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Introduction
Choosing the number of components K in a finite mixture
can be tricky.

A natural Bayesian approach is to put a prior on K.

What if we don’t believe there are finitely many components?

In this case, it is natural to use an infinite mixture model, i.e.,
a mixture with infinitely many components:

∑∞
k=1 πkfθk .

The most common type of infinite mixture is based on the
Dirichlet process.

The Dirichlet process is an example of a nonparametric
Bayesian model.
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Introduction: Infinite limit of a finite mixture

In the following sense, Dirichlet process mixtures are a limiting
case of finite mixtures.

Suppose the prior on mixture weights is

π ∼ Dirichlet(α/K, . . . , α/K).

As K →∞, the mixture model
∑K

k=1 πkfθk converges to a
Dirichlet process mixture.

This helps with intuition and can be useful, but K may need
to be quite large for the approximation to be close.

Below, we will define the DP mixture weights in a different
and simpler way, rather than working with this infinite limit.
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Introduction: Bayesian nonparametrics (BNP)
The two main types of nonparametric Bayesian models are:

1. priors on functions (such as Gaussian processes), and
2. priors on distributions (such as Dirichlet processes).

The term “process” signifies that these are stochastic
processes, that is, infinite-dimensional random objects.

Roughly, the term “nonparametrics” refers to highly flexible
— usually infinite-dimensional — models.

BNP started as a Bayesian alternative to frequentist
nonparametric statistics.

Frequentist nonparametric methods fall into a few categories:
1. flexible estimation of functions (such as kernel regression),
2. flexible estimation of distributions (such as kernel density

estimation), and
3. “distribution-free” hypothesis testing and estimation.
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BNP models have found many applications

astronomy

epidemiology

gene expression profiling

haplotype inference

medical image analysis

survival analysis

extreme value analysis

meteorology

econometrics

phylogenetics

species delimitation

computer vision

classification

document modeling

cognitive science

natural language processing
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Dirichlet process
The Dirichlet process (DP) is a distribution on discrete
probability measures (Ferguson, 1973).

The DP is special because it has so many nice properties.

The DP can be broken down into two parts:

1. Stick-breaking process: A distribution on the set of infinite
sequences (w1, w2, . . .) such that wk ≥ 0 and

∑∞
k=1 wk = 1.

2. Base distribution H: The distribution of a sequence of random

points θ1, θ2, . . .
iid∼ H.

These are combined to make a random discrete probability
distribution

∞∑
k=1

wkδθk

where δθ is the unit point mass at θ.
9 / 35



Dirichlet process: Stick-breaking process

The distribution on weights w1, w2, . . . has an elegant
representation due to Sethuraman (1994).

Definition: Given α > 0, if V1, V2, . . .
iid∼ Beta(1, α) and

Wk = Vk

k−1∏
i=1

(1− Vi)

for k = 1, 2, . . ., then (W1,W2, . . .) ∼ Stick(α).
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Dirichlet process: Stick-breaking process

(Explanation of stick-breaking formula on board)
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Dirichlet process: Definition
Let α > 0 and let H be a probability distribution. If

P =

∞∑
k=1

Wkδθk

where

(W1,W2, . . .) ∼ Stick(α)

θ1,θ2, . . .
iid∼ H

independently, then P ∼ DP(α,H).

P is a random discrete probability distribution on the same
space as H.

α is called the concentration parameter.

H is called the base distribution.
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Dirichlet process: Visualization

Example of a random draw of a Dirichlet process

Each different vertical line represents a different term wkδθk .

The height is wk and the location is θk.

In this example, the base distribution H is standard normal.
13 / 35



Dirichlet process: Interpretation of parameters

The base distribution H is the mean of P in the sense that
for any set A,

E
(
P (A)

)
= H(A).

The concentration parameter α controls how close P is to the
base distribution H.

As α→∞, P converges to H in a certain sense (specifically,
in the weak topology).

Roughly, this is because the weights Wk become smaller and
smaller as α→∞. For instance, E(W1) = 1/(1 + α).
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Dirichlet process: Equivalent definition
Sethuraman’s stick-breaking construction is very nice, but it is
not the original definition of the Dirichlet process.

Ferguson (1973) originally defined the DP as follows.

Suppose P is a distribution on Θ such that for any partition
{A1, . . . , AK} of Θ,

(P (A1), . . . ,P (AK)) ∼ Dirichlet(αH(A1), . . . , αH(AK)).

Then P ∼ DP(α,H).

Here, Dirichlet(α1, . . . , αK) is just the finite-dimensional
Dirichlet distribution.

This definition is equivalent to the stick-breaking version. It is
more implicit but also has its uses.
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Dirichlet process: Posterior distribution
The posterior of the DP has a simple closed-form expression.

Consider the following model:

P ∼ DP(α,H),

X1, . . . , Xn | P = P
iid∼ P.

Then the posterior on P is

P |x1:n ∼ DP(α′, H ′)

where α′ = α+ n and

H ′ =
α

α+ n
H +

n

α+ n

( 1

n

n∑
i=1

δxi

)
.

Thus, we can interpret α as the prior “sample size” and H as
a prior guess at the true distibution of the data.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/ARjuSDTLSZ5HhZeQA

(Three people per room, randomly assigned. 15 minutes.)
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Dirichlet process mixtures
The DP can be very useful as a prior on distributions.

However, the fact that P is a discrete distribution has some
big limitations in practice.

Consequently, it is more common to use Dirichlet process
mixtures (DPMs).

In a DPM, the W ’s and θ’s are used as mixture weights and
component parameters in a mixture distribution.

For instance, if W ∼ Stick(α) and θk := (µk,σ
2
k)

iid∼ H then

∞∑∑∑
k=1

WkN (µk,σ
2
k)

is a Dirichlet process mixture of Gaussians.
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Dirichlet process mixture: Visualization
Example of a random draw of a Dirichlet process mixture of Gaussians
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Dirichlet process mixtures: Definition
More generally, suppose (fθ : θ ∈ Θ) is a parametrized family
of distributions and H is a distribution on Θ.

Definition: If W ∼ Stick(α) and θ1,θ2, . . .
iid∼ H then

∞∑
k=1

Wkfθk

is a Dirichlet process mixture (DPM).

Here, each fθk is referred to as a component distribution, and
θk is the corresponding component parameter.

In measure-theoretic notation,
∞∑
k=1

Wkfθk =

∫
fθ dP (θ)

where P ∼ DP(α,H).
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Dirichlet process mixtures: Partition distribution

The DP induces a distribution on partitions that is very useful
for posterior computation in DPMs.

Any variables z1, . . . , zn induce a partition of {1, . . . , n} such
that i and j are in the same part (or “block”) if and only if
zi = zj .

For instance, if z1:6 = (3, 2, 7, 3, 3, 7) then the induced
partition of {1, . . . , 6} is

C = C(z) =
{
{1, 4, 5}, {2}, {3, 6}

}
.
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Restaurant process / Urn scheme
The DP partition distribution can be described by a sequential
sampling scheme.

This is referred to as the Chinese restaurant process (CRP) or
Pólya urn scheme.

Chinese restaurant process

The first customer is seated at a table: Initialize C =
{
{1}
}

.
For i = 1, . . . , n, the ith customer sits . . .

at table c ∈ C with probability ∝ |c|,
or at a new table with probability ∝ α.

With each new customer, C is updated to reflect which table
they sit at.
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Dirichlet process mixtures: Partition distribution

The DP induces a distribution on partitions as follows.

Suppose

W ∼ Stick(α),

Z1, . . . , Zn |W
iid∼ Categorical(W ),

and let C be the partition of {1, . . . , n} induced by Z1, . . . , Zn.

Integrating out W and Z1:n, it turns out that C has p.m.f.

p(C|α) =
α|C|Γ(α)

Γ(α+ n)

∏
c∈C

Γ
(
|c|
)
.

Here, |C| = number of parts in the partition, |c| = size of part
c ∈ C, and Γ(·) is the gamma function.
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Dirichlet process mixtures: Partition-based formulation
A natural way to write a DPM model on data x1, . . . , xn is

W ∼ Stick(α),

Z1, . . . , Zn |W
iid∼ Categorical(W ),

θ1,θ2, . . .
iid∼ H,

Xi | z, θ ∼ fθzi for i = 1, . . . , n.

However, for posterior computation, the following equivalent
partition-based model is convenient:

C ∼ p(C|α)

θc
iid∼ H for c ∈ C,

Xi | C, θ ∼ fθc for i ∈ c, c ∈ C.

θc ∈ Θ is the component parameter for the points i in part c.
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Individual activity: Quick check

Answer these questions individually (2 minutes):
https://forms.gle/F7h6852eVUooP1xJ9
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Dirichlet process mixtures: Gibbs sampler (1/2)

The partition-based formulation of the DPM leads to a nice
Gibbs sampler algorithm.

For c ⊆ {1, . . . , n}, define

m(xc) :=

∫ (∏
i∈c

fθ(xi)
)
h(θ)dθ

where h(θ) is the density of H.

m(xc) can be computed analytically when H is a conjugate
prior for fθ.

For the non-conjugate case, there are also clever MCMC
algorithms (Neal, 2000).
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Dirichlet process mixtures: Gibbs sampler (2/2)

Suppose our target distribution is p(C|x1:n) ∝ p(x1:n|C)p(C).

Write C \ i for the current partition excluding i.

Gibbs sampler for DPM with conjugate prior

Start with all customers at the same table: Initialize
C =

{
{1, . . . , n}

}
.

For i = 1, . . . , n: Reseat customer i. . .

at table c ∈ C \ i with probability ∝ |c| m(xc∪i)

m(xc)
,

at a new table with probability ∝ αm(xi)
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Applications of DPs and DPMs (1/3)

Nonparametric model for nuisance distributions in regression,
such as:

I the residual distribution (Kottas & Gelfand, 2001)

I the distribution of random effects (Bush & MacEachern, 1996;
Mukhopadhyay & Gelfand, 1997)

I errors-in-variables distributions (Müller & Roeder, 1997)
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Applications of DPs and DPMs (2/3)

Building flexible structured models for

I spatial processes (Gelfand et al., 2005),

I time-evolving data (Dunson, 2006),

I conditional density estimation (Dunson et al., 2007),

I density estimation (Escobar & West, 1995).
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Applications of DPs and DPMs (3/3)

Commonly used for clustering with an unknown number of
clusters.
I e.g., Medvedovic & Sivaganesan (2002), Huelsenbeck &

Andolfatto (2007), and many others.

Flexible model for the component distributions in a mixture
model.
I Rodriguez and Walker (2014)
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