Hidden Markov models

Bayesian Methodology in Biostatistics (BST 249)

Jeffrey W. Miller

Department of Biostatistics
Harvard T.H. Chan School of Public Health

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)
Forward-backward algorithm (for probabilistic inference)
Forward algorithm
Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
Expectation-maximization (EM)
EM for HMMs

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)
Forward-backward algorithm (for probabilistic inference)
Forward algorithm
Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
Expectation-maximization (EM)
EM for HMMs

Introduction

- Hidden Markov models (HMMs) are a surprisingly powerful tool for modeling a wide range of sequential data, including:
- speech
- written text
- genomic data
- weather patterns
- financial data
- animal behaviors
- Dynamic programming enables tractable inference in HMMs, including:
- finding the most probable sequence of hidden states using the Viterbi algorithm,
- probabilistic inference using the forward-backward algorithm,
- parameter estimation using the Baum-Welch algorithm.

Refresher on Markov chains

- Recall that $\left(Z_{1}, \ldots, Z_{n}\right)$ is a Markov chain if

$$
Z_{t+1} \Perp\left(Z_{1}, \ldots, Z_{t-1}\right) \mid Z_{t}
$$

for each t.

- In other words, "the future is conditionally independent of the past given the present."
- This is equivalent to saying that the distribution respects the following directed graph:

Refresher on Markov chains

- A Markov chain is a natural model to use for sequential data when the present state Z_{t} contains all of the information about the future that could be gleaned from Z_{1}, \ldots, Z_{t}.
- In other words, when Z_{t} is the "complete state" of the system.
- Oftentimes, however, we only get to observe an incomplete or noisy version of the state. In such cases, it is more natural to use a hidden Markov model.

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)
Forward-backward algorithm (for probabilistic inference)
Forward algorithm
Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
Expectation-maximization (EM)
EM for HMMs

Hidden Markov models: Graphical model

- A hidden Markov model is a distribution

$$
p\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{n}\right)
$$

that respects the following directed graph:

- In other words, it factors as

$$
p\left(x_{1: n}, z_{1: n}\right)=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) \prod_{t=2}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right)
$$

Hidden Markov models: Graphical model

- It turns out that in this case, it is equivalent to say that the distribution respects the following undirected graph:

- Z_{1}, \ldots, Z_{n} represent the "hidden states", and X_{1}, \ldots, X_{n} represent the observations.
- Assume that Z_{1}, \ldots, Z_{n} are discrete random variables taking finitely many possible values. For simplicity, let's denote these possible values by $1, \ldots, m$. In other words, $Z_{t} \in\{1, \ldots, m\}$.

Hidden Markov models: Transition matrix

- Assume the "transition probabilities"

$$
T_{i j}=\mathbb{P}\left(Z_{t+1}=j \mid Z_{t}=i\right)
$$

do not depend on the time index t. This assumption is referred to as "time-homogeneity."

- The $m \times m$ matrix T in which entry (i, j) is $T_{i j}$ is referred to as the "transition matrix."
- Note that every row of T must sum to 1 . A nonnegative square matrix with this property is referred to as a "stochastic matrix".

Hidden Markov models: Emission distn, Initial distn

- Assume that the "emission distributions"

$$
\varepsilon_{i}\left(x_{t}\right)=p\left(x_{t} \mid Z_{t}=i\right)
$$

do not depend on the time index t.

- While we assume the Z 's are discrete, the X 's may be either discrete or continuous, and may also be multivariate.
- The "initial distribution" π is the distribution of Z_{1}, that is, $\pi_{i}=\mathbb{P}\left(Z_{1}=i\right)$.

Hidden Markov models: Example parameters

- Number of hidden states: $m=2$, that is, $Z_{t} \in\{1,2\}$
- Initial distribution: $\pi=(0.5,0.5)$
- Transition matrix:

$$
T=\left[\begin{array}{ll}
.9 & .1 \\
.2 & .8
\end{array}\right]
$$

- Emission distributions:

$$
X_{t} \mid Z_{t}=i \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)
$$

where $\mu=(-1,1)$ and $\sigma=(1,1)$.

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)
Forward-backward algorithm (for probabilistic inference)
Forward algorithm
Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
Expectation-maximization (EM)
EM for HMMs

Overview of HMM algorithms

- There are three main algorithms used for computation in HMMs:
- the Viterbi algorithm,
- the forward-backward algorithm, and
- the Baum-Welch algorithm.
- These algorithms employ dynamic programming, which enables otherwise intractable calculations to be done efficiently.

Overview: Viterbi algorithm

- In the Viterbi algorithm and the forward-backward algorithm, it is assumed that all of the parameters are known.
- In other words, the initial distribution π, transition matrix T, and emission distributions ε_{i} are all known.
- The Viterbi algorithm is an efficient method of finding a sequence $z_{1}^{*}, \ldots, z_{n}^{*}$ with maximal probability given x_{1}, \ldots, x_{n}, that is, finding

$$
z_{1: n}^{*} \in \underset{z_{1: n}}{\operatorname{argmax}} p\left(z_{1: n} \mid x_{1: n}\right) .
$$

- Naively maximizing over all sequences would take order $n m^{n}$ time, whereas the Viterbi algorithm only takes $n m^{2}$ time.

Overview: Forward-backward algorithm

- The forward-backward algorithm enables one to efficiently compute many quantities given $x_{1: n}$, for example,
- $\mathbb{P}\left(Z_{t}=i \mid x_{1: n}\right)$ for each i and each t,
- $\mathbb{P}\left(Z_{t}=i, Z_{t+1}=j \mid x_{1: n}\right)$ for each i, j and each t,
- $\mathbb{P}\left(Z_{t} \neq Z_{t+1} \mid x_{1: n}\right)$ for each t,
- etc.
- It also allows you to efficiently sample from $p\left(z_{1: n} \mid x_{1: n}\right)$.

Overview: Baum-Welch algorithm

- The Baum-Welch algorithm is a method of estimating the parameters of an HMM.
- Specifically, Baum-Welch enables estimation of the initial distribution, transition matrix, and emission distributions.
- Baum-Welch uses expectation-maximization and the forward-backward algorithm.

Overview: Historical fun facts

- The term "dynamic programming" was coined by Richard Bellman in the 1940s, to describe his research on certain optimization problems that can be efficiently solved with recursions.
- In this context, "programming" means optimization.
- As I understand it, this terminology comes from the 1940s during which there was a lot of work on how to optimize military plans or "programs", in the field of operations research.
- So, what is "dynamic" about it? There's a funny story on Wikipedia about why he called it "dynamic" programming:
https://en.wikipedia.org/wiki/Dynamic_programming\#History

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)

```
Forward-backward algorithm (for probabilistic inference)
    Forward algorithm
    Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
    Expectation-maximization (EM)
    EM for HMMs
```


Viterbi algorithm: Preliminaries

- Before we start, note the following facts.
- If $c \geq 0$ and $f(x) \geq 0$, then

$$
\begin{aligned}
\max _{x} c f(x) & =c \max _{x} f(x) \\
\underset{x}{\operatorname{argmax}} c f(x) & =\underset{x}{\operatorname{argmax}} f(x) .
\end{aligned}
$$

- Also note that

$$
\max _{x, y} f(x, y)=\max _{x} \max _{y} f(x, y)
$$

Viterbi algorithm: Preliminaries

- The goal of the Viterbi algorithm is to find

$$
z_{1: n}^{*} \in \underset{z_{1: n}}{\operatorname{argmax}} p\left(z_{1: n} \mid x_{1: n}\right)
$$

- Since $p\left(x_{1: n}\right)$ is constant with respect to $z_{1: n}$, this is equivalent to

$$
z_{1: n}^{*} \in \underset{z_{1: n}}{\operatorname{argmax}} p\left(x_{1: n}, z_{1: n}\right)
$$

- Naively, this would take order $n m^{n}$ time, since there are m^{n} sequences $z_{1: n}$ and computing $p\left(x_{1: n}, z_{1: n}\right)$ takes order n time.
- The Viterbi algorithm provides a much faster way.

Viterbi algorithm: Computing the $\max (1 / 3)$

- Before trying to find the argmax, let's think about the max:

$$
M=\max _{z_{1: n}} p\left(x_{1: n}, z_{1: n}\right)
$$

- Throughout the following derivation, we will assume $x_{1: n}$ is fixed, and will suppress it from the notation for clarity.
- Recall the the assumed factorization of $p\left(x_{1: n}, z_{1: n}\right)$,

$$
p\left(x_{1: n}, z_{1: n}\right)=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) p\left(z_{2} \mid z_{1}\right) p\left(x_{2} \mid z_{2}\right) \prod_{t=3}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right)
$$

Viterbi algorithm: Computing the $\max (2 / 3)$

$$
\begin{aligned}
M & =\max _{z_{1: n}} \underbrace{p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right)}_{\text {call this } \mu_{1}\left(z_{1}\right)} p\left(z_{2} \mid z_{1}\right) p\left(x_{2} \mid z_{2}\right) \prod_{t=3}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right) \\
& =\max _{z_{2: n}}(\underbrace{\max _{z_{1}} \mu_{1}\left(z_{1}\right) p\left(z_{2} \mid z_{1}\right) p\left(x_{2} \mid z_{2}\right)}_{\text {call this } \mu_{2}\left(z_{2}\right)}) \prod_{t=3}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right) \\
& =\max _{z_{3: n}}(\underbrace{\max _{z_{2}} \mu_{2}\left(z_{2}\right) p\left(z_{3} \mid z_{2}\right) p\left(x_{3} \mid z_{3}\right)}_{\text {call this } \mu_{3}\left(z_{3}\right)}) \prod_{t=4}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right)
\end{aligned}
$$

$$
=\max _{z_{j: n}}(\underbrace{\max _{z_{j-1}} \mu_{j-1}\left(z_{j-1}\right) p\left(z_{j} \mid z_{j-1}\right) p\left(x_{j} \mid z_{j}\right)}_{\text {call this } \mu_{j}\left(z_{j}\right)}) \prod_{t=j+1}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right)
$$

Viterbi algorithm: Computing the $\max (3 / 3)$

- Continuing in this way, we end up with

$$
M=\max _{z_{n}} \mu_{n}\left(z_{n}\right)
$$

- Therefore, we can compute M via the following algorithm:

1. For each $z_{1}=1, \ldots, m$, compute $\mu_{1}\left(z_{1}\right)=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right)$.
2. For each $j=2, \ldots, n$, for each $z_{j}=1, \ldots, m$, compute

$$
\mu_{j}\left(z_{j}\right)=\max _{z_{j-1}} \mu_{j-1}\left(z_{j-1}\right) p\left(z_{j} \mid z_{j-1}\right) p\left(x_{j} \mid z_{j}\right)
$$

3. Compute $M=\max _{z_{n}} \mu_{n}\left(z_{n}\right)$.

Viterbi algorithm: Computation time

- How much time does this take, as a function of m and n ?
- Step 1 takes order m time.
- In step 2, for each j and each z_{j}, it takes order m time to compute $\mu_{j}\left(z_{j}\right)$.
- So, overall, step 2 takes $n m^{2}$ time.
- Step 3 takes order m time.
- Thus, altogether, the computation takes order $n m^{2}$ time.

Viterbi algorithm: Computing the argmax

- Okay, so now we know how to compute the max, M.
- But who cares about the max? What we really want is the argmax!
- More precisely, we want to find a sequence $z_{1: n}^{*}$ maximizing $p\left(x_{1: n}, z_{1: n}\right)$.
- It turns out that in the algorithm above, we've basically already done all the work required to find such a $z_{1: n}^{*}$.

Viterbi algorithm: Computing the $\operatorname{argmax}(1 / 3)$

- Augment step 2 in the algorithm above by also recording a value of z_{j-1} attaining the maximum in the definition of $\mu_{j}\left(z_{j}\right)$; denote this value by $\alpha_{j}\left(z_{j}\right)$.
- In other words, in addition to computing $\mu_{j}\left(z_{j}\right)$, we are going to define $\alpha_{j}\left(z_{j}\right)$ to be any value such that

$$
\alpha_{j}\left(z_{j}\right) \in \underset{z_{j-1}}{\operatorname{argmax}} \mu_{j-1}\left(z_{j-1}\right) p\left(z_{j} \mid z_{j-1}\right) p\left(x_{j} \mid z_{j}\right)
$$

- Note that this doesn't really require any additional computation-we already have to loop over z_{j-1} to compute $\mu_{j}\left(z_{j}\right)$, so to get $\alpha_{j}\left(z_{j}\right)$ we just need to record one of the maximizing values of z_{j-1}.

Viterbi algorithm: Computing the $\operatorname{argmax}(2 / 3)$

- Now, choose any z_{n}^{*} such that $\mu_{n}\left(z_{n}^{*}\right)=\max _{z_{n}} \mu_{n}\left(z_{n}\right)$, and for $j=n, n-1, \ldots, 2$ successively, let $z_{j-1}^{*}=\alpha_{j}\left(z_{j}^{*}\right)$.
- That gives us a sequence $z_{1: n}^{*}$, but how do we know that this sequence attains the maximum? Note that $\mu_{n}\left(z_{n}^{*}\right)=M$ and for each $j=n, n-1, \ldots, 2$,

$$
\begin{aligned}
\mu_{j}\left(z_{j}^{*}\right) & =\max _{z_{j-1}} \mu_{j-1}\left(z_{j-1}\right) p\left(z_{j}^{*} \mid z_{j-1}\right) p\left(x_{j} \mid z_{j}^{*}\right) \\
& =\mu_{j-1}\left(z_{j-1}^{*}\right) p\left(z_{j}^{*} \mid z_{j-1}^{*}\right) p\left(x_{j} \mid z_{j}^{*}\right)
\end{aligned}
$$

Viterbi algorithm: Computing the $\operatorname{argmax}(3 / 3)$

- Therefore, plugging in this expression for $\mu_{j}\left(z_{j}^{*}\right)$ repeatedly,

$$
\begin{aligned}
M & =\mu_{n}\left(z_{n}^{*}\right) \\
& =\mu_{n-1}\left(z_{n-1}^{*}\right) p\left(z_{n}^{*} \mid z_{n-1}^{*}\right) p\left(x_{n} \mid z_{n}^{*}\right) \\
& =\mu_{n-2}\left(z_{n-2}^{*}\right) p\left(z_{n-1}^{*} \mid z_{n-2}^{*}\right) p\left(x_{n-1} \mid z_{n-1}^{*}\right) p\left(z_{n}^{*} \mid z_{n-1}^{*}\right) p\left(x_{n} \mid z_{n}^{*}\right) \\
& \vdots \\
& =\mu_{j}\left(z_{j}^{*}\right) \prod_{t=j+1}^{n} p\left(z_{t}^{*} \mid z_{t-1}^{*}\right) p\left(x_{t} \mid z_{t}^{*}\right) \\
& \vdots \\
& =p\left(z_{1}^{*}\right) p\left(x_{1} \mid z_{1}^{*}\right) \prod_{t=2}^{n} p\left(z_{t}^{*} \mid z_{t-1}^{*}\right) p\left(x_{t} \mid z_{t}^{*}\right) \\
& =p\left(x_{1: n}, z_{1: n}^{*}\right)
\end{aligned}
$$

So, $z_{1: n}^{*}$ is indeed a maximizer.

Fixing numerical underflow/overflow by using logs

- In theory, this provides an algorithm for computing $z_{1: n}^{*}$.
- However, in practice, the algorithm above will fail due to numerical underflow/overflow.
- The problem is that we are multiplying together a large number of probabilities, leading to very very small numbers that the computer will just round off to zero in most programming languages.
- It is also possible for overflow to occur if the x 's are continuous since densities can be larger than 1 .
- The standard solution to this problem is to work with logs. This works in a lot of other problems as well.

Fixing numerical underflow/overflow by using logs

- Denote $\ell=\log p$, for instance,

$$
\begin{aligned}
& \ell\left(z_{1}\right)=\log p\left(z_{1}\right) \\
& \ell\left(z_{t} \mid z_{t-1}\right)=\log p\left(z_{t} \mid z_{t-1}\right) \\
& \ell\left(x_{t} \mid z_{t}\right)=\log p\left(x_{t} \mid z_{t}\right)
\end{aligned}
$$

- The algorithm above works if we use $f_{j}\left(z_{j}\right)$ in place of $\mu_{j}\left(z_{j}\right)$, where

$$
\begin{aligned}
f_{1}\left(z_{1}\right) & =\ell\left(z_{1}\right)+\ell\left(x_{1} \mid z_{1}\right) \\
f_{j}\left(z_{j}\right) & =\max _{z_{j-1}}\left(f_{j-1}\left(z_{j-1}\right)+\ell\left(z_{j} \mid z_{j-1}\right)+\ell\left(x_{j} \mid z_{j}\right)\right)
\end{aligned}
$$

and

$$
\alpha_{j}\left(z_{j}\right) \in \underset{z_{j-1}}{\operatorname{argmax}}\left(f_{j-1}\left(z_{j-1}\right)+\ell\left(z_{j} \mid z_{j-1}\right)+\ell\left(x_{j} \mid z_{j}\right)\right) .
$$

- This implies that $f_{j}\left(z_{j}\right)=\log \mu_{j}\left(z_{j}\right)$, and thus, choosing $\alpha_{j}\left(z_{j}\right)$ in this way is equivalent to the earlier definition.

Individual activity: Check your understanding

Answer these questions individually (5 minutes): https://forms.gle/kcoB5bQ6TMBZJhLr5

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)
Forward-backward algorithm (for probabilistic inference)
Forward algorithm
Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
Expectation-maximization (EM)
EM for HMMs

Forward-backward algorithm: Preliminary remarks

- In the forward-backward algorithm, it is assumed that the initial distribution π, the transition matrix T, and the emission distributions ε_{i}, are known.
- The structure of the algorithm is very similar to the first part of the Viterbi algorithm, except that it involves sums instead of maxs.
- Despite the somewhat complicated derivation, the algorithm is actually quite simple.
- The details of the algorithm are not important-what is important is to understand how the algorithm is derived.

Forward-backward algorithm: Preliminary remarks

- So, how is the algorithm derived? To me, the simplest way to think about it is to ask: How can we efficiently compute the normalization constant?
- In this case, since $p\left(z_{1: n} \mid x_{1: n}\right)=p\left(x_{1: n}, z_{1: n}\right) / p\left(x_{1: n}\right)$, the normalization constant is $p\left(x_{1: n}\right)$.
- The key is to look at the expression for the normalization constant, and try to find recursive formulas that would enable you to compute it efficiently.
- Typically this involves summing over variables sequentially.
- For some reason, it seems that for a wide range of inferential problems, once you know how to efficiently compute the normalization constant, you have "cracked" the problem, and can compute pretty much anything you want.

Forward-backward algorithm: Overview

- The forward-backward algorithm consists of two parts:

1. In the forward algorithm, we sum over $z_{1}, z_{2}, \ldots, z_{n}$, in that order, to compute $p\left(x_{1: j}, z_{j}\right)$ for each $z_{j}=1, \ldots, m$ and each $j=1, \ldots, n$.
2. In the backward algorithm, we sum over $z_{n}, z_{n-1}, \ldots, z_{1}$, in that order, to compute $p\left(x_{j+1: n} \mid z_{j}\right)$ for each $z_{j}=1, \ldots, m$ and each $j=1, \ldots, n$.

- There are multiple ways of defining the forward and backward algorithms, all of which are essentially equivalent. So, the details may vary from source to source.
- The forward and backward algorithms each take order $n m^{2}$ time.

Forward-backward algorithm: Overview

- Once we have our hands on $p\left(x_{1: j}, z_{j}\right)$ and $p\left(x_{j+1: n} \mid z_{j}\right)$ for each z_{j} and each j, we can compute lots of stuff, such as

$$
p\left(z_{j} \mid x_{1: n}\right) \propto p\left(x_{1: n}, z_{j}\right)=p\left(x_{1: j}, z_{j}\right) p\left(x_{j+1: n} \mid z_{j}\right)
$$

and

$$
\begin{aligned}
p\left(z_{j}, z_{j+1} \mid x_{1: n}\right) & \propto p\left(x_{1: n}, z_{j}, z_{j+1}\right) \\
& =p\left(x_{1: j}, z_{j}\right) p\left(z_{j+1} \mid z_{j}\right) p\left(x_{j+1} \mid z_{j+1}\right) p\left(x_{j+2: n} \mid z_{j+1}\right)
\end{aligned}
$$

which are used in the Baum-Welch algorithm.

- These can also be used to sample from $p\left(z_{1: n} \mid x_{1: n}\right)$, by first sampling from $p\left(z_{1} \mid x_{1: n}\right)$, then from $p\left(z_{j+1} \mid z_{j}, x_{1: n}\right)$ for each $j=1, \ldots, n-1$.
- Note that $p\left(z_{j+1} \mid z_{j}, x_{1: n}\right)$ can be easily computed from $p\left(z_{j}, z_{j+1} \mid x_{1: n}\right)$.

Forward algorithm (1/3)

- To derive the forward algorithm, we will write out the expression for $p\left(x_{1: n}\right)$, rewrite it in terms of a sequence of sums over z_{1}, \ldots, z_{n}, and identify certain recursive formulas.
- Recall that the joint distribution factors as

$$
p\left(x_{1: n}, z_{1: n}\right)=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) p\left(z_{2} \mid z_{1}\right) p\left(x_{2} \mid z_{2}\right) \prod_{t=3}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right)
$$

and

$$
p\left(x_{1: n}=\sum_{z_{1: n}} p\left(x_{1: n}, z_{1: n}\right)\right.
$$

Forward algorithm (2/3)

$$
\begin{aligned}
p\left(x_{1: n}\right) & =\sum_{z_{1: n}} \underbrace{p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right)}_{\text {call this } s_{1}\left(z_{1}\right)} p\left(z_{2} \mid z_{1}\right) p\left(x_{2} \mid z_{2}\right) \prod_{t=3}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right) \\
& =\sum_{z_{2: n}}(\underbrace{\sum_{z_{1}} s_{1}\left(z_{1}\right) p\left(z_{2} \mid z_{1}\right) p\left(x_{2} \mid z_{2}\right)}_{\text {call this } s_{2}\left(z_{2}\right)}) \prod_{t=3}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right) \\
& =\sum_{z_{3: n}}(\underbrace{\sum_{z_{2}} s_{2}\left(z_{2}\right) p\left(z_{3} \mid z_{2}\right) p\left(x_{3} \mid z_{3}\right)}_{\text {call this } s_{3}\left(z_{3}\right)}) \prod_{t=4}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right) \\
& \vdots \\
& =\sum_{z_{j: n}}(\underbrace{\sum_{z_{j-1}} s_{j-1}\left(z_{j-1}\right) p\left(z_{j} \mid z_{j-1}\right) p\left(x_{j} \mid z_{j}\right)}_{\text {call this } s_{j}\left(z_{j}\right)}) \prod_{t=j+1}^{n} p\left(z_{t} \mid z_{t-1}\right) p\left(x_{t} \mid z_{t}\right)
\end{aligned}
$$

Forward algorithm (3/3)

- Continuing in this way, we end up with $p\left(x_{1: n}\right)=\sum_{z_{n}} s_{n}\left(z_{n}\right)$.
- This suggests the following algorithm:

1. For each $z_{1}=1, \ldots, m$, compute $s_{1}\left(z_{1}\right)=p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right)$.
2. For each $j=2, \ldots, n$, for each $z_{j}=1, \ldots, m$, compute

$$
s_{j}\left(z_{j}\right)=\sum_{z_{j-1}} s_{j-1}\left(z_{j-1}\right) p\left(z_{j} \mid z_{j-1}\right) p\left(x_{j} \mid z_{j}\right)
$$

3. $p\left(x_{1: n}\right)=\sum_{z_{n}} s_{n}\left(z_{n}\right)$.

Forward algorithm: Using it for inference

- In theory, this allows us to compute the normalization constant in order $n m^{2}$ time (although as in the case of the Viterbi algorithm, there are numerical underflow/overflow issues-stay tuned).
- The real utility of the algorithm, though, is not that it allows us to compute the normalization constant, but that it gives us the intermediate quantities $s_{j}\left(z_{j}\right)$. How can we interpret these quantities? It turns out that

$$
s_{j}\left(z_{j}\right)=\sum_{z_{1: j-1}} p\left(x_{1: j}, z_{1: j}\right)=p\left(x_{1: j}, z_{j}\right)
$$

- As described earlier, when these are combined with the results of the backward algorithm, they can be used to compute many other useful things.

Forward algorithm: Using it for prediction

- Suppose we are interested in inferring the value of z_{j} based on the observations $x_{1: j}$ (i.e., "online" prediction).
- This can be done using the results of the forward algorithm, since

$$
p\left(z_{j} \mid x_{1: j}\right) \propto p\left(x_{1: j}, z_{j}\right)=s_{j}\left(z_{j}\right)
$$

- Similarly, we can predict x_{j+1} given $x_{1: j}$ using

$$
\begin{aligned}
p\left(x_{j+1} \mid x_{1: j}\right) & \propto p\left(x_{1: j}, x_{j+1}\right)=\sum_{z_{j}, z_{j+1}} p\left(x_{1: j}, x_{j+1}, z_{j}, z_{j+1}\right) \\
& =\sum_{z_{j}, z_{j+1}} p\left(x_{1: j}, z_{j}\right) p\left(z_{j+1} \mid z_{j}\right) p\left(x_{j+1} \mid z_{j+1}\right)
\end{aligned}
$$

Backward algorithm

- The backward algorithm is derived similarly to the forward algorithm, except that we sum the variables in the reverse order, z_{n}, \ldots, z_{1}.
- This leads to the following algorithm (I will leave the derivation to you):

1. For each $z_{n}=1, \ldots, m$, define $r_{n}\left(z_{n}\right)=1$.
2. For each $j=n-1, n-2, \ldots, 1$, for each $z_{j}=1, \ldots, m$, compute

$$
r_{j}\left(z_{j}\right)=\sum_{z_{j+1}} p\left(z_{j+1} \mid z_{j}\right) p\left(x_{j+1} \mid z_{j+1}\right) r_{j+1}\left(z_{j+1}\right)
$$

3. $p\left(x_{1: n}\right)=\sum_{z_{1}} p\left(z_{1}\right) p\left(x_{1} \mid z_{1}\right) r_{1}\left(z_{1}\right)$

Backward algorithm

- The backward algorithm takes order $n m^{2}$ time.
- What is the interpretation of the values $r_{j}\left(z_{j}\right)$?
- Similarly to before, using the directed graphical model,

$$
r_{j}\left(z_{j}\right)=\sum_{z_{j+1: n}} p\left(x_{j+1: n}, z_{j+1: n} \mid z_{j}\right)=p\left(x_{j+1: n} \mid z_{j}\right)
$$

- As in the case of the Viterbi algorithm, both the forward and backward algorithm suffer from the same issue with underflow/overflow.
- As a consequence, in practice, it is necessary to work with logs. We address this next.

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)
Forward-backward algorithm (for probabilistic inference)
Forward algorithm
Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
Expectation-maximization (EM)
EM for HMMs

The log-sum-exp trick

- Consider the forward algorithm. Defining $g_{j}\left(z_{j}\right)=\log s_{j}\left(z_{j}\right)$, we have

$$
\begin{aligned}
g_{j}\left(z_{j}\right) & =\log s_{j}\left(z_{j}\right)=\log \sum_{z_{j-1}} s_{j-1}\left(z_{j-1}\right) p\left(z_{j} \mid z_{j-1}\right) p\left(x_{j} \mid z_{j}\right) \\
& =\log \sum_{z_{j-1}} \exp \left(g_{j-1}\left(z_{j-1}\right)+\ell\left(z_{j} \mid z_{j-1}\right)+\ell\left(x_{j} \mid z_{j}\right)\right)
\end{aligned}
$$

denoting $\ell=\log p$ as before.

- The issue is that $g_{j-1}\left(z_{j-1}\right)+\ell\left(z_{j} \mid z_{j-1}\right)+\ell\left(x_{j} \mid z_{j}\right)$ is typically going to have very large magnitude (usually negative, but possibly positive), say, -5000 or so.
- When we try to compute $\exp (-5000)$, most programming languages will round this off to be exactly equal to 0 .
- The solution is to use the "log-sum-exp trick".

The log-sum-exp trick

- To simplify the notation a bit, let's suppose we would like to compute $\log \sum_{i=1}^{m} \exp \left(a_{i}\right)$. Note that for any $b \in \mathbb{R}$,

$$
\begin{aligned}
\log \sum_{i=1}^{m} \exp \left(a_{i}\right) & =\log \sum_{i=1}^{m} \exp \left(a_{i}-b\right) \exp (b) \\
& =\log \left(\exp (b) \sum_{i=1}^{m} \exp \left(a_{i}-b\right)\right) \\
& =b+\log \sum_{i=1}^{m} \exp \left(a_{i}-b\right)
\end{aligned}
$$

- The key is to choose $b=\max _{i} a_{i}$.
- Then, even if all of the a_{i} 's have large magnitude, at least some of the shifted values $a_{i}-b$ will not result in underflow/overflow when computing $\exp \left(a_{i}-b\right)$, and it turns out that this is enough to solve the issue.

The log-sum-exp trick

- For example, if $a_{1}=-3060, a_{2}=-3056$, and $a_{3}=-3071$, we will have $b=-3056$, so

$$
b+\log \sum_{i=1}^{m} \exp \left(a_{i}-b\right)=-3056+\log \left(e^{-4}+e^{0}+e^{-15}\right)
$$

which is no problem to compute.

- It can (and usually will) happen that for some i 's, $a_{i}-b$ will be a large negative number.
- For instance, suppose that in the example above we had $a_{3}=-3656$. The third term in the sum will be $\exp (-600)$, which the computer will usually treat as exactly 0 .
- However, the other two terms will still be fine, and the error introduced will be negligible-the error will be on the order of $\exp (-600)$.

The log-sum-exp trick

- There is one other issue that we need to take care of when using the log-sum-exp trick.
- Specifically, if $b=\infty$ or $b=-\infty$, then $a_{i}-b=\infty-\infty$ for one or more a_{i} 's, and this will lead to NaN's in most programming languages.
- This is easily resolved by returning b if $b \in\{-\infty, \infty\}$, and otherwise, returning $b+\log \sum_{i=1}^{m} \exp \left(a_{i}-b\right)$.

Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions: https://forms.gle/cucQw9HvjXNj44Kh7
(Three people per room, randomly assigned. 15 minutes.)

Outline

Introduction
Model and terminology
Overview of HMM algorithms
Viterbi algorithm (for optimal sequence recovery)
Forward-backward algorithm (for probabilistic inference) Forward algorithm
Backward algorithm
The log-sum-exp trick
Baum-Welch algorithm (for HMM parameter estimation)
Expectation-maximization (EM)
EM for HMMs

Baum-Welch algorithm

- So far, we have been assuming that all of the HMM parameters are known (the initial distribution π, the transition matrix T, and the emission distributions ε_{i}).
- The Baum-Welch algorithm provides a way to estimate these parameters.
- Specifically, it is a special case of the expectation-maximization (EM) algorithm.
- Baum-Welch is an iterative algorithm in which the forward and backward algorithms are used at each iteration.

Refresher on expectation-maximization (EM)

- The goal of EM is to find a maximum likelihood estimate (MLE) or maximum a posteriori (MAP) estimate in models involving latent variables or missing data.
- The tricky thing about models with hidden variables is that the likelihood is often quite complicated and multimodal, making it difficult to maximize.
- Even with EM, we are not guaranteed to find a global maximum. However, the advantage of EM over standard optimization routines is that it exploits the structure of the model in a way that make the optimization computationally efficient.
- EM is designed for cases in which the "complete data" (that is, the observed data along with the hidden data) is modeled as an exponential family.

Refresher on expectation-maximization (EM)

- Observed data: $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Model: $(X, Z) \sim p_{\theta}(x, z)$. Here, z represents some collection of unobserved variables.
- For example, in an HMM, $z=\left(z_{1}, \ldots, z_{n}\right)$ represents the hidden states.
- EM works best when $p_{\theta}(x, z)$ is an exponential family.
- Goal: Find

$$
\theta_{\mathrm{MLE}} \in \underset{\theta}{\operatorname{argmax}} p_{\theta}(x)
$$

where $p_{\theta}(x)=\sum_{z} p_{\theta}(x, z)$.

- We will assume that Z is discrete.

Refresher on expectation-maximization (EM)

- Algorithm:

1. Initialize θ_{1}.
2. For $k=1,2, \ldots$ until some convergence criterion is met,
2.1 E-step: Compute the function

$$
\begin{aligned}
Q\left(\theta, \theta_{k}\right) & =\mathrm{E}_{\theta_{k}}\left(\log p_{\theta}(X, Z) \mid X=x\right) \\
& =\sum_{z}\left(\log p_{\theta}(x, z)\right) p_{\theta_{k}}(z \mid x)
\end{aligned}
$$

2.2 M-step: Solve for $\theta_{k+1} \in \operatorname{argmax}_{\theta} Q\left(\theta, \theta_{k}\right)$.

- In practice, we will often be able to analytically compute and maximize $Q\left(\theta, \theta_{k}\right)$.
- It is usually a good idea to introduce some randomization into the initialization, since hand-picked values of θ_{1} sometimes cause EM to get stuck.

Expectation-maximization: Pros and cons

- Advantages of EM:
- We are guaranteed that $p_{\theta_{k+1}}(x) \geq p_{\theta_{k}}(x)$ for each k, that is, the likelihood increases (or at least, doesn't decrease).
- The algorithm tends to work well in practice.
- Disadvantages of EM:
- Not guaranteed to converge to a global maximum.
- Maximum likelihood can "overfit". A partial solution to this is that EM can be modified to try to find a MAP estimate instead of an MLE.
- EM can be slow to converge. There are variations and extensions of the algorithm to improve the convergence rate.
- EM works best for models in which $p_{\theta}(x, z)$ is an exponential family.

Baum-Welch algorithm

- In an HMM, the parameter θ specifies π, T, and ε_{i} for each i.
- Let's suppose that the emission distribution $\varepsilon_{i}(x)$ belongs to some family of distributions $f_{\varphi_{i}}(x)$ with parameter φ_{i}.
- For example, if the emission distributions are normal, then we could define $\varphi_{i}=\left(\mu_{i}, \sigma_{i}^{2}\right)$ and $\varepsilon_{i}(x)=f_{\varphi_{i}}(x)=\mathcal{N}\left(x \mid \mu_{i}, \sigma_{i}^{2}\right)$.
- Recall that $\pi_{i}=\mathbb{P}\left(Z_{1}=i\right)$ and $T_{i j}=\mathbb{P}\left(Z_{t+1}=j \mid Z_{t}=i\right)$.
- With these conventions, the HMM is parameterized by $\theta=(\pi, T, \varphi)$, where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right)$.
- We will assume that there are no functional relationships among π, T, and $\varphi_{1}, \ldots, \varphi_{m}$, so that we can maximize with respect to each of them separately.

Baum-Welch algorithm: E-step $(1 / 3)$

- In the E-step, we need to compute $Q\left(\theta, \theta_{k}\right)$. Recall that:

$$
Q\left(\theta, \theta_{k}\right)=\mathrm{E}_{\theta_{k}}\left(\log p_{\theta}(X, Z) \mid X=x\right)
$$

- By the factorization assumed in an HMM,

$$
\begin{aligned}
& \log p_{\theta}(x, z)=\log p_{\theta}\left(z_{1}\right)+\sum_{t=2}^{n} \log p_{\theta}\left(z_{t} \mid z_{t-1}\right)+\sum_{t=1}^{n} \log p_{\theta}\left(x_{t} \mid z_{t}\right) \\
& =\sum_{i=1}^{m} \mathrm{I}\left(z_{1}=i\right) \log \pi_{i}+\sum_{t=2}^{n} \sum_{i=1}^{m} \sum_{j=1}^{m} \mathrm{I}\left(z_{t-1}=i, z_{t}=j\right) \log T_{i j} \\
& \quad+\sum_{t=1}^{n} \sum_{i=1}^{m} \mathrm{I}\left(z_{t}=i\right) \log f_{\varphi_{i}}\left(x_{t}\right)
\end{aligned}
$$

- The only places where z appears in this expression are in the indicator functions, so when we take the expectation of Z given $X=x$, the expectation moves through and hits only these indicators.

Baum-Welch algorithm: E-step (2/3)

- Further, the expectation of an indicator function is equal to the probability of the event in the indicator-for example, $\mathrm{E}_{\theta_{k}}\left(\mathrm{I}\left(Z_{t}=i\right) \mid X=x\right)=\mathbb{P}_{\theta_{k}}\left(Z_{t}=i \mid X=x\right)$.
- Consequently,

$$
\begin{aligned}
Q\left(\theta, \theta_{k}\right)= & \sum_{i=1}^{m} \mathbb{P}_{\theta_{k}}\left(Z_{1}=i \mid x\right) \log \pi_{i} \\
& +\sum_{t=2}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \mathbb{P}_{\theta_{k}}\left(Z_{t-1}=i, Z_{t}=j \mid x\right) \log T_{i j} \\
& +\sum_{t=1}^{n} \sum_{i=1}^{m} \mathbb{P}_{\theta_{k}}\left(Z_{t}=i \mid x\right) \log f_{\varphi_{i}}\left(x_{t}\right)
\end{aligned}
$$

- To simplify the notation, let's define

$$
\begin{aligned}
\gamma_{t i} & =\mathbb{P}_{\theta_{k}}\left(Z_{t}=i \mid x\right) \\
\beta_{t i j} & =\mathbb{P}_{\theta_{k}}\left(Z_{t-1}=i, Z_{t}=j \mid x\right)
\end{aligned}
$$

Baum-Welch algorithm: E-step (3/3)

- With this notation, we have

$$
Q\left(\theta, \theta_{k}\right)=\sum_{i=1}^{m} \gamma_{1 i} \log \pi_{i}+\sum_{t=2}^{n} \sum_{i, j=1}^{m} \beta_{t i j} \log T_{i j}+\sum_{t=1}^{n} \sum_{i=1}^{m} \gamma_{t i} \log f_{\varphi_{i}}\left(x_{t}\right)
$$

- Now, if we could compute the γ 's and β 's, then we would have a nice analytical expression for $Q\left(\theta, \theta_{k}\right)$ (as a function of θ).
- The γ 's and β 's are precisely the quantities that we saw earlier could be computed using the results of the forward-backward algorithm!
- Thus, for any given θ_{k}, we can use the forward-backward algorithm to efficiently compute the γ 's and β 's.

Baum-Welch algorithm: The M-step $(1 / 4)$

- For the M -step, we need to find a value of θ maximizing $Q\left(\theta, \theta_{k}\right)$.
- Fortunately, it turns out that we can often do this analytically.
- To fully justify all of the steps below, we would need some regularity conditions, but we will ignore these details and just focus on the big picture for now.

Baum-Welch algorithm: The M-step $(2 / 4)$

- First, to maximize with respect to φ_{i}, if the family $\left(f_{\varphi}\right)$ is sufficiently nice (and often it is), we will be able to simply take the gradient with respect to φ_{i}, set it equal to zero, and solve for φ_{i}.
- In other words, find the value of φ_{i} such that

$$
0=\nabla_{\varphi_{i}} Q\left(\theta, \theta_{k}\right)=\sum_{t=1}^{n} \gamma_{t i}\left(\nabla_{\varphi_{i}} \log f_{\varphi_{i}}\left(x_{t}\right)\right)
$$

- Note that the derivative kills off all the terms in our expression for $Q\left(\theta, \theta_{k}\right)$ except for $\sum_{t=1}^{n} \gamma_{t i} \log f_{\varphi_{i}}\left(x_{t}\right)$.
- The value of φ_{i} satisfying this equation can be thought of as a weighted MLE, in which data point x_{t} has weight $\gamma_{t i}$.

Baum-Welch algorithm: The M-step (3/4)

- Next, consider π. Things are slightly trickier now, since we need to maximize subject to the constraint that $\sum_{i=1}^{m} \pi_{i}=1$.
- Fortunately, we can do this analytically using the method of Lagrange multipliers, as follows.
- Denoting the Lagrange multiplier by λ, we set the derivative of the Lagrangian equal to zero, apply the constraint, and solve for π :

$$
\begin{gathered}
0=\frac{\partial}{\partial \pi_{i}}\left(Q\left(\theta, \theta_{k}\right)-\lambda \sum_{j=1}^{m} \pi_{j}\right)=\frac{\gamma_{1 i}}{\pi_{i}}-\lambda \\
\Longrightarrow \lambda \pi_{i}=\gamma_{1 i} \quad \Longrightarrow \quad \lambda=\lambda \sum_{i=1}^{m} \pi_{i}=\sum_{i=1}^{m} \gamma_{1 i}
\end{gathered}
$$

therefore, $\pi_{i}=\frac{\gamma_{1 i}}{\sum_{j=1}^{m} \gamma_{1 j}}$.

Baum-Welch algorithm: The M-step (4/4)

- Finally, for T, we need to maximize subject to the constraint that $\sum_{j=1}^{m} T_{i j}=1$ for each i.
- As with π, we can do this analytically using Lagrange multipliers.
- If you work this out, you get

$$
T_{i j}=\frac{\sum_{t=2}^{n} \beta_{t i j}}{\sum_{t=2}^{n} \sum_{j=1}^{m} \beta_{t i j}}=\frac{\sum_{t=2}^{n} \beta_{t i j}}{\sum_{t=1}^{n-1} \gamma_{t i}}
$$

Altogether now, with feeling

- Putting all these pieces together, the Baum-Welch algorithm proceeds as follows:

1. Randomly initialize π, T, and $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right)$.
2. Iteratively repeat the following two steps, until convergence:
2.1 E-step: Compute the γ 's and β 's using the forward-backward algorithm, given the current values of π, T, φ.
2.2 M-step: Update π, T, and φ using the formulas above involving the γ 's and β 's.
