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Introduction

@ Choosing the number of components K in a finite mixture
can be tricky.

A natural Bayesian approach is to put a prior on K.

What if we don't believe there are finitely many components?

In this case, it is natural to use an infinite mixture model, i.e.,
a mixture with infinitely many components: "7, m fp, .

The most common type of infinite mixture is based on the
Dirichlet process.

The Dirichlet process is an example of a nonparametric
Bayesian model.
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Introduction: Infinite limit of a finite mixture

@ In the following sense, Dirichlet process mixtures are a limiting
case of finite mixtures.
@ Suppose the prior on mixture weights is
7 ~ Dirichlet(a/ K, ..., a/K).
@ As K — oo, the mixture model Zle 7 fp, converges to a

Dirichlet process mixture.

@ This helps with intuition and can be useful, but K may need
to be quite large for the approximation to be close.

@ Below, we will define the DP mixture weights in a different
and simpler way, rather than working with this infinite limit.
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Introduction: Bayesian nonparametrics (BNP)

@ The two main types of nonparametric Bayesian models are:
1. priors on functions (such as Gaussian processes), and
2. priors on distributions (such as Dirichlet processes).

@ The term “process” signifies that these are stochastic
processes, that is, infinite-dimensional random objects.

@ Roughly, the term “nonparametrics” refers to highly flexible
— usually infinite-dimensional — models.

@ BNP started as a Bayesian alternative to frequentist
nonparametric statistics.

@ Frequentist nonparametric methods fall into a few categories:
1. flexible estimation of functions (such as kernel regression),
2. flexible estimation of distributions (such as kernel density
estimation), and
3. “distribution-free” hypothesis testing and estimation.
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BNP models have found many applications

@ astronomy

@ epidemiology

@ gene expression profiling
@ haplotype inference

@ medical image analysis
@ survival analysis

@ extreme value analysis

@ meteorology

econometrics
phylogenetics
species delimitation
computer vision
classification
document modeling
cognitive science

natural language processing
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Dirichlet process

@ The Dirichlet process (DP) is a distribution on discrete
probability measures (Ferguson, 1973).

@ The DP is special because it has so many nice properties.

@ The DP can be broken down into two parts:

1. Stick-breaking process: A distribution on the set of infinite
sequences (w1, wo, . ..) such that wy, >0 and Y po, wy = 1.

2. Base distribution H: The distribution of a sequence of random
points 61,05, ... <.

@ These are combined to make a random discrete probability

distribution
o0
> wkds,
k=1

where dy is the unit point mass at 6.
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Dirichlet process: Stick-breaking process

@ The distribution on weights w1, wo, ... has an elegant
representation due to Sethuraman (1994).

o Definition: Given o > 0, if V1, V5, ... i Beta(1, a) and

k—1

Wi =V, [J1-W)
i=1

for k=1,2,..., then (W;,Wa,...) ~ Stick(a).

L ! L ! I L | L ! L |
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Dirichlet process: Stick-breaking process

(Explanation of stick-breaking formula on board)

. .

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
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Dirichlet process: Definition
@ Let @ > 0 and let H be a probability distribution. If

P =Y Wde,

k=1

where

(Wl, WQ, .. ) ~ Stick(a)
0,,0,,... 5 [
independently, then P ~ DP(«, H).

@ P is a random discrete probability distribution on the same
space as H.

@ « is called the concentration parameter.

@ H is called the base distribution.
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Dirichlet process: Visualization

Example of a random draw of a Dirichlet process

. . . . . . . . . )
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0.3
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e Each different vertical line represents a different term wy.dy, .
@ The height is wy and the location is 8.

@ In this example, the base distribution H is standard normal.
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Dirichlet process: Interpretation of parameters

@ The base distribution H is the mean of P in the sense that
for any set A,

@ The concentration parameter o controls how close P is to the
base distribution H.

@ As o — oo, P converges to H in a certain sense (specifically,
in the weak topology).

@ Roughly, this is because the weights W}, become smaller and
smaller as a — oo. For instance, E(W7) =1/(1 + «).
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Dirichlet process: Equivalent definition

@ Sethuraman’s stick-breaking construction is very nice, but it is
not the original definition of the Dirichlet process.

e Ferguson (1973) originally defined the DP as follows.
@ Suppose P is a distribution on © such that for any partition
{Al, NN ,AK} of ©,
(P(Ay),...,P(Ak)) ~ Dirichlet(aH (A1), ...,aH(Ak)).
Then P ~ DP(a, H).

e Here, Dirichlet(ay, ..., ak) is just the finite-dimensional
Dirichlet distribution.

@ This definition is equivalent to the stick-breaking version. It is
more implicit but also has its uses.
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Dirichlet process: Posterior distribution

@ The posterior of the DP has a simple closed-form expression.

o Consider the following model:
P ~DP(«a, H),
Xi,....X,|P=P X P
@ Then the posterior on P is
P|zy.,, ~ DP(d/, H')

where o/ = a+n and

o
' = ).
a—l—n a—{—n z::

@ Thus, we can interpret « as the prior “sample size” and H as
a prior guess at the true distibution of the data.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/ARjuSDTLSZ5HhZeQA

(Three people per room, randomly assigned. 15 minutes.)
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Dirichlet process mixtures

@ The DP can be very useful as a prior on distributions.

@ However, the fact that P is a discrete distribution has some
big limitations in practice.

@ Consequently, it is more common to use Dirichlet process
mixtures (DPMs).

@ In a DPM, the W's and 0's are used as mixture weights and
component parameters in a mixture distribution.

e For instance, if W ~ Stick(c) and 6, := (py, 07) 19 H then

> Wi N (px, 0})

k=1

is a Dirichlet process mixture of Gaussians.
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Dirichlet process mixture: Visualization

Example of a random draw of a Dirichlet process mixture of Gaussians
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Dirichlet process mixtures: Definition

@ More generally, suppose (fyg : 0 € ©) is a parametrized family
of distributions and H is a distribution on ©.

o Definition: If W ~ Stick(c) and 61,85, ... "> H then

Z Wi fe,
k=1
is a Dirichlet process mixture (DPM).

@ Here, each fy, is referred to as a component distribution, and
0 is the corresponding component parameter.

@ In measure-theoretic notation,
o0
> Wife, Z/fedP(9)
k=1

where P ~ DP(a, H).

21/35



Outline

Partition-based formulation of DPMs

22/35



Dirichlet process mixtures: Partition distribution

@ The DP induces a distribution on partitions that is very useful
for posterior computation in DPMs.

@ Any variables z1, ..., 2, induce a partition of {1,...,n} such
that 7 and j are in the same part (or “block”) if and only if
Z; = Zj.

e For instance, if z1.6 = (3,2,7,3,3,7) then the induced
partition of {1,...,6} is

¢ =c(z) = {{1,4,5}, {2}, {3,6}}.
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Restaurant process / Urn scheme

@ The DP partition distribution can be described by a sequential
sampling scheme.

@ This is referred to as the Chinese restaurant process (CRP) or
Pdélya urn scheme.

Chinese restaurant process
@ The first customer is seated at a table: Initialize C = {{1}}
@ Fori=1,...,n, the ith customer sits . ..
at table ¢ € C with probability  |c|,
or at a new table with probability o c.

With each new customer, C is updated to reflect which table
they sit at.
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Dirichlet process mixtures: Partition distribution

@ The DP induces a distribution on partitions as follows.
@ Suppose

W ~ Stick(a),
ZiyeeisZn | W id Categorical (W),

and let C be the partition of {1,...,n} induced by Z1, ..., Z,.

@ Integrating out W and Z1.,, it turns out that C has p.m.f.

a7 (a
picle) = £ S T T (e
ceC

@ Here, |C| = number of parts in the partition, |c| = size of part
c €C, and T'(+) is the gamma function.
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Dirichlet process mixtures: Partition-based formulation
@ A natural way to write a DPM model on data z1,...,x, is
W ~ Stick(a),
L1y Zn | W id Categorical (W),

iid
0.,0,,... 5,

Xi|z0 ~ fo., fori=1,...,n

@ However, for posterior computation, the following equivalent
partition-based model is convenient:

C ~p(Cla)

OcirisleorceC,
Xi|C,0 ~ fp, foriec ceC.

@ 0. € O is the component parameter for the points i in part c.
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Individual activity: Quick check

Answer these questions individually (2 minutes):
https://forms.gle/F7h6852eVUooP1xJ9
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Dirichlet process mixtures: Gibbs sampler (1/2)
@ The partition-based formulation of the DPM leads to a nice

Gibbs sampler algorithm.

e Forc C {1,...,n}, define
m(ze) = / (TT fote) oo

where h(6) is the density of H.

@ m(z.) can be computed analytically when H is a conjugate
prior for fy.

@ For the non-conjugate case, there are also clever MCMC
algorithms (Neal, 2000).
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Dirichlet process mixtures: Gibbs sampler (2/2)

@ Suppose our target distribution is p(C|x1.,) o p(z1.,|C)p(C).
@ Write C \ i for the current partition excluding 1.

Gibbs sampler for DPM with conjugate prior

@ Start with all customers at the same table: Initialize

C={{1,....,n}}.

@ Fori=1,...,n: Reseat customer i...
m(xc Ui)

m($0) ’

at a new table with probability o am(z;)

at table ¢ € C \ i with probability o« ||
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Applications of DPs and DPMs (1/3)

@ Nonparametric model for nuisance distributions in regression,
such as:

> the residual distribution (Kottas & Gelfand, 2001)

» the distribution of random effects (Bush & MacEachern, 1996;
Mukhopadhyay & Gelfand, 1997)

> errors-in-variables distributions (Miiller & Roeder, 1997)
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Applications of DPs and DPMs (2/3)

@ Building flexible structured models for

> spatial processes (Gelfand et al., 2005),
» time-evolving data (Dunson, 2006),
» conditional density estimation (Dunson et al., 2007),

> density estimation (Escobar & West, 1995).
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Applications of DPs and DPMs (3/3)

@ Commonly used for clustering with an unknown number of
clusters.
> e.g., Medvedovic & Sivaganesan (2002), Huelsenbeck &
Andolfatto (2007), and many others.

@ Flexible model for the component distributions in a mixture
model.

» Rodriguez and Walker (2014)
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