Gaussian processes

Bayesian Methodology in Biostatistics (BST 249)

Jeffrey W. Miller

Department of Biostatistics
Harvard T.H. Chan School of Public Health

1/38



Outline

Kernel ridge regression

Positive semidefinite kernels

Gaussian processes

GP regression

Supplementary reading: Computer model calibration

2/38



Outline

Kernel ridge regression

3/38



Kernel ridge regression

@ Consider the linear regression model: y = AS + €.

@ The ridge regression estimate can be written in two ways:
B=(ATA+ M) TATy = AT(AAT + A7y

by linear algebra manipulations.

@ Then, given a new point zg, we would predict
o = xp3 = xF AT(AAT + XI) 1y

@ Define z = Axg. Note that

x] xlzo k(z1,20)
z=Axg = : = : =
xr xr o k(zp,xo)

where k(z;, ) = z]x;.
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Kernel ridge regression

@ Similarly,
kE(xy,21) - k(z1,zp)
AAT = : :
k(xp, 1) -+ k(zn,zn)
o k(z;,z;) = x]x; is a special case of a class of functions called

positive semidefinite (PSD) kernels.
Then, letting K = AAT,

Jo = argB = zT(K + /\I)*ly.

Key fact: {y depends on the z's only through the k(z;,z;)’s.
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Kernel ridge regression

o Key fact: gy depends on the z's only through the k(z;, z;)’s:
jJo = xof = 2N (K + \I)"y.

e What if we use a different PSD kernel k(-,-) to compute z
and K7 We get a new prediction method!

@ A popular choice of kernel is the squared exponential:

kse(xial'j) = exXp ( - ﬁ”xl - :EjHQ)

where |v]|? = L ’UJQ-.

@ Amazing fact: ke actually corresponds to using an
infinite-dimensional basis vector! Remarkably, we can bypass
this infinite representation and make predictions using a finite
amount of computation. This is the “kernel trick”.
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Kernel ridge

regression: Example

Kernel ridge regression
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Positive semidefinite kernels
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Kernelization, in general

o k(z;,z;) = x]x; is a special case of a class of functions called

positive semidefinite (PSD) kernels.

e Definition: k(-,-) is a PSD kernel if for any z1,...,x,, the
matrix K = [k(z;, ;)] € R™™™ is symmetric positive
semidefinite.

o Usually, k(x;, x;) quantifies the similarity of ; and x;.

@ Kernelization recipe, in general:

1. Take any method that depends on the x;'s only through the
dot products z]x;.

2. Choose a PSD kernel k.

3. Replace every z]x; by k(z;,z;).

...and voila! You have a kernelized method.
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Kernelization, in general
@ A PSD kernel k can (usually) be expressed as

k(i 2;) ZW Dee(x;) = (i) p(a;)

where the sum may be an infinite series. (Mercer’s theorem)
@ And any k of this form is a PSD kernel.

@ More generally, if H is a Hilbert space with inner product (-, -),
and ¢(z) € H, then k(z,2') = (p(x), p(z")) is a PSD kernel.

@ So, kernelization is basically equivalent to using basis
functions (possibly infinitely many):

o(xi) = (1), p2(zi), - . ).

@ What's the point, then? Why not just use basis functions?
Computation, computation, computation!
10/38



Kernelization, in general

Kernelization allows us to avoid explicitly computing ¢(z;).

k(xi,x) provides a shortcut to computing ¢(z;) ¢ (x;).
This is the “trick” in the kernel trick.

This is advantageous for high- or infinite-dimensional ¢(x;).

Also, we can get flexibility without having to directly specify a
bunch of basis functions.

@ How do we avoid overfitting?

Variance is controlled via regularization.
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Examples of commonly used PSD kernels
e Polynomial kernel of degree d: For x;,z; € RP,

k(.’L‘i, I'j) = (C + xng)d.

» Equivalent to using a certain set of polynomial basis functions
up to degree d.
» ¢ > 0 controls the weight of lower vs higher order terms.

@ Squared exponential kernel: For z;, x; € RP,

k(zi,z;) = exp( - zp:(mw — :I:jg)2>.
=1

» Equivalent to using a particular infinite basis.
» ~ > 0 controls the precision /flexibility.
> Special case of a radial basis function (RBF) kernel.
@ These kernels are easy to compute compared to their basis
function representations.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/ESECpvmDYHmiguX26

(Three people per room, randomly assigned. 15 minutes.)
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Visualizing kernels (1d)

A wide range of structures in f(z) can be obtained.
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(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Squared exp. kernel (2d)
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(Figures from David Duvenaud, “Kernel cookbook

https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Squared exp. kernel (1d) 4+ Squared exp. kernel (1d)
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(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Symmetric kernel

(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Low-dimensional subspace kernel
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(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)

18/38


https://www.cs.toronto.edu/~duvenaud/cookbook 

Visualizing kernels (2d)

Close to low-dimensional subspace
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(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Constructing PSD kernels

If k, k1, ko are PSD kernels, then the following are PSD kernels:
1.

Proof: For all except #3, this is straightforward to show by using

ck(x,x'), for any ¢ > 0.

- f@)k(z, 2" f(2)), for any f: X = R.

kl (ZL‘, ZL‘/)k‘Q(l', :LJ)

- ki(z,2’) + ka(z,2)

p(k(x,2")) for any polynomial p with nonnegative coefs.
exp(k(z,2'))

k((x),¥(x")), for any function ¢ : X' — X.

the 2TKz > 0 Vz € R” characterization of PSD matrices.
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Proof that the product of PSD kernels is a PSD kernel

@ Suppose Cq,Cy € R™ ™ are symmetric PSD matrices, and
define C' € R™ "™ such that Cij = Ch‘jCQij.

o Let A, B € R™™" such that ATA = C; and B*B = (5.

@ Then for any z € R",

S0y = Z 22C1i;Caij = Z 212 ( 2o ainajn) (3¢ biebje)
ij Y
- Z Z 22k ajrbigbje

k,l i,J

— ; ( Z Ziaikbiﬁ) ( Z Zjajkbﬂ)

7

=> (Z Ziaikbi€)2 > 0.

ke i
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Kernelization

@ The kernel trick is exploited in many methods:

» Kernel ridge regression
» Gaussian processes

» Support vector machines
> Kernel PCA

» Spectral clustering

» Semi-supervised learning

» . .and others.
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Gaussian processes: Introduction

@ A Gaussian process (GP) is a distribution on random functions
that can be thought of as an infinite-dimensional
generalization of a multivariate Gaussian.

@ In Bayesian statistics, GPs are used for nonparametric
regression. Basically, a GP can be used as a flexible prior on
the regression function.

@ Inference in GPs can be done by simply using properties of
multivariate Gaussians.

@ GPs have many applications, for example:
spatial statistics

meteorology

geostatistics

geology

oceanography

finance

VVVVYYVYY
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Gaussian processes: Definition

e For any set X', a Gaussian process (GP) on X is a set of
random variables (Z, : x € X') such that any finite subset

(Zgy,- -+ Zgy ) is multivariate Gaussian.
@ In other words, for all N, for all z1,...,zy € X, the vector
(Zgyy- -+ Zgy ) is multivariate Gaussian.

e The mean function of a GP is u(z) := E(Z,).

@ The covariance function (or kernel) of a GP is
k(z,a') .= Cov(Zy, Zyr).
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Gaussian processes: Examples

(Simulation examples in R)
gp-examples.r

26/38



Gaussian processes: Examples
1. Random subspaces: X = RY, pu(z) =0, k(z,2') = 2Tz’

2. Squared exponential: X = R?, pu(z) =0,
k(x,z') = exp(—allz — 2'||?) where a > 0.

3. Polynomial: X =R, pu(z) =0, k(x,2') = a(c + z72")? where
a,c,d > 0.

4. Ornstein-Uhlenbeck: X =R, u(z) =0,
k(xz,2') = exp(—a|z — 2’|) where o > 0.

5. Periodic example: X =R, u(x) =0,
k(z,2') = exp ( — asin(B7r(z — 2)?)) where a, 8 > 0.

6. Symmetric example: X =R, u(x) =0,
k(z,2") = exp (— amin(|z — 2/|, |z + 2/|)?) where o > 0.
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Existence of Gaussian processes

o For any set X, any PSD kernel £ : X x X — R, and any
mean function p : X — R, there exists a Gaussian process
(Zy : x € X) such that E(Z,;) = u(z) and
Cov(Zy, Zy) = k(z,2').

@ Proof: Kolmogorov's extension theorem.

@ The nice thing about this is that it lets us define GPs with
any given mean function and covariance function.

o We write Z ~ GP(yu, k) to denote that Z is a GP with mean
function u(-) and covariance function (-, -).
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GP regression: Introduction

@ GP regression is a Bayesian nonparametric approach to
regression.

@ Basic idea: Put a GP prior on the regression function, and
model the outcomes as normal.

@ Even though the GP is a prior on infinite-dimensional objects
(Z3), in practice, we only have a finite number of data points,
so working with GPs simplifies to multivariate Gaussians.

@ Prediction and inference in GP regression is essentially the
same as Bayesian linear regression, and just involves some
basic properties of multivariate Gaussians.
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Key property of multivariate Gaussians

@ Suppose Y = Z + ¢ € RN where Z ~ N (m,K) and
e ~ N(0,0%I) independently.

o Then Y ~ N(m, K + o2I).

o leta=(1,...,n)andb=(n+1,...,N), and write

Ya meg Kaa Kab
Y: = K: .
[ ] " [ } [Kba Kbb}

e Then Y, | Yy = yo ~ N(n,C) where

n=mp+ Kba(Kaa + 0'2I)_1(ya - ma)a
C = (K + 021) — Kpy(Kaq + 021) 1 Ky,

31/38



GP regression: Setup

o Covariates: z1,...,xxy € X.

o QOutcomes: y1,...,yn € R.

@ Suppose ¥y, := Y1., is observed, and yp 1= yp+1.N IS
unobserved.

@ Goal: Predict and quantify uncertainty in y.

o Model:

Z=(Zy:xeX)~GP(u,k)
Yi|Z ~ N(Zy,, 02).

@ Interpretation: Z, is the regression function.

32/38



GP regression: Inference
@ We would like to predict and quantify our uncertainty in the
unobserved outcomes yp.
@ Bayesian approach: Use the posterior predictive, Yy, | Yo = ya.

o Let Z=(Zy,,...,Zsy)". Then Z ~ N(m, K) where

(1)
I:Kba Ky

mi= | —[m] K = [k, z)] Y _ =

K Kab
mp i,j=1 :

m(wn)

@ By the key property above, Y, | Y, =y, ~ N (n,C) where

n=mp+ Kba(Kaa + 0'21)_1(:%1 - ma)a
C = (K + 021) — Kpg(Kaq + 021) 1 Ky,

e m is the “best fit curve” and C' quantifies our uncertainty.
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GP regression: Inference

Interactive demo
http://chifeng.scripts.mit.edu/stuff/gp-demo/
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GP regression: Inference

Tutorial and interactive demos
https://distill.pub/2019/
visual-exploration-gaussian-processes/
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GP regression: Comments

@ Advantages
» Flexible nonparametric prior on regression function.

» Wide range of dependency structures can be obtained via the
choice of kernel.

@ Disadvantages

» Computation: Computing the matrix inverse (K,, + 021)~*
takes O(n?) time. There are approximations that reduce this
to O(n) for GPs.

» Designing new kernels is something of an art, so most people
use default kernels.
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Supplementary reading: Computer model calibration
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Supplementary reading: Application example

Application of GPs to computer model calibration

Slides 29-53 from

https://astrostatistics.psu.edu/sui8/18Lectures/w2haranGaussianProc2018.pdf
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