Dirichlet process models

Bayesian Methodology in Biostatistics (BST 249)

Jeffrey W. Miller

Department of Biostatistics Harvard T.H. Chan School of Public Health

Introduction

Dirichlet process

Dirichlet process mixtures (DPMs)

Partition-based formulation of DPMs

Gibbs sampler for DPMs

Introduction

Dirichlet process

Dirichlet process mixtures (DPMs)

Partition-based formulation of DPMs

Gibbs sampler for DPMs

Introduction

- Choosing the number of components *K* in a finite mixture can be tricky.
- A natural Bayesian approach is to put a prior on K.
- What if we don't believe there are finitely many components?
- In this case, it is natural to use an infinite mixture model, i.e., a mixture with infinitely many components: $\sum_{k=1}^{\infty} \pi_k f_{\theta_k}$.
- The most common type of infinite mixture is based on the Dirichlet process.
- The Dirichlet process is an example of a nonparametric Bayesian model.

Introduction: Infinite limit of a finite mixture

- In the following sense, Dirichlet process mixtures are a limiting case of finite mixtures.
- Suppose the prior on mixture weights is

 $\pi \sim \text{Dirichlet}(\alpha/K, \ldots, \alpha/K).$

- As $K \to \infty$, the mixture model $\sum_{k=1}^{K} \pi_k f_{\theta_k}$ converges to a Dirichlet process mixture.
- This helps with intuition and can be useful, but K may need to be quite large for the approximation to be close.
- Below, we will define the DP mixture weights in a different and simpler way, rather than working with this infinite limit.

Introduction: Bayesian nonparametrics (BNP)

- The two main types of nonparametric Bayesian models are:
 - $1. \ \mbox{priors}$ on functions (such as Gaussian processes), and
 - 2. priors on distributions (such as Dirichlet processes).
- The term "process" signifies that these are stochastic processes, that is, infinite-dimensional random objects.
- Roughly, the term "nonparametrics" refers to highly flexible — usually infinite-dimensional — models.
- BNP started as a Bayesian alternative to frequentist nonparametric statistics.
- Frequentist nonparametric methods fall into a few categories:
 - 1. flexible estimation of functions (such as kernel regression),
 - 2. flexible estimation of distributions (such as kernel density estimation), and
 - 3. "distribution-free" hypothesis testing and estimation.

BNP models have found many applications

- astronomy
- epidemiology
- gene expression profiling
- haplotype inference
- medical image analysis
- survival analysis
- extreme value analysis
- meteorology

- econometrics
- phylogenetics
- species delimitation
- computer vision
- classification
- o document modeling
- cognitive science
- natural language processing

Introduction

Dirichlet process

Dirichlet process mixtures (DPMs)

Partition-based formulation of DPMs

Gibbs sampler for DPMs

Dirichlet process

- The Dirichlet process (DP) is a distribution on discrete probability measures (Ferguson, 1973).
- The DP is special because it has so many nice properties.
- The DP can be broken down into two parts:
 - 1. Stick-breaking process: A distribution on the set of infinite sequences $(w_1, w_2, ...)$ such that $w_k \ge 0$ and $\sum_{k=1}^{\infty} w_k = 1$.
 - 2. Base distribution H: The distribution of a sequence of random points $\theta_1, \theta_2, \ldots \stackrel{\text{iid}}{\sim} H$.
- These are combined to make a random discrete probability distribution

$$\sum_{k=1}^{\infty} w_k \delta_{\theta_k}$$

where δ_{θ} is the unit point mass at θ .

Dirichlet process: Stick-breaking process

- The distribution on weights w_1, w_2, \ldots has an elegant representation due to Sethuraman (1994).
- Definition: Given $\alpha > 0$, if $V_1, V_2, \ldots \stackrel{\text{iid}}{\sim} \text{Beta}(1, \alpha)$ and

$$W_k = V_k \prod_{i=1}^{k-1} (1 - V_i)$$

for $k = 1, 2, \ldots$, then $(W_1, W_2, \ldots) \sim \text{Stick}(\alpha)$.

Dirichlet process: Stick-breaking process

(Explanation of stick-breaking formula on board)

Dirichlet process: Definition

• Let $\alpha > 0$ and let H be a probability distribution. If

$$\boldsymbol{P} = \sum_{k=1}^{\infty} W_k \delta_{\boldsymbol{\theta}_k}$$

where

$$(W_1, W_2, \ldots) \sim \operatorname{Stick}(\alpha)$$

 $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \ldots \stackrel{\mathrm{iid}}{\sim} H$

independently, then $\boldsymbol{P} \sim \mathrm{DP}(\alpha, H)$.

- **P** is a random discrete probability distribution on the same space as *H*.
- α is called the *concentration parameter*.
- *H* is called the *base distribution*.

Dirichlet process: Visualization

Example of a random draw of a Dirichlet process

• Each different vertical line represents a different term $w_k \delta_{\theta_k}$.

- The height is w_k and the location is θ_k .
- In this example, the base distribution H is standard normal.

Dirichlet process: Interpretation of parameters

• The base distribution *H* is the mean of *P* in the sense that for any set *A*,

$$\mathrm{E}(\boldsymbol{P}(A)) = H(A).$$

- The concentration parameter α controls how close P is to the base distribution H.
- As $\alpha \to \infty$, P converges to H in a certain sense (specifically, in the weak topology).
- Roughly, this is because the weights W_k become smaller and smaller as α → ∞. For instance, E(W₁) = 1/(1 + α).

Dirichlet process: Equivalent definition

- Sethuraman's stick-breaking construction is very nice, but it is not the original definition of the Dirichlet process.
- Ferguson (1973) originally defined the DP as follows.
- Suppose P is a distribution on Θ such that for any partition $\{A_1,\ldots,A_K\}$ of Θ ,

 $(\mathbf{P}(A_1), \dots, \mathbf{P}(A_K)) \sim \text{Dirichlet}(\alpha H(A_1), \dots, \alpha H(A_K)).$ Then $\mathbf{P} \sim \text{DP}(\alpha, H).$

- Here, $Dirichlet(\alpha_1, \ldots, \alpha_K)$ is just the finite-dimensional Dirichlet distribution.
- This definition is equivalent to the stick-breaking version. It is more implicit but also has its uses.

Dirichlet process: Posterior distribution

- The posterior of the DP has a simple closed-form expression.
- Consider the following model:

$$\boldsymbol{P} \sim \mathrm{DP}(\alpha, H),$$

 $X_1, \dots, X_n \mid \boldsymbol{P} = P \stackrel{\mathrm{iid}}{\sim} P.$

• Then the posterior on P is

$$\boldsymbol{P}|x_{1:n} \sim \mathrm{DP}(\alpha', H')$$

where $\alpha' = \alpha + n$ and

$$H' = \frac{\alpha}{\alpha + n} H + \frac{n}{\alpha + n} \left(\frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}\right).$$

 Thus, we can interpret α as the prior "sample size" and H as a prior guess at the true distibution of the data. Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions: https://forms.gle/ARjuSDTLSZ5HhZeQA

(Three people per room, randomly assigned. 15 minutes.)

Introduction

Dirichlet process

Dirichlet process mixtures (DPMs)

Partition-based formulation of DPMs

Gibbs sampler for DPMs

Dirichlet process mixtures

- The DP can be very useful as a prior on distributions.
- However, the fact that *P* is a discrete distribution has some big limitations in practice.
- Consequently, it is more common to use Dirichlet process mixtures (DPMs).
- In a DPM, the W's and θ 's are used as mixture weights and component parameters in a mixture distribution.

• For instance, if $W \sim \operatorname{Stick}(\alpha)$ and $\boldsymbol{\theta}_k := (\boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2) \stackrel{\operatorname{iid}}{\sim} H$ then

$$\sum_{k=1}^{\infty} W_k \, \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2)$$

is a Dirichlet process mixture of Gaussians.

Dirichlet process mixture: Visualization

Example of a random draw of a Dirichlet process mixture of Gaussians

Dirichlet process mixtures: Definition

- More generally, suppose (f_θ : θ ∈ Θ) is a parametrized family of distributions and H is a distribution on Θ.
- Definition: If $W \sim \text{Stick}(\alpha)$ and $\theta_1, \theta_2, \ldots \stackrel{\text{iid}}{\sim} H$ then

$$\sum_{k=1}^{\infty} W_k f_{\boldsymbol{\theta}_k}$$

is a Dirichlet process mixture (DPM).

- Here, each f_{θ_k} is referred to as a component distribution, and θ_k is the corresponding component parameter.
- In measure-theoretic notation,

$$\sum_{k=1}^{\infty} W_k f_{\boldsymbol{\theta}_k} = \int f_{\theta} \, d\boldsymbol{P}(\theta)$$

where $\boldsymbol{P} \sim \mathrm{DP}(\alpha, H)$.

Introduction

Dirichlet process

Dirichlet process mixtures (DPMs)

Partition-based formulation of DPMs

Gibbs sampler for DPMs

Dirichlet process mixtures: Partition distribution

- The DP induces a distribution on partitions that is very useful for posterior computation in DPMs.
- Any variables z_1, \ldots, z_n induce a partition of $\{1, \ldots, n\}$ such that i and j are in the same part (or "block") if and only if $z_i = z_j$.
- For instance, if $z_{1:6}=(3,2,7,3,3,7)$ then the induced partition of $\{1,\ldots,6\}$ is

$$C = C(z) = \{\{1, 4, 5\}, \{2\}, \{3, 6\}\}.$$

Restaurant process / Urn scheme

- The DP partition distribution can be described by a sequential sampling scheme.
- This is referred to as the *Chinese restaurant process* (CRP) or *Pólya urn scheme*.

Chinese restaurant process

The first customer is seated at a table: Initialize C = {{1}}.
For i = 1,...,n, the ith customer sits ... at table c ∈ C with probability ∝ |c|, or at a new table with probability ∝ α.

With each new customer, $\ensuremath{\mathcal{C}}$ is updated to reflect which table they sit at.

Dirichlet process mixtures: Partition distribution

- The DP induces a distribution on partitions as follows.
- Suppose

$$W \sim \text{Stick}(\alpha),$$

 $Z_1, \dots, Z_n \mid W \stackrel{\text{iid}}{\sim} \text{Categorical}(W),$

and let C be the partition of $\{1, \ldots, n\}$ induced by Z_1, \ldots, Z_n .

• Integrating out W and $Z_{1:n}$, it turns out that $\mathcal C$ has p.m.f.

$$p(\mathcal{C}|\alpha) = \frac{\alpha^{|\mathcal{C}|}\Gamma(\alpha)}{\Gamma(\alpha+n)} \prod_{c \in \mathcal{C}} \Gamma(|c|).$$

• Here, $|\mathcal{C}| =$ number of parts in the partition, |c| = size of part $c \in \mathcal{C}$, and $\Gamma(\cdot)$ is the gamma function.

Dirichlet process mixtures: Partition-based formulation

• A natural way to write a DPM model on data x_1, \ldots, x_n is

$$\begin{split} W &\sim \operatorname{Stick}(\alpha), \\ Z_1, \dots, Z_n \mid W \stackrel{\text{iid}}{\sim} \operatorname{Categorical}(W), \\ \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots \stackrel{\text{iid}}{\sim} H, \\ X_i \mid z, \theta \sim f_{\theta_{z_i}} \text{ for } i = 1, \dots, n. \end{split}$$

• However, for posterior computation, the following equivalent partition-based model is convenient:

$$\begin{split} \mathcal{C} &\sim p(\mathcal{C}|\alpha) \\ \boldsymbol{\theta}_c \stackrel{\text{iid}}{\sim} H \text{ for } c \in \mathcal{C}, \\ X_i \mid \mathcal{C}, \boldsymbol{\theta} \quad \sim f_{\boldsymbol{\theta}_c} \text{ for } i \in c, \ c \in \mathcal{C}. \end{split}$$

• $\theta_c \in \Theta$ is the component parameter for the points *i* in part *c*.

Individual activity: Quick check

Answer these questions individually (2 minutes): https://forms.gle/F7h6852eVUooP1xJ9

Introduction

Dirichlet process

Dirichlet process mixtures (DPMs)

Partition-based formulation of DPMs

Gibbs sampler for DPMs

Dirichlet process mixtures: Gibbs sampler (1/2)

• The partition-based formulation of the DPM leads to a nice Gibbs sampler algorithm.

• For $c \subseteq \{1, \ldots, n\}$, define

$$m(x_c) := \int \Big(\prod_{i \in c} f_{\theta}(x_i)\Big) h(\theta) d\theta$$

where $h(\theta)$ is the density of H.

- $m(x_c)$ can be computed analytically when H is a conjugate prior for f_{θ} .
- For the non-conjugate case, there are also clever MCMC algorithms (Neal, 2000).

Dirichlet process mixtures: Gibbs sampler (2/2)

- Suppose our target distribution is $p(\mathcal{C}|x_{1:n}) \propto p(x_{1:n}|\mathcal{C})p(\mathcal{C})$.
- Write $C \setminus i$ for the current partition excluding *i*.

Gibbs sampler for DPM with conjugate prior

• Start with all customers at the same table: Initialize $C = \{\{1, \dots, n\}\}.$

• For
$$i = 1, \ldots, n$$
: Reseat customer $i \ldots$
at table $c \in C \setminus i$ with probability $\propto |c| \frac{m(x_{c \cup i})}{m(x_c)}$,
at a new table with probability $\propto \alpha m(x_i)$

Introduction

Dirichlet process

Dirichlet process mixtures (DPMs)

Partition-based formulation of DPMs

Gibbs sampler for DPMs

Applications of DPs and DPMs (1/3)

- Nonparametric model for nuisance distributions in regression, such as:
 - the residual distribution (Kottas & Gelfand, 2001)
 - the distribution of random effects (Bush & MacEachern, 1996; Mukhopadhyay & Gelfand, 1997)
 - errors-in-variables distributions (Müller & Roeder, 1997)

Applications of DPs and DPMs (2/3)

- Building flexible structured models for
 - spatial processes (Gelfand et al., 2005),
 - time-evolving data (Dunson, 2006),
 - conditional density estimation (Dunson et al., 2007),
 - density estimation (Escobar & West, 1995).

Applications of DPs and DPMs (3/3)

- Commonly used for clustering with an unknown number of clusters.
 - e.g., Medvedovic & Sivaganesan (2002), Huelsenbeck & Andolfatto (2007), and many others.

• Flexible model for the component distributions in a mixture model.

Rodriguez and Walker (2014)

References and supplements

- Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 209-230.
- J. Sethuraman (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650.
- Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2), 249-265.