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Introduction
The classic VI updates for a given model require a fair amount
of math to derive, which is difficult for nonexperts.

Automatic VI techniques are much easier to use, since
minimal derivations are required.

Classic VI also has limited flexibility, since:
I factorized approximations have limited accuracy, and
I the target distribution has to be conducive to classic VI.

Automatic VI enables more flexible approximations that can
be more accurate and more generally applicable.

We’ll consider two automatic VI techniques:
I Black box VI (Ranganath et al., 2014)
I Automatic differentiation VI (Kucukelbir et al., 2015)
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Introduction: Stochastic optimization
Most automatic VI techniques employ stochastic optimization.

Suppose we want to minimize a differentiable function f(a).

Initialize a. Iterate for t = 1, 2, . . . until convergence:
1. Let Gt(a) be a random function such that EGt(a) = ∇f(a).
2. Update a← a− ρtGt(a).

This can be viewed as a gradient descent algorithm with noisy
approximations to the gradient.

This converges to a local minimum of f if the step size ρt > 0
satisfies the Robbins–Munro conditions:

1.
∑∞

t=1 ρt =∞ and
2.
∑∞

t=1 ρ
2
t <∞.

The step size ρt is also referred to as the “learning rate”.
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Black box variational inference (BBVI)
Recall that in classic VI, we seek a q ∈ Q that minimizes the
KL divergence from the target distribution π(θ):

qopt ∈ argmin
q∈Q

D(q‖π).

Recall that D(q‖π) =
∫
q(θ) log

q(θ)

π(θ)
dθ.

The basic idea of black box VI (Ranganath et al., 2014) is to
employ stochastic optimization to minimize D(q‖π).

A parametric family Q = {qa(θ) : a ∈ A} is used to facilitate
optimization.

BBVI uses a certain expression for the gradient (wrt a) of the
KL divergence D(qa‖π), which we informally derive now.
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Black box variational inference
First, observe that

∇a log qa = (∇aqa)/qa, and thus, ∇aqa = qa(∇a log qa).

Hence, by the product rule,

∇a
(
qa log

qa
π

)
= qa(∇a log qa)

(
log

qa
π

)
+∇aqa.

Note that

∫
∇aqa = ∇a

∫
qa = ∇a1 = 0.

Hence, the gradient (wrt a) of the KL divergence is:

∇aD(qa‖π) =
∫
∇a
(
qa log

qa
π

)
=

∫
qa(∇a log qa)

(
log

qa
π

)
+

∫
∇aqa

= Eqa(∇a log qa)(log qa − log π).
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Black box VI: Naive algorithm

Thus, the gradient of the KL divergence can be written as

∇aD(qa‖π) = Eqa

((
∇a log qa(θ)

)(
log qa(θ)− log π(θ)

))
.

In its simplest form, BBVI uses a Monte Carlo approximation
to this gradient: let θ1, . . . , θN ∼ qa and define

Gt(a) :=
1

N

N∑
i=1

(
∇a log qa(θi)

)(
log qa(θi)− log π(θi)

)
.

Naive version of black box VI algorithm:
I Initialize a.
I Iterate for t = 1, 2, . . . until convergence:

1. Sample θ1, . . . , θN ∼ qa i.i.d.
2. Update a← a− ρtGt(a) where Gt(a) is defined as above.

Since a changes at each step, it is necessary to redraw the
samples θi at each step.
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BBVI: Normalization constants and the ELBO

It turns out that we only need to be able to compute π up to
a normalization constant.

The reason is that if π = π̃/z then

D(q‖π) = D(q‖π̃/z) = log(z) +

∫
q log(q/π̃).

log(z) is a constant that doesn’t depend on q.

BBVI can be applied to minimize
∫
q log(q/π̃) since it doesn’t

require the target to integrate to 1.
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BBVI: Normalization constants and the ELBO
Incidentally, this relates to the so-called “evidence lower
bound”, or ELBO for short.

Rearranging the equation above and using D(q‖π) ≥ 0,

log(z) = D(q‖π)−
∫
q log(q/π̃) ≥ −

∫
q log(q/π̃).

The RHS is called the evidence lower bound (ELBO).

Since log(z) doesn’t depend on q, minimizing D(q‖π) with
respect to q is equivalent to maximizing the ELBO.

When π is the posterior of Bayesian model,

π(θ) = p(θ|x) = p(x, θ)/p(x),

we can choose π̃(θ) = p(x, θ), and in this case, z = p(x) is
the marginal likelihood, a.k.a., the model evidence.
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Black box VI: Advantages

Advantages
I Allows flexible choice of approximating family {qa(θ)}.

I Allows wider range of target distributions π, compared to
classic VI.

I Does not require any model-specific derivations (that is,
derivations specific to π).

I Only need to be able to compute π up to a normalization
constant.

I Deriving and computing ∇a log qa(θ) is usually easy.

I Convergence guarantee from stochastic optimization theory.

I Uses logs everywhere, which is good for numerical stability.
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Black box VI: Disadvantages

Disadvantages
I Main issue: The Monte Carlo approximation is often too noisy,

making the stochastic optimization rather inefficient.

I Finding a good sequence of step sizes ρt can be tricky.

I Gradient descent can be somewhat slow, and stochastic
gradient requires even more iterations to converge.

When the variance of the Monte Carlo approximation is
higher, the step sizes ρt need to be smaller, slowing the rate
of convergence.

13 / 40



Outline

Introduction

Black box variational inference (BBVI)

Demonstration of BBVI

Refinements of BBVI
Rao–Blackwellization
Control variates

Automatic differentiation variational inference (ADVI)

14 / 40



Black box VI: Demo on kidney disease data

Before discussing how to resolve this issue, we look at BBVI
on an example.

Longitudinal data from 976 patients (803 train, 173 test) with
chronic kidney disease.

During each visit, some combination of 17 measurements were
taken.

Additionally, the times between patient visits were highly
irregular.

The goal is to come up with a low-dimensional summarization
of patients’ data.
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Kidney disease demo: Model

A hidden Markov model with continuous latent states and
factor analysis-like emissions is used for each patient.

Z1 Z2 Z3 · · · Zn

X1 X2 X3 · · · Xn

For each patient p = 1, . . . , P , for each visit v = 1, . . . , Vp,
the model is as follows:

I Zp,v,k|Zp,v−1,k is Gamma distributed with mean Zp,v−1,k and
variance σ2

z for each latent dimension k = 1, . . . ,K.

I Xp,v =WZp,v + ηp+ εp,v where Xp,v ∈ RM and W ∈ RM×K .

Normal priors are placed on the entries of W , ηp, and εp,v.
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Kidney disease demo: Comments

This is a rather complex model, making it an interesting
example to consider.

Neither classic VI nor Gibbs sampling can be used for this
model, since the required updates are not closed form.

However, BBVI is relatively straightforward to apply.

For comparison, a Metropolis–Hastings-within-Gibbs algorithm
was also run.

To assess performance, the posterior predictive log-likelihood
on the test set was computed as a function of computation
time.
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Kidney disease demo: Empirical results

(figure and caption from Ranganath et al., 2014)
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/4vZ3vASAjxCSt32AA

(Three people per room, randomly assigned. 10 minutes.)
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Kidney disease demo: Empirical results

(figure and caption from Ranganath et al., 2014)
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Refinements of BBVI

The naive BBVI algorithm works in principle, but tends to be
too slow in practice due to its high Monte Carlo variance.

Convergence speed can be improved by reducing the variance.

Two generally applicable variance-reduction techniques are:

1. Rao–Blackwellization, and
2. control variates.

Fortunately, when applied to BBVI, these variance reduction
methods do not require model-specific computations.

Other refinements include:

1. adaptive choice of step size ρt, and
2. stochastic VI based on random subsets of the data.
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Rao–Blackwellization
Rao–Blackwellization is a general technique for reducing the
variance of an estimator.

Suppose X is an unbiased estimator of some quantity of
interest, and Y is some other random variable.

Then E(X|Y ) is also an unbiased estimator, and its variance
is less or equal to that of X.

This is because by the law of total expectation,

E(E(X|Y )) = E(X)

and by the law of total variance,

Var(X) = Var(E(X|Y )) + E(Var(X|Y )) ≥ Var(E(X|Y )).

In BBVI, we consider a case in which X = h(θ1, θ2) and
θ1 ⊥⊥ θ2, so E(h(θ1, θ2)|θ1) =

∫
h(θ1, θ2)p(θ2)dθ2.
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Rao–Blackwellization for Black Box VI (1/3)

Rao–Blackwellization for BBVI relies on a factorization of q
similar to classic VI, however, the form of this factorization is
somewhat less restrictive than classic VI.

Suppose the approximating distributions factor as

q(θ|a) = q1(θ1|a1) · · · qm(θm|am)

for some decomposition θ = (θ1, . . . , θm).

Incidentally, in VI, this type of factorization is referred to as a
“mean field” or “structured mean field” approximation.
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Rao–Blackwellization for Black Box VI (2/3)
Let θ−j denote all the components of θ except θj .

We factor π into parts that do and do not depend on θj .

Specifically, factor π as

π(θ) = πSj (θSj )π−j(θ−j),

where Sj ⊆ {1, . . . ,m} and π−j(θ−j) does not depend on θj .

Then log q − log π = log qj − log πSj + (const wrt θj).

Since Eqj (∇aj log qj) = 0, we have

Eq

(
(∇aj log qj)(const wrt θj)

)
= Eqj (∇aj log qj) Eq−j (const wrt θj) = 0.
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Rao–Blackwellization for Black Box VI (3/3)
Consider the gradient wrt aj (instead of wrt all of a).

Like before, the gradient of the KL divergence wrt aj is

∇ajD(qa‖π) = Eq

(
(∇aj log q)(log q − log π)

)
= Eq

(
(∇aj log qj)(log qj − log πSj + (const wrt θj))

)
= EqSj

(
(∇aj log qj)(log qj − log πSj )

)
+ 0.

Therefore, we can use a Monte Carlo approximation

∇ajD(qa‖π) ≈
1

N

N∑
i=1

(
∇aj log qj(θj,i)

)(
log qj(θj,i)−log πSj (θSj ,i)

)
where θSj ,1, . . . , θSj ,N are i.i.d. from qSj under the current
value of a.

This is a Rao–Blackwellized estimate since all the components
of θ outside of Sj are implicitly integrated out.
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Control variates
The method of control variates is another general purpose
technique for reducing the variance of an estimator.

Suppose X is an unbiased estimator of some quantity of
interest.

Let Y be any random variable with finite variance, and define
a new estimator

X̃ = X − c (Y − E(Y )).

Then X̃ is also unbiased, and the variance of X̃ is

Var(X̃) = Var(X) + c2Var(Y )− 2cCov(X,Y )

by straightforward calculations.

Setting the derivative wrt c to 0 and solving, we find that
Var(X̃) is minimized when c = Cov(X,Y )/Var(Y ).
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Control variates

Plugging in the optimal value of c, we get

Var(X̃) = Var(X)− Cov(X,Y )2

Var(Y )
.

Thus, when using the optimal c, the variance is reduced
whenever Cov(X,Y ) 6= 0.

In practice, we often need to estimate the optimal c using
samples.

Usually, one chooses Y such that E(Y ) is known or easy to
compute.
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Control variates for Black Box VI
Recall that Rao–Blackwellized BBVI uses a Monte Carlo
approximation of ∇ajD(qa‖π).

To reduce the variance of this Monte Carlo approximation, the
BBVI paper proposes to use Y = ∇aj log qj(θj |aj) as a
control variate, where θj ∼ qj(·|aj).

This is convenient since then E(Y ) = 0 and the optimal c can
easily be estimated from the samples used to construct the
Monte Carlo approximation itself.

This leads to a slightly modified update step in the BBVI
stochastic optimization algorithm.

In addition to Rao–Blackwellization, control variates can
significantly improve performance.
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Kidney disease demo: Empirical results

(figure and caption from Ranganath et al., 2014)
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/3b6mhpE2Fc1WyD5B9

(Three people per room, randomly assigned. 10 minutes.)
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Automatic differentiation variational inference (ADVI)

ADVI (Kucukelbir et al., 2015) is a variant of BBVI that can
be used within the Stan language.

ADVI employs automatic differentiation to compute gradients,
so that no mathematical derivations are required on the part
of the user.

In ADVI, the approximating family {qa} consists of
multivariate Gaussians with diagonal covariance.
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Automatic differentiation variational inference (ADVI)

In ADVI, all parameters must be continuous, and any
parameters with restricted domain are mapped to R.

While limited in terms of approximation accuracy, Gaussians
are analytically convenient.

In ADVI, the variance of the stochastic gradient steps is
reduced since the

∫
q log q term in the KL divergence can be

computed analytically when q is a Gaussian.
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ADVI demo: Gaussian mixture model on image dataset

(figure and caption from Kucukelbir et al., 2015)
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ADVI demo: Stan code for GMM on image dataset (1/2)

(figure from Kucukelbir et al., 2015)
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ADVI demo: Stan code for GMM on image dataset (2/2)

(figure from Kucukelbir et al., 2015)
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ADVI demo: Hierarchical GLMs

(figure from Kucukelbir et al., 2015)
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ADVI demo: Hierarchical GLMs

(figure from Kucukelbir et al., 2015)
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