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Kernel ridge regression

Consider the linear regression model: y = Aβ + ε.

The ridge regression estimate can be written in two ways:

β̂ = (ATA+ λI)−1ATy = AT(AAT + λI)−1y

by linear algebra manipulations.

Then, given a new point x0, we would predict

ŷ0 = xT0β̂ = xT0A
T(AAT + λI)−1y.

Define z = Ax0. Note that

z = Ax0 =

 xT1
...
xTn

x0 =
x

T
1x0
...

xTnx0

 =

k(x1, x0)...
k(xn, x0)


where k(xi, xj) = xTixj .
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Kernel ridge regression

Similarly,

AAT =

k(x1, x1) · · · k(x1, xn)
...

...
k(xn, x1) · · · k(xn, xn)

 .
k(xi, xj) = xTixj is a special case of a class of functions called
positive semidefinite (PSD) kernels.

Then, letting K = AAT,

ŷ0 = xT0β̂ = zT(K + λI)−1y.

Key fact: ŷ0 depends on the x’s only through the k(xi, xj)’s.
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Kernel ridge regression

Key fact: ŷ0 depends on the x’s only through the k(xi, xj)’s:

ŷ0 = xT0β̂ = zT(K + λI)−1y.

What if we use a different PSD kernel k(·, ·) to compute z
and K? We get a new prediction method!

A popular choice of kernel is the squared exponential:

kse(xi, xj) = exp
(
− 1

2σ2 ‖xi − xj‖2
)

where ‖v‖2 =
∑p

j=1 v
2
j .

Amazing fact: kse actually corresponds to using an
infinite-dimensional basis vector! Remarkably, we can bypass
this infinite representation and make predictions using a finite
amount of computation. This is the “kernel trick”.
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Kernel ridge regression: Example
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Kernelization, in general

k(xi, xj) = xTixj is a special case of a class of functions called
positive semidefinite (PSD) kernels.

Definition: k(·, ·) is a PSD kernel if for any x1, . . . , xn, the
matrix K = [k(xi, xj)] ∈ Rn×n is symmetric positive
semidefinite.

Usually, k(xi, xj) quantifies the similarity of xi and xj .

Kernelization recipe, in general:

1. Take any method that depends on the xi’s only through the
dot products xTixj .

2. Choose a PSD kernel k.
3. Replace every xTixj by k(xi, xj).

. . . and voilà! You have a kernelized method.
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Kernelization, in general
A PSD kernel k can (usually) be expressed as

k(xi, xj) =
∑
`

ϕ`(xi)ϕ`(xj) = ϕ(xi)
Tϕ(xj)

where the sum may be an infinite series. (Mercer’s theorem)

And any k of this form is a PSD kernel.

More generally, if H is a Hilbert space with inner product 〈·, ·〉,
and ϕ(x) ∈ H, then k(x, x′) = 〈ϕ(x), ϕ(x′)〉 is a PSD kernel.

So, kernelization is basically equivalent to using basis
functions (possibly infinitely many):

ϕ(xi) = (ϕ1(xi), ϕ2(xi), . . .).

What’s the point, then? Why not just use basis functions?
Computation, computation, computation!
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Kernelization, in general

Kernelization allows us to avoid explicitly computing ϕ(xi).

k(xi, xj) provides a shortcut to computing ϕ(xi)
Tϕ(xj).

This is the “trick” in the kernel trick.

This is advantageous for high- or infinite-dimensional ϕ(xi).

Also, we can get flexibility without having to directly specify a
bunch of basis functions.

How do we avoid overfitting?

Variance is controlled via regularization.
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Examples of commonly used PSD kernels

Polynomial kernel of degree d: For xi, xj ∈ Rp,

k(xi, xj) = (c+ xTixj)
d.

I Equivalent to using a certain set of polynomial basis functions
up to degree d.

I c ≥ 0 controls the weight of lower vs higher order terms.

Squared exponential kernel : For xi, xj ∈ Rp,

k(xi, xj) = exp
(
− γ

p∑
`=1

(xi` − xj`)2
)
.

I Equivalent to using a particular infinite basis.
I γ > 0 controls the precision/flexibility.
I Special case of a radial basis function (RBF) kernel.

These kernels are easy to compute compared to their basis
function representations.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/E5ECpvmDYHmiguX26

(Three people per room, randomly assigned. 15 minutes.)
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Visualizing kernels (1d)

A wide range of structures in f(x) can be obtained.

(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Squared exp. kernel (2d)

(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Squared exp. kernel (1d) + Squared exp. kernel (1d)

(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Symmetric kernel

(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Low-dimensional subspace kernel

(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Visualizing kernels (2d)

Close to low-dimensional subspace

(Figures from David Duvenaud, “Kernel cookbook”, https://www.cs.toronto.edu/~duvenaud/cookbook)
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Constructing PSD kernels
If k, k1, k2 are PSD kernels, then the following are PSD kernels:

1. ck(x, x′), for any c ≥ 0.

2. f(x)k(x, x′)f(x′), for any f : X → R.

3. k1(x, x
′)k2(x, x

′)

4. k1(x, x
′) + k2(x, x

′)

5. p(k(x, x′)) for any polynomial p with nonnegative coefs.

6. exp(k(x, x′))

7. k(ψ(x), ψ(x′)), for any function ψ : X ′ → X .

Proof: For all except #3, this is straightforward to show by using
the zTKz ≥ 0 ∀z ∈ Rn characterization of PSD matrices.
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Proof that the product of PSD kernels is a PSD kernel
Suppose C1, C2 ∈ Rn×n are symmetric PSD matrices, and
define C ∈ Rn×n such that Cij = C1ijC2ij .

Let A,B ∈ Rn×n such that ATA = C1 and BTB = C2.

Then for any z ∈ Rn,

zTCz =
∑
i,j

zizjC1ijC2ij =
∑
i,j

zizj
(∑

k aikajk
)(∑

` bi`bj`
)

=
∑
k,`

∑
i,j

zizjaikajkbi`bj`

=
∑
k,`

(∑
i

ziaikbi`

)(∑
j

zjajkbj`

)
=
∑
k,`

(∑
i

ziaikbi`

)2
≥ 0.
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Kernelization

The kernel trick is exploited in many methods:

I Kernel ridge regression

I Gaussian processes

I Support vector machines

I Kernel PCA

I Spectral clustering

I Semi-supervised learning

I . . . and others.
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Gaussian processes: Introduction
A Gaussian process (GP) is a distribution on random functions
that can be thought of as an infinite-dimensional
generalization of a multivariate Gaussian.

In Bayesian statistics, GPs are used for nonparametric
regression. Basically, a GP can be used as a flexible prior on
the regression function.

Inference in GPs can be done by simply using properties of
multivariate Gaussians.

GPs have many applications, for example:
I spatial statistics
I meteorology
I geostatistics
I geology
I oceanography
I finance
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Gaussian processes: Definition

For any set X , a Gaussian process (GP) on X is a set of
random variables (Zx : x ∈ X ) such that any finite subset
(Zx1 , . . . , ZxN ) is multivariate Gaussian.

In other words, for all N , for all x1, . . . , xN ∈ X , the vector
(Zx1 , . . . , ZxN ) is multivariate Gaussian.

The mean function of a GP is µ(x) := E(Zx).

The covariance function (or kernel) of a GP is
k(x, x′) := Cov(Zx, Zx′).
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Gaussian processes: Examples

(Simulation examples in R)
gp-examples.r
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Gaussian processes: Examples
1. Random subspaces: X = Rd, µ(x) = 0, k(x, x′) = xTx′.

2. Squared exponential: X = Rd, µ(x) = 0,
k(x, x′) = exp(−α‖x− x′‖2) where α ≥ 0.

3. Polynomial: X = R, µ(x) = 0, k(x, x′) = a(c+ xTx′)d where
a, c, d ≥ 0.

4. Ornstein-Uhlenbeck: X = R, µ(x) = 0,
k(x, x′) = exp(−α|x− x′|) where α ≥ 0.

5. Periodic example: X = R, µ(x) = 0,
k(x, x′) = exp

(
− α sin(βπ(x− x′)2)

)
where α, β ≥ 0.

6. Symmetric example: X = R, µ(x) = 0,
k(x, x′) = exp

(
− αmin(|x− x′|, |x+ x′|)2

)
where α ≥ 0.
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Existence of Gaussian processes

For any set X , any PSD kernel k : X × X → R, and any
mean function µ : X → R, there exists a Gaussian process
(Zx : x ∈ X ) such that E(Zx) = µ(x) and
Cov(Zx, Zx′) = k(x, x′).

Proof: Kolmogorov’s extension theorem.

The nice thing about this is that it lets us define GPs with
any given mean function and covariance function.

We write Z ∼ GP(µ, k) to denote that Z is a GP with mean
function µ(·) and covariance function k(·, ·).
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GP regression: Introduction

GP regression is a Bayesian nonparametric approach to
regression.

Basic idea: Put a GP prior on the regression function, and
model the outcomes as normal.

Even though the GP is a prior on infinite-dimensional objects
(Zx), in practice, we only have a finite number of data points,
so working with GPs simplifies to multivariate Gaussians.

Prediction and inference in GP regression is essentially the
same as Bayesian linear regression, and just involves some
basic properties of multivariate Gaussians.
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Key property of multivariate Gaussians

Suppose Y = Z + ε ∈ RN where Z ∼ N (m,K) and
ε ∼ N (0, σ2I) independently.

Then Y ∼ N (m, K + σ2I).

Let a = (1, . . . , n) and b = (n+ 1, . . . , N), and write

Y =

[
Ya
Yb

]
m =

[
ma

mb

]
K =

[
Kaa Kab

Kba Kbb

]
.

Then Yb | Ya = ya ∼ N (η, C) where

η = mb +Kba(Kaa + σ2I)−1(ya −ma),

C = (Kbb + σ2I)−Kba(Kaa + σ2I)−1Kab.
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GP regression: Setup

Covariates: x1, . . . , xN ∈ X .

Outcomes: y1, . . . , yN ∈ R.

Suppose ya := y1:n is observed, and yb := yn+1:N is
unobserved.

Goal: Predict and quantify uncertainty in yb.

Model:

Z = (Zx : x ∈ X ) ∼ GP(µ, k)

Yi|Z ∼ N (Zxi , σ
2).

Interpretation: Zx is the regression function.
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GP regression: Inference

We would like to predict and quantify our uncertainty in the
unobserved outcomes yb.

Bayesian approach: Use the posterior predictive, Yb | Ya = ya.

Let Z̃ = (Zx1 , . . . , ZxN )
T. Then Z̃ ∼ N (m,K) where

m :=

µ(x1)...
µ(xN )

 =

[
ma

mb

]
, K :=

[
k(xi, xj)

]N
i,j=1

=

[
Kaa Kab

Kba Kbb

]
.

By the key property above, Yb | Ya = ya ∼ N (η, C) where

η = mb +Kba(Kaa + σ2I)−1(ya −ma),

C = (Kbb + σ2I)−Kba(Kaa + σ2I)−1Kab.

m is the “best fit curve” and C quantifies our uncertainty.
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GP regression: Inference

Interactive demo
http://chifeng.scripts.mit.edu/stuff/gp-demo/
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GP regression: Inference

Tutorial and interactive demos
https://distill.pub/2019/

visual-exploration-gaussian-processes/
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GP regression: Comments

Advantages
I Flexible nonparametric prior on regression function.

I Wide range of dependency structures can be obtained via the
choice of kernel.

Disadvantages
I Computation: Computing the matrix inverse (Kaa + σ2I)−1

takes O(n3) time. There are approximations that reduce this
to O(n) for GPs.

I Designing new kernels is something of an art, so most people
use default kernels.
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Supplementary reading: Application example

Application of GPs to computer model calibration

Slides 29-53 from
https://astrostatistics.psu.edu/su18/18Lectures/w2haranGaussianProc2018.pdf
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