range of
conditional probabilities given x1:n, for example,

– P(Zt = i | x1:n) for each i and each t,

– P(Zt = i, Zt+1 = j | x1:n) for each i, j and each t,

– P(Zt 6= Zt+1 | x1:n) for each t,

– etc.,

and it also allows you to sample from the distribution on z1:n given x1:n.

• The Baum–Welch algorithm is a method of estimating the parameters of an HMM (the
initial distribution, transition matrix, and emission distributions), using expectation-
maximization and the forward-backward algorithm.

• Historical fun facts:

– The term “dynamic programming” was coined by Richard Bellman in the 1940s,
to describe his research on certain optimization problems that can be efficiently
solved with recursions.

– In this context, “programming” means optimization. As I understand it, this
terminology comes from the 1940s during which there was a lot of work on how
to optimize military plans or “programs”, in the field of operations research. So,
what is “dynamic” about it? There’s a funny story on Wikipedia about why he
called it “dynamic” programming.

1The argmax is the set of maximizers, i.e., x∗ ∈ argmaxx f(x) means that f(x∗) = maxx f(x).
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3 Viterbi algorithm

• Before we start, note the following facts. If c ≥ 0 and f(x) ≥ 0, then maxx cf(x) =
cmaxx f(x) and argmaxx cf(x) = argmaxx f(x). Also note that maxx,y f(x, y) =
maxx maxy f(x, y).

• The goal of the Viterbi algorithm is to find a

z∗1:n ∈ argmax
z1:n

p(z1:n|x1:n).

Since p(x1:n) is constant with respect to z1:n, this is equivalent to

z∗1:n ∈ argmax
z1:n

p(x1:n, z1:n).

• Naively, this would take order nmn time, since there are mn sequences z1:n and com-
puting p(x1:n, z1:n) takes order n time. The Viterbi algorithm provides a much faster
way.

3.1 Computing the max

• Before trying to find the argmax, let’s think about the max:

M = max
z1:n

p(x1:n, z1:n).

• Throughout the following derivation, we will assume x1:n is fixed, and will suppress it
from the notation for clarity.

• For reasons that will become clear in a second, define µ1(z1) = p(z1)p(x1|z1). Writing
out the factorization implied by the graphical model for an HMM,

p(x1:n, z1:n) = p(z1)p(x1|z1)︸ ︷︷ ︸
µ1(z1)

p(z2|z1)p(x2|z2)
n∏
t=3

p(zt|zt−1)p(xt|zt),

we have

M = max
z2:n

(
max
z1

µ1(z1)p(z2|z1)p(x2|z2)︸ ︷︷ ︸
call this µ2(z2)

) n∏
t=3

p(zt|zt−1)p(xt|zt)

= max
z3:n

(
max
z2

µ2(z2)p(z3|z2)p(x3|z3)︸ ︷︷ ︸
call this µ3(z3)

) n∏
t=4

p(zt|zt−1)p(xt|zt)

...
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= max
zj:n

(
max
zj−1

µj−1(zj−1)p(zj|zj−1)p(xj|zj)︸ ︷︷ ︸
call this µj(zj)

) n∏
t=j+1

p(zt|zt−1)p(xt|zt)

...

= max
zn

µn(zn).

• Therefore, we can compute M via the following algorithm:

1. For each z1 = 1, . . . ,m, compute µ1(z1) = p(z1)p(x1|z1).
2. For each j = 2, . . . , n, for each zj = 1, . . . ,m, compute

µj(zj) = max
zj−1

µj−1(zj−1)p(zj|zj−1)p(xj|zj).

3. Compute M = maxzn µn(zn).

• How much time does this take, as a function of m and n? Step 1 takes order m time.
In step 2, for each j and each zj, it takes order m time to compute µj(zj). So, overall,
step 2 takes nm2 time. Step 3 takes order m time. Thus, altogether, the computation
takes order nm2 time.

3.2 Computing the argmax

• Okay, so now we know how to compute the max, M . But who cares about the max?
What we really want is the argmax! More precisely, we want to find a sequence z∗1:n
maximizing p(x1:n, z1:n). It turns out that in the algorithm above, we’ve basically
already done all the work required to find such a z∗1:n.

• Let’s augment step 2 in the algorithm above, by also recording a value of zj−1 attaining
the maximum in the definition of µj(zj); let’s denote this zj−1 by αj(zj). In other words,
in addition to computing µj(zj), we are going to define αj(zj) to be any value such
that

αj(zj) ∈ argmax
zj−1

µj−1(zj−1)p(zj|zj−1)p(xj|zj).

Note that this doesn’t really require any additional computation—we already have to
loop over zj−1 to compute µj(zj), so to get αj(zj) we just need to record one of the
maximizing values of zj−1.

• Now, choose any z∗n such that µn(z∗n) = maxzn µn(zn), and for j = n, n − 1, . . . , 2
successively, let z∗j−1 = αj(z

∗
j ).

• That gives us a sequence z∗1:n, but how do we know that this sequence attains the
maximum? Note that µn(z∗n) = M and for each j = n, n− 1, . . . , 2,

µj(z
∗
j ) = max

zj−1

µj−1(zj−1)p(z
∗
j |zj−1)p(xj|z∗j )

= µj−1(z
∗
j−1)p(z

∗
j |z∗j−1)p(xj|z∗j ).
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• Therefore, plugging in this expression for µj(z
∗
j ) repeatedly,

M = µn(z∗n)

= µn−1(z
∗
n−1)p(z

∗
n|z∗n−1)p(xn|z∗n)

= µn−2(z
∗
n−2)p(z

∗
n−1|z∗n−2)p(xn−1|z∗n−1)p(z

∗
n|z∗n−1)p(xn|z∗n)

...

= µj(z
∗
j )

n∏
t=j+1

p(z∗t |z∗t−1)p(xt|z∗t )

...

= p(z∗1)p(x1|z∗1)
n∏
t=2

p(z∗t |z∗t−1)p(xt|z∗t )

= p(x1:n, z
∗
1:n).

So, z∗1:n is indeed a maximizer.

• In theory, this provides an algorithm for computing z∗1:n. However, in practice, the
algorithm above doesn’t work! What?!? Why? And why did we work so hard deriving
it then? The reason why the algorithm fails is very subtle—we will discuss this next—
and fortunately, there is an easy fix.

3.3 Fixing arithmetic underflow/overflow by using logs

• Except for rather short sequences in which n is relatively small, say, a couple hundred or
so, the algorithm above will fail due to the fact that we are trying to represent numbers
that are too small (or too large) for the computer to handle. And what’s worse, you
will usually receive no warning or error that something has gone wrong. Basically, the
issue is that (in most programming languages), there is a limit on how small (or large)
of a number can be represented. (For example, in a couple of languages that I use, the
lower limit seems to be around 10−323, and the upper limit around 10308.) Anything
smaller (or larger) than this will be considered to be exactly zero (or infinity). This is
referred to as “arithmetic underflow” (or “arithmetic overflow”).

• Unfortunately, in the algorithm described above, we will regularly encounter very very
small numbers, because we are multiplying together a large number of probabilities,
and arithmetic underflow is very likely to occur. (It is also possible for arithmetic
overflow to occur if the x’s are continuous since densities can be larger than 1.)

• The standard solution to this problem is to work with logs. This is a trick that works
in a lot of other problems as well.

• Denote ` = log p, e.g., `(z1) = log p(z1), `(zt|zt−1) = log p(zt|zt−1), and `(xt|zt) =
log p(xt|zt).
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• The algorithm described above works if we use fj(zj) in place of µj(zj), where

f1(z1) = `(z1) + `(x1|z1)

fj(zj) = max
zj−1

(
fj−1(zj−1) + `(zj|zj−1) + `(xj|zj)

)
,

and
αj(zj) ∈ argmax

zj−1

(
fj−1(zj−1) + `(zj|zj−1) + `(xj|zj)

)
.

• The reason why it works is because log is order-preserving. This implies that fj(zj) =
log µj(zj), and consequently, that choosing αj(zj) in this way is equivalent to the earlier
definition.

4 Forward-backward algorithm

• Just as in the Viterbi algorithm, in the forward-backward algorithm, it is assumed that
the initial distribution π, the transition matrix T , and the emission distributions εi,
are known.

• The structure of the algorithm is very similar to the first part of the Viterbi algorithm,
except that it involves sums instead of maxs.

• Our derivation of the algorithm will necessarily involve a lot of notation and indices,
and may appear to be complicated, but despite appearances, it is actually very simple.
The details of the algorithm are not important—what is important is to understand
how the algorithm is derived.

• So, how is the algorithm derived? To me, the simplest way to think about it is to
ask the question: How can we efficiently compute the normalization constant? In
this case, since p(z1:n|x1:n) = p(x1:n, z1:n)/p(x1:n), and p(x1:n, z1:n) is easy to compute,
the normalization constant is p(x1:n). The key is to look at the expression for the
normalization constant, and try to find recursive formulas that would enable you to
compute it efficiently. Typically this involves summing over variables sequentially.

• For some reason, it seems that for a wide range of inferential problems, once you
know how to efficiently compute the normalization constant, you have “cracked” the
problem, and can compute pretty much anything you want. This is especially true in
dynamic programming.

• The forward-backward algorithm consists of two parts:

1. In the forward algorithm, we sum over z1, z2, . . . , zn, in that order, and derive a
recursion for computing p(x1:j, zj) for each zj = 1, . . . ,m and each j = 1, . . . , n.

2. In the backward algorithm, we sum over zn, zn−1, . . . , z1, in that order, and derive a
recursion for computing p(xj+1:n|zj) for each zj = 1, . . . ,m and each j = 1, . . . , n.
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• There are multiple ways of defining the forward and backward algorithms, all of which
are essentially equivalent. So, the details may vary from source to source.

• The forward and backward algorithms each take order nm2 time.

• Once we have our hands on p(x1:j, zj) and p(xj+1:n|zj) for each zj and each j, we can
compute lots of stuff, such as

p(zj|x1:n) ∝ p(x1:n, zj) = p(x1:j, zj)p(xj+1:n|zj)

(here, we are using the conditional independence properties implied by the undirected
graphical model) and

p(zj, zj+1|x1:n) ∝ p(x1:n, zj, zj+1)

= p(x1:j, zj)p(zj+1|zj)p(xj+1|zj+1)p(xj+2:n|zj+1),

which are used in the Baum–Welch algorithm. These can also be used to sample from
p(z1:n|x1:n), by first sampling from p(z1|x1:n), then from p(zj+1|zj, x1:n) for each j =
1, . . . , n− 1. (Note that p(zj+1|zj, x1:n) can be easily computed from p(zj, zj+1|x1:n).)

4.1 Forward algorithm

• To derive the forward algorithm, we will write out the expression for p(x1:n), rewrite it
in terms of a sequence of sums over z1, . . . , zn, and identify certain recursive formulas.

• First, define s1(z1) = p(z1)p(x1|z1), for reasons that will become clear shortly. Then
the joint distribution factors as

p(x1:n, z1:n) = s1(z1)p(z2|z1)p(x2|z2)
n∏
t=3

p(zt|zt−1)p(xt|zt),

and

p(x1:n) =
∑
z1:n

p(x1:n, z1:n)

=
∑
z2:n

(∑
z1

s1(z1)p(z2|z1)p(x2|z2)︸ ︷︷ ︸
call this s2(z2)

) n∏
t=3

p(zt|zt−1)p(xt|zt)

=
∑
z3:n

(∑
z2

s2(z2)p(z3|z2)p(x3|z3)︸ ︷︷ ︸
call this s3(z3)

) n∏
t=4

p(zt|zt−1)p(xt|zt)

...
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=
∑
zj:n

(∑
zj−1

sj−1(zj−1)p(zj|zj−1)p(xj|zj)︸ ︷︷ ︸
call this sj(zj)

) n∏
t=j+1

p(zt|zt−1)p(xt|zt)

...

=
∑
zn

sn(zn).

• This suggests the following algorithm:

1. For each z1 = 1, . . . ,m, compute s1(z1) = p(z1)p(x1|z1).
2. For each j = 2, . . . , n, for each zj = 1, . . . ,m, compute

sj(zj) =
∑
zj−1

sj−1(zj−1)p(zj|zj−1)p(xj|zj).

3. p(x1:n) =
∑

zn
sn(zn).

• In theory, this allows us to compute the normalization constant in order nm2 time (al-
though as in the case of the Viterbi algorithm, there are arithmetic underflow/overflow
issues—stay tuned).

• The real utility of the algorithm, though, is not that it allows us to compute the
normalization constant, but that it gives us the intermediate quantities sj(zj). How
can we interpret these quantities? If you think about how they are defined, and recall
the directed graphical model, it’s pretty straightforward to see that

sj(zj) =
∑
z1:j−1

p(x1:j, z1:j) = p(x1:j, zj).

• As described earlier, when these are combined with the results of the backward algo-
rithm, they can be used to compute many other useful things.

• Additionally, if we are interested in inferring the value of zj based on the observa-
tions x1:j (i.e., “online” prediction), this can be done using the results of the forward
algorithm, since

p(zj|x1:j) ∝ p(x1:j, zj) = sj(zj).

• Similarly, we could predict xj+1 given x1:j using

p(xj+1|x1:j) ∝ p(x1:j, xj+1) =
∑
zj ,zj+1

p(x1:j, xj+1, zj, zj+1)

=
∑
zj ,zj+1

p(x1:j, zj)p(zj+1|zj)p(xj+1|zj+1).
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4.2 Backward algorithm

• The backward algorithm is derived similarly to the forward algorithm, except that we
sum the variables in the reverse order, zn, . . . , z1.

• This leads to the following algorithm (I will leave the derivation to you):

1. For each zn = 1, . . . ,m, define rn(zn) = 1.

2. For each j = n− 1, n− 2, . . . , 1, for each zj = 1, . . . ,m, compute

rj(zj) =
∑
zj+1

p(zj+1|zj)p(xj+1|zj+1)rj+1(zj+1).

3. p(x1:n) =
∑

z1
p(z1)p(x1|z1)r1(z1)

• This takes order nm2 time.

• What is the interpretation of the values rj(zj)? Similarly to before, using the directed
graphical model,

rj(zj) =
∑
zj+1:n

p(xj+1:n, zj+1:n|zj) = p(xj+1:n|zj).

• As in the case of the Viterbi algorithm, both the forward and backward algorithm
suffer from the same issue with arithmetic underflow/overflow. As a consequence, in
practice, it is necessary to work with log values. We address this next.

4.3 The log-sum-exp trick

• In practice, naively implementing the forward and backward algorithms as described
above will not work, due to arithmetic underflow or overflow.

• As with the Viterbi algorithm, the solution is to use logs, but things are a bit trickier
now. In the Viterbi algorithm, we were able to interchange the log and the max, but
in the forward and backward algorithms, we cannot interchange the log and the sum.

• For example, in the case of the forward algorithm, if we define gj(zj) = log sj(zj), then

gj(zj) = log sj(zj) = log
∑
zj−1

sj−1(zj−1)p(zj|zj−1)p(xj|zj)

= log
∑
zj−1

exp
(
gj−1(zj−1) + `(zj|zj−1) + `(xj|zj)

)
denoting ` = log p as before.

• The issue is that gj−1(zj−1) + `(zj|zj−1) + `(xj|zj) is typically going to have very large
magnitude (usually negative, but possibly positive), say, −5000 or so, and when we try
to compute exp(−5000), most programming languages will consider this to be exactly
equal to 0.
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• The solution is to use what is sometimes called the “log-sum-exp trick”. To simplify
the notation a bit, let’s suppose we would like to compute log

∑m
i=1 exp(ai). Note that

for any b ∈ R,

log
m∑
i=1

exp(ai) = log
m∑
i=1

exp(ai − b) exp(b)

= log
(

exp(b)
m∑
i=1

exp(ai − b)
)

= b+ log
m∑
i=1

exp(ai − b).

The key is to choose b = maxi ai. Then, even if all of the ai’s have large magnitude, at
least some of the shifted values ai − b will not result in arithmetic underflow/overflow
when computing exp(ai − b), and it turns out that this is enough to resolve the issue
very satisfactorily.

• For example, if a1 = −3060, a2 = −3056, and a3 = −3071, we will have b = −3056, so

b+ log
m∑
i=1

exp(ai − b) = −3056 + log
(

exp(−4) + exp(0) + exp(−15)),

which is no problem to compute.

• It can (and usually will) happen that for some i’s, ai−b will be a large negative number.
For instance, suppose that in the example above we had a3 = −3656. Then the third
term in the sum will be exp(−600), which the computer will usually treat as exactly
0. However, the other two terms will still be fine, and the error introduced will be
negligible—the error will be on the order of exp(−600). I’d say that’s close enough,
wouldn’t you?

• There is one other issue that we need to take care of when using the log-sum-exp trick.
Specifically, if b =∞ or b = −∞, then ai − b =∞−∞ for one or more ai’s, and this
will lead to NaN’s in most programming languages. This is easily resolved by returning
b if b ∈ {−∞,∞}, and otherwise, returning b+ log

∑m
i=1 exp(ai − b).

5 Baum–Welch algorithm

• So far, we have been assuming that all of the HMM parameters are known (the initial
distribution π, the transition matrix T , and the emission distributions εi).

• The Baum–Welch algorithm provides a way to estimate these parameters. Baum–
Welch is a special case of a general class of algorithms referred to as “expectation-
maximization”, or EM, for short.

• Baum–Welch is an iterative algorithm in which the forward and backward algorithms
are used at each iteration.

12



5.1 Expectation-maximization

• The goal of EM is to find a maximum likelihood estimate (MLE) or maximum a pos-
teriori (MAP) estimate in models involving hidden/latent/unobserved variables/data.

• The tricky thing about models with hidden variables is that the likelihood is often
quite complicated and multimodal, making it difficult to maximize.

• Even with EM, we are not guaranteed to find a global maximum. However, the ad-
vantage of EM over standard optimization routines is that it exploits the structure of
the model in a way that make the optimization computationally efficient.

• EM is designed for cases in which the “complete data” (that is, the observed data along
with the hidden data) is modeled as an exponential family. It turns out that this is
quite common, and consequently, EM is a popular technique for maximum likelihood
estimation in complex models.

5.1.1 The EM algorithm

• Observed data: x = (x1, . . . , xn).

• Model: (X,Z) ∼ pθ(x, z). Here, z represents some collection of unobserved variables
(for example, in an HMM, z = (z1, . . . , zn) represents the hidden states). EM works
best when pθ(x, z) is an exponential family.

• Goal: Find θMLE ∈ argmaxθ pθ(x), where pθ(x) =
∑

z pθ(x, z). We will assume that Z
is discrete.

• Algorithm:

1. Initialize θ1.

2. For k = 1, 2, . . . until some convergence criterion is met,

(a) E-step: Compute the function

Q(θ, θk) = Eθk
(

log pθ(X,Z) | X = x
)

=
∑
z

(
log pθ(x, z)

)
pθk(z|x).

(b) M-step: Solve for θk+1 ∈ argmaxθQ(θ, θk).

• In practice, we will be able to represent Q(θ, θk) analytically as a function of θ, once
we have computed certain coefficients that depend on θk and x. Furthermore, we will
often be able to analytically maximize Q(θ, θk).

• It is usually a good idea to introduce some randomization into the initialization, since
hand-picked values of θ1 will sometimes cause EM to get stuck.

• The “E” in E-step stands for expectation, and the “M” in M-step stands for maxi-
mization.

13



5.1.2 Pros and cons

• Nice features of EM:

– We are guaranteed that pθk+1
(x) ≥ pθk(x) for each k, in other words, the likelihood

of θk+1 is guaranteed to be at least as high as the likelihood of θk.

– The algorithm tends to work well in practice.

• Unfortunate features of EM:

– The algorithm is not guaranteed to converge to a global maximum.

– Maximum likelihood can “overfit”. A partial solution to this is that EM can be
modified to try to find a MAP estimate instead of an MLE.

– EM can be slow to converge. There are variations and extensions of the algorithm
to improve the convergence rate.

– EM is specialized for models in which pθ(x, z) is an exponential family.

5.2 Baum–Welch (EM for HMMs)

• In an HMM, the parameter θ specifies π, T , and εi for each i. Let’s suppose that
the emission distribution εi(x) belongs to some family of distributions fϕi

(x) with
parameter ϕi — for example, if the emission distributions are normal, then we could
define ϕi = (µi, σ

2
i ) and εi(x) = fϕi

(x) = N (x|µi, σ2
i ). Recall that πi = P(Z1 = i) and

Tij = P(Zt+1 = j | Zt = i).

• With these conventions, the HMM is parameterized by θ = (π, T, ϕ), where ϕ =
(ϕ1, . . . , ϕm).

• We will assume that there are no functional relationships among π, T , and ϕ1, . . . , ϕm
(so that we can maximize with respect to each of them separately).

5.2.1 The E-step

• In the E-step, we need to compute Q(θ, θk). Let’s take a closer look at this to see how
we might do it. Recall that:

Q(θ, θk) = Eθk
(

log pθ(X,Z) | X = x
)
.

• By the factorization implied by the directed graphical model for an HMM,

log pθ(x, z) = log pθ(z1) +
n∑
t=2

log pθ(zt|zt−1) +
n∑
t=1

log pθ(xt|zt)

=
m∑
i=1

1(z1 = i) log πi +
n∑
t=2

m∑
i=1

m∑
j=1

1(zt−1 = i, zt = j) log Tij

+
n∑
t=1

m∑
i=1

1(zt = i) log fϕi
(xt).
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• The only places where z appears in this expression are in the indicator functions, so
when we take the expectation of Z given X = x, the expectation moves through and
hits only these indicators. Further, the expectation of an indicator function is equal to
the probability of the event in the indicator—for example, Eθk

(
1(Zt = i) | X = x

)
=

Pθk(Zt = i | X = x). Consequently,

Q(θ, θk) =
m∑
i=1

Pθk(Z1 = i | x) log πi +
m∑
t=2

m∑
i=1

m∑
j=1

Pθk(Zt−1 = i, Zt = j | x) log Tij

+
n∑
t=1

m∑
i=1

Pθk(Zt = i | x) log fϕi
(xt).

• To simplify the notation, let’s define

γti = Pθk(Zt = i | x)

βtij = Pθk(Zt−1 = i, Zt = j | x).

• With this notation, we have

Q(θ, θk) =
m∑
i=1

γ1i log πi +
n∑
t=2

m∑
i,j=1

βtij log Tij +
n∑
t=1

m∑
i=1

γti log fϕi
(xt).

• Now, if we could compute the γ’s and β’s, then we would have a nice analytical ex-
pression for Q(θ, θk) (as a function of θ). How can we compute the γ’s and β’s? Well,
do they look familiar at all? That’s right, they are precisely the quantities that we saw
earlier could be computed using the results of the forward-backward algorithm! Con-
sequently, for any given θk, we can use the forward-backward algorithm to efficiently
compute the γ’s and β’s.

5.2.2 The M-step

• For the M-step, we need to find a value of θ maximizing Q(θ, θk).

• Fortunately, it turns out that we can often do this analytically. To fully justify all of
the steps below, we would need to establish concavity and possibly other regularity
conditions, but we will ignore these details and just focus on the big picture for now.

• First, to maximize with respect to ϕi, if the family (fϕ) is sufficiently nice (and often
it is), we will be able to simply take the gradient with respect to ϕi, set it equal to
zero, and solve for ϕi. In other words, find the value of ϕi such that

0 = ∇ϕi
Q(θ, θk) =

n∑
t=1

γti
(
∇ϕi

log fϕi
(xt)

)
.

Note that the derivative kills off all the terms in our expression for Q(θ, θk) except for∑n
t=1 γti log fϕi

(xt). The value of ϕi satisfying this equation can be thought of as a
weighted MLE, in which data point xt has weight γti.
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• Next, consider π = (π1, . . . , πm). Things are slightly trickier now, since we need to
maximize subject to the constraint that

∑m
i=1 πi = 1. Fortunately, we can do this

analytically using the method of Lagrange multipliers, as follows. Denoting the La-
grange multiplier by λ, we set the derivative of the Lagrangian equal to zero, apply
the constraint, and solve for π:

0 =
∂

∂πi

(
Q(θ, θk)− λ

m∑
j=1

πj

)
=
γ1i
πi
− λ

=⇒ λπi = γ1i =⇒ λ = λ
m∑
i=1

πi =
m∑
i=1

γ1i,

therefore,

πi =
γ1i∑m
j=1 γ1j

.

• Finally, for T , we need to maximize subject to the constraint that the rows sum to 1,
in other words,

∑m
j=1 Tij = 1 for each i. As with π, we can do this analytically using

Lagrange multipliers. If you work this out, you will get

Tij =

∑n
t=2 βtij∑n

t=2

∑m
j=1 βtij

=

∑n
t=2 βtij∑n−1
t=1 γti

.

5.2.3 Altogether now, with feeling

• Putting all these pieces together, then, the Baum–Welch algorithm proceeds as follows:

1. Randomly initialize π, T , and ϕ = (ϕ1, . . . , ϕm).

2. Iteratively repeat the following two steps, until convergence:

(a) E-step: Compute the γ’s and β’s using the forward-backward algorithm, given
the current values of π, T , ϕ.

(b) M-step: Update π, T , and ϕ using the formulas above involving the γ’s and
β’s.
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