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Introduction

@ Variational inference (V1) is an approach to posterior inference
based on approximating the posterior by a nicer distribution.

@ The general idea is to:

1. choose a nice family of distributions Q,
2. find a g € Q that is as close as possible to the posterior, and
3. use ¢ to quantify uncertainty, as a proxy for the posterior.

@ Different choices of Q and different definitions of “close” lead
to different variational inference techniques.

o In Bayesian statistics, VI is also known as variational Bayes,
but VI is also useful outside of Bayesian inference.
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Introduction: VI versus MCMC

@ Similarities with MCMC

1.
2.
3.

Approximate inference
Tractable on complex high-dimensional posteriors
Computation formulas work out nicely in many cases

@ Differences with MCMC

1.

Accuracy of VI is limited, usually

2. Vlis (usually) deterministic, MCMC is stochastic
3.
4. VI formulas are usually a bit more complicated

VI is faster, usually, and it is clear when VI has converged
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Introduction: Variants of VI

@ Classic VI is based on minimizing Kullback—Leibler divergence
using factorized approximations.

@ Classic VI is elegant and fast, but its accuracy is limited by
the assumed factorization.

@ More recently, VI techniques using more flexible
approximating distributions have been developed.

e Additionally, other divergences/distances have been employed.

o Further, stochastic optimization and autodifferentiation have
proven to be useful for VI.
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Classic variational inference
@ Let m(f) denote the target distribution, e.g., 7(0) = p(0|x).

@ Classic VI makes the following choices:
1. the approximating family Q consists of all factorized
distributions of the form

q(0) = q1(01) - - gm (0m)

for some decomposition of # into components 61, ...,8,,, and

2. we seek the ¢ € Q that minimizes the Kullback—Leibler
divergence from ¢ to m,

¢°P* € argmin D(q|).
qeQ

e The Kullback—Leibler (KL) divergence, or relative entropy, is

Dalm) = [ a(0)1og 25540 = 5, (105 230,
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Classic variational inference: Algorithm

@ To derive the classic VI updates, we need only specify the
target distribution 7 and the decomposition of 6 into

0= (01,...,0m).
@ The classic VI algorithm then proceeds as follows:
1. Initialize q1, ..., qm.

2. Repeat until convergence:
For j =1,...,m, update g; by setting it to be

;" (0;) oc exp(h;(0;))

where

i (65) = B, (10g(6) | 6;) = [ (togn(6)) [Jas(0)

i#]

3. Use ¢(0) = q1(01) - - - gm(0,,) as an approximation to 7(#).
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Classic variational inference: Comments

@ Note that we do not assume the form of each ¢;(9).

@ At each step j, this algorithm optimizes the KL divergence
with respect to g;, that is,

new

q;" € argmin D(q1 - g |T).
q;

© Remarkably, ;" is often a well-known exponential family.

@ However, the tractability and accuracy of the algorithm

depends on:
1. making a good choice of decomposition 61, ...,8,,, and
2. being in the lucky situation that your model is conducive to
classic VI.

@ Classic VI works well for some models, and not others.
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Toy example: VI for univariate normal

@ Consider the univariate normal model as a toy example:
Xi,oo, Xl A 5 N (A

and assume an improper uniform prior on y and A.

@ Define the target distribution to be the posterior:
W(/% )‘) = p(f% )\’xlzn) X p($1:n|ﬂ> )‘)

o X2 exp (= gA R (3 — p)?).
H,

o Thus, logm(p,A) = Zlog A — XD | (@ — p)* + const.

@ A natural decomposition to try would be #; = p and 03 = A,

that is, to consider approximations of the form

(1, A) = @1 () a2 ().
For convenience, we write ¢(u, A) = q(u)gq(A).
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Normal example: Deriving the VI updates (1/3)

e Updating q(u) given g(\):
hi(p) = (whiteboard exercise)
@ Therefore, according to the algorithm, we update ¢(u) to be

new (

q"" (1) ox (whiteboard exercise)

12/42



Normal example: Deriving the VI updates (1/3)
e Updating q(u) given g(\):

() = / 4(N) log (41, A)dA

n

1
=3 /Q()\) log A — 5(21(»’6@ - ,u)2) /)\q(/\)d)\ + const.
@ Therefore, according to the algorithm, we update ¢(u) to be

""" (1) o exp(hy(p)) o< exp (= 5EN) X2, (2 — p)?)
N (p| 2, (nEM)T).

e Computationally, we only need to compute and store Z and
E(N).

e Here, E(\) = [ Ag(\)d\ is computed using the current g(\).
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Normal example: Deriving the VI updates (2/3)

e Updating ¢(\) given g(u):
ha(A) = (whiteboard exercise)
@ Therefore, according to the algorithm, we update ¢(\) to be

g V(M) o (whiteboard exercise)
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Normal example: Deriving the VI updates (2/3)
e Updating g(\) given q(u):

ha()) = / a(p2) log 7, \)dp

log)\— /\Z/ p)dp + const.

@ Therefore, according to the algorithm, we update ¢(\) to be

q""(A) o< exp(ha(A)) o \/2 exp(_%s)\)
X Gamma(\ | n/2 +1, S/2)

where, after plugging in q(u) = N(p | z, (nRE(X))~!) and
simplifying,

S = Z/ p)dp = né* + 1/E(N).

e Here, 62 =15 (2, — 2)%.

15/ 42



Normal example: Deriving the VI updates (3/3)
@ Thus, the updates to ¢(u) and g(X) are:

¢"" (1) = N (p | 2, (nE(N) ™),
¢"V(\) = Gamma (A | n/2 + 1, 3(né® + 1/E(N))).

@ The only thing we need to compute at each iteration is E(\).

@ From the form of ¢"®¥()\), we see that

n/2+1

BN = 1@ ey

@ In this example, it turns out that we can analytically solve for
the limiting value of E()), which is E(\) = (n + 1)/(né?).

@ However, in more complex models, we will have to iterate
until convergence.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/dNbCsQcMbf4ywixR8

(Three people per room, randomly assigned. 15 minutes.)
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https://forms.gle/dNbCsQcM5f4ywixR8
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Justification of classic VI algorithm (1/2)

@ Let # = (0y,...,0,,) where 6; ~ ¢; independently for some
q1,---,qm. Let m be the target distribution. Then for any j,

q1(61) - - qm(9m))
()

D(q1-+qm || ) =E<10g
= ZEloqu(G ) — Elogm(0)
= Elog ¢;(0;) — E(E(log 7(6)|6;)) + (const wrt g;)
= Elogq;(0;) — Eh;(6;) + (const wrt g;)

0
= E(log i (]9))> + (const wrt g¢;)

= D(gj || ce™) + (const wrt g;)

where h;(0;) := E(log 7 (0) | §;) and 1/c = [ ehs(¥:)ap;.
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Justification of classic VI algorithm (2/2)

@ Hence,

argmin D(q1 - - - ¢ || ) = argmin D(g; || c€).
qj 95

o By the properties of KL divergence, D(g; || ce”) > 0 with
equality if and only if ¢; = celi almost everywhere.

o Therefore, choosing g; oc € minimizes D(q1 - - - g, || 7) with

respect to ¢;, given ¢; for i # j.

@ This shows that the classic VI algorithm performs coordinate
descent, updating g; to minimize KL at each step, holding ¢;
fixed for i # j.
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Latent Dirichlet allocation (LDA)

LDA is a model for collections of discrete data such as
documents.

@ LDA is an admixture model in which each word in a document
is drawn from a different topic.

o In LDA, topics are represented as distributions over words.

@ The proportion of words coming from each topic varies from
document to document.

@ The words in each document are modeled as exchangeable, so
LDA doesn’t account for dependence on nearby words.
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Latent Dirichlet allocation: Motivation

o LDA performs topic modeling, that is, it finds recurring
themes in a large, unstructured collection of documents.

@ It can be adapted to many kinds of data, such as images,
omics data, and social networks.

@ It has also been extended to handle streaming collections such
as from a Web API.

@ LDA has become widely used due to the need to organize an
ever growing number of digital documents, along with its
flexibility and utility.
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LDA: Application to Science articles

Topic proportions and
assignments
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@ 17,000 articles from Science

(figure from Blei, 2012)

magazine, using K = 100 topics.
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LDA: Application to Science articles

Probability
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Topics

“Genetics
human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
seguences

“Evolution”
evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

“Disease
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

(figure from Blei, 2012)

“Computers”
computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations
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LDA: Application to Yale
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(figure from Blei, 2012)

@ x-axis position of each term indicates specificity to the article
(more general <+ more specific).
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Latent Dirichlet allocation: Model

@ Suppose there are K topics, n documents, L; words in
document 4, and V = words in the vocabulary.

@ For document 7, define

» w;, = proportion of the document that originates from topic k.

» z;y = topic of origin for word £.

» x,, = the ¢th word in the document.

@ [, = frequency of word v in topic k.

@ Differences from the population structure model:
1. the topic distributions don't depend on the word location,
2. there is only one word per location (not two allele copies), and
3. each document has a different number of words.

27 /42



Latent Dirichlet allocation: Model

@ Consider the following model:

Zy | w ~ Categorical(w;)
Xie | B, Ziyy = k ~ Categorical(Sy)

independently fori € {1,...,n}, £ € {1,...,L;}.

[ Here, w; = (wﬁ, e ,wiK) and Bk = (Bk;l, cee ,ﬁkv).

@ For the prior, LDA uses:

w; ~ Dirichlet(ay, ..., ak),
B ~ Dirichlet(Aq, ..., Ay).
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Latent Dirichlet allocation: Geometric interpretation

Visualization of document distributions over words

topic 1

topic simplex

word simplex

(Blei et al., 2003)
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Latent Dirichlet allocation: Comments on model

@ LDA is invariant to the order of words in a document, that is,
you could permute the words and it would appear the same to
the model.

@ This is referred to as a “bag of words"-type model.

@ This is clearly not a realistic model for language, but it is
good enough to provide valuable insights into topics and
documents.

@ Other models account for word order using a Markov model,
n-grams, or probabilistic context free grammars (PCFGs).

@ Similarly, the model is invariant to the order of documents,
which could be a limitation for collections of documents that

span time.
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Latent Dirichlet allocation: Posterior computation

@ Gibbs sampling is straightforward, since everything is
semi-conjugate.

@ However, for very large datasets, Gibbs tends to be slow.

@ Blei et al. (2003) proposed a variational inference algorithm
that is much faster.

@ The basic idea is just the classic VI algorithm applied to the
LDA model.
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Latent Dirichlet allocation: Variational inference (1/2)
@ The target is the posterior, m(z,w, 8) := p(z,w, B | x).

o Consider approximations to 7 that factorize as

q(z,w, B) = q(2)q(w)q(B).

@ The classic VI algorithm yields (after several pages of math):

n

q(w) = [ [ Dirichlet(w; | ri1, .. ., rix)
i=1
K
q(B) = [ [ Dirichlet(B | s1,- -, sev)
k=1
n L;
q(z) = H H Categorical(z | tir)
i=14=1

where 7, s, and ¢ are computed as follows. . .
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Latent Dirichlet allocation: Variational inference (2/2)

To compute the parameters r, s, and ¢, randomly initialize them
and iterate the following steps until convergence:

L;
1. For all 7, k, update r;; < ap + thk.
=1
L;
2. For all k,v, update sp, + Ay + Z Zl(xw = 0)tigk.
i=1 (=1
3. For all i, £, k, update t;p, < KeXp(uMk) , Where
=1 €XP(Uigk)
1%
wik = (i) =g raw )+ L wie = 0) (¥ (sk0) =P (X0 Sker))
v=1

and () is the digamma function and I(-) is the indicator
function.
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Latent Dirichlet allocation: Comments about VI algorithm

@ Note that although we only assumed the factorization
q(z,w, B) = q(2)q(w)q(B), the KL optimal updates turn out
to factorize further as

(2,w,8) = (Hq (20 )(1:[q<wi>)(1;[q<ﬁk).

This is fairly common in classic VI.

e Further, the KL optimal distributions for ¢(w;) and ¢(8%) are
Dirichlet, even though we didn't put any constraints on their
functional form.

o As is typical with classic VI, a fair amount of effort is required
to derive the updates, but the algorithm itself ends up being
relatively simple.
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LDA: Associated Press (AP) corpus example

Example from original LDA article (Blei et al., 2003).
TREC AP corpus: n = 16,333 newswire articles.
Vocabulary size: V' = 23,075 unique terms (unique words).

It is necessary to remove stop words, that is, very common

words like “a", “the”, “and”, etc.
Number of topics: Chose to use K = 100 topics.

For posterior computation, they used VI for z and w, and
used expectation-maximization for 3.
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Latent Dirichlet allocation: AP corpus example

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch. education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100,000
donation, too.

(figure from Blei et al., 2003)
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Latent Dirichlet allocation: AP corpus example

Perplexity

Prediction performance on held-out data
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(figure from Blei et al., 2003)
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Latent Dirichlet allocation: Model extensions

o LDA + Hidden Markov model, capturing dependencies among
nearby words.

@ Nonparametric topic model based on Dirichlet process, using
infinitely many topics (K — 0).

@ Dynamic topic model, capturing change in topics that evolve
over time.

@ Hierarchical topic model, using a tree of topics, from more
general to more concrete.

@ Extensions to account for metadata such as author, title,
location, etc.
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Dynamic topic model applied to Science articles
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(figure from Blei, 2012)
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Dynamic topic model applied to Science articles
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/VfoMKU1bGHDRXSyy9
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