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Introduction

When using regression in practice, many possible variables
could be included as covariates.

Including too many variables can lead to poor prediction
performance.

Ideally, one would include only the variables that are
informative about the outcome.

But how can one determine which variables are informative?

This is the variable selection problem.

Variable selection is a particular type of model selection.
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Bayesian model selection

The standard Bayesian approach to model selection is to put a
prior on models, and simply consider the posterior on models.

This is sometimes referred to as “Bayesian model averaging”,
rather than “model selection”.

The “model averaging” terminology emphasizes the fact that
we use the posterior over all models rather than selecting a
single model.

Thus, posterior expectations involve averaging over models.
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Bayesian model selection

Suppose we are considering models M1,M2, . . ..

Suppose model Mk has parameter θk.

Suppose we have a prior on the model index p(k), and a prior
on parameters p(θk | k) for each model.

Given data x, the posterior on models is then

p(k|x) ∝ p(x|k) p(k)

= p(k)

∫
p(x | θk, k) p(θk | k) dθk.

p(x|k) is the marginal likelihood of model k. Incidentally, this
justifies the term “marginal likelihood”, since it is the
likelihood function for k.
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Variable selection
Variable selection is a special case of model selection.

Consider each subset of possible variables to be a different
model.

Represent this as follows: zj = 1 if variable j is included, and
zj = 0 otherwise.

Consider the linear regression model:

Yi = z1β1xi1 + · · ·+ zpβpxip + εi.

Each possible vector z = (z1, . . . , zp) ∈ {0, 1}p represents a
different model.

So, for model selection, we are interested in p(z | x, y).
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Oxygen update example: Data

Twelve healthy men were recruited to take part in a study on
the effects of exercise. The men did not exercise regularly.

Subjects were randomly divided into two groups of six.
I Group 1 followed a 12-week running program.
I Group 2 followed a 12-week step aerobics program.

Maximum oxygen uptake (liters/minute) was measured while
running on a treadmill, both before and after the program.

Goal: Assess the effect of the running program on oxygen
uptake.
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Oxygen update example: Data
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Oxygen update example: Models considered

Five models under consideration:

E
(
Y | X, β, z=(1, 0, 0, 0)

)
= β1

E
(
Y | X, β, z=(1, 1, 0, 0)

)
= β1 + β2 group

E
(
Y | X, β, z=(1, 0, 1, 0)

)
= β1 + β3 age

E
(
Y | X, β, z=(1, 1, 1, 0)

)
= β1 + β2 group + β3 age

E
(
Y | X, β, z=(1, 1, 1, 1)

)
= β1 + β2 group + β3 age + β4 group× age.
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Oxygen update example: OLS for four models
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Oxygen update example: Motivation

Visually, some of these models clearly seem better than others.

Statistically, how much evidence is there for each model?

A frequentist approach would employ hypothesis testing, but
this gets complicated when there are many possible variables
to include.

It is common to use lasso, elastic net, or stepwise selection,
but significance testing is not simple with these methods.
Recent methods for “post-selection inference” have been
developed to address this.

The Bayesian approach is simply to consider the posterior on
which variables to include.
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Diabetes example: Data

n = 442 patients, 10 binary measurements for each patient.

Outcome: yi = quantitative measure of disease progression of
patient i, one year after measurements.

Goal: Predict yi from the measurements.

Baseline model: Linear regression with main effects as well as
interactions between each pair of measurements.

The baseline model has p = 64 covariates, which are centered
and scaled for interpretability.

342 patients used for training, 100 patients used for testing.
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Diabetes example: Performance comparison

Approach #1: Constant prediction ŷi = c. Test MSE = 0.97.

Approach #2: OLS including all covariates. Test MSE = 0.67.

Approach #3: OLS + backward selection. Test MSE = 0.53.

Approach #4: Bayesian variable selection. Test MSE = 0.45.
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Diabetes example: OLS coefficients

(figure from Hoff, 2009)
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Diabetes example: OLS versus backward selection

(figure from Hoff, 2009)

Backward selection starts with all variables included, and
iteratively removes the least significant variable and refits,
until all variables are significant. This leaves 20 variables.

Backward selection helps improve prediction performance.
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Diabetes example: Issue with backward selection

(figure from Hoff, 2009)

Unfortunately, backward selection often indicates relationships
even when there are none.

Above, the y values were randomly permuted, breaking any
dependencies with the x’s.

Backward selection incorrectly finds many “significant”
coefficients.
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Bayesian variable selection
Consider the linear regression model:

Yi = z1β1xi1 + · · ·+ zpβpxip + εi

where εi ∼ N (0, γ−1).

Prior on models: z ∼ p(z), e.g., Z1, . . . , Zp
iid∼ Bernoulli(α).

Prior on parameters for each model:

γ ∼ Gamma(12ν0,
1
2ν0σ

2
0)

βz|X, z, γ ∼ N (0, g(γXT
zXz)

−1)

where βz = (βj : zj = 1) contains the entries of β where
zj = 1, and likewise, Xz is the design matrix including only
the columns j for which zj = 1. If zj = 0, then set βj to any
arbitary real value, e.g., βj = 0.

Thus, given z, this is a g-prior on βz.
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Bayesian variable selection: Posterior computation

The posterior on models z, integrating out β and γ, is

p(z|X, y) ∝ p(y|X, z)p(z).

It turns out that p(y|X, z) can be computed analytically (see
Hoff 9.3.1):

p(y|X, z) =

∫
p(y | β, γ,X, z)p(β | γ,X, z)p(γ) dβ dγ (1)

=
1

πn/2(1 + g)pz/2
Γ
(
1
2(ν0 + n)

)
Γ
(
1
2ν0
) (ν0σ

2
0)ν0/2

(ν0σ20 + SSRz
g)

(ν0+n)/2

where pz =
∑p

j=1 zj and

SSRz
g = yT

(
I − g

g + 1
Xz(X

T
zXz)

−1XT
z

)
y.
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Bayesian variable selection: Prior settings
A natural default is to use a unit information prior.

Unit information prior: g = n, ν0 = 1, and σ20 = σ̂2mle.

For the prior on models, in these examples, we will consider a

uniform prior p(z) ∝ 1. Equivalently, Zj
iid∼ Bernoulli(1/2).

However, to favor sparsity, it is common to use

Zj
iid∼ Bernoulli(α) where α is of order 1/p.

For instance, if α = c/p then (under the prior) the proportion
of included coefficients is c.

It is also common (and recommended) to integrate out a Beta
prior on α, which can easily be done analytically since it is
conjugate.
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Oxygen uptake example: Posterior on models

(figure from Hoff, 2009)

The posterior favors the model including age and the exercise
group, but not the interaction.

However, a sizable amount of posterior mass is also given to
the other two models that include age.

Thus, according to this analysis, the data provides some
evidence that the type of exercise program has an effect, but
it is not definitive.
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Gibbs sampling for Bayesian variable selection

In the oxygen uptake example, there are only 5 models under
consideration, so we can easily analytically compute the
posterior over all 5 models.

However, when there are more variables, the number of
models will be far too large to consider them all.

If we consider all subsets of p variables, there are 2p possible
models.

For instance, for the diabetes data, p = 64, so there are
around 1.8× 1019 models!

Gibbs sampling is a common approach to doing approximate
posterior inference for variable selection.
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Gibbs sampling for Bayesian variable selection

As mentioned earlier, one can integrate out β and γ to obtain
an analytic expression for p(y|X, z).

We can use this expression to do Gibbs sampling directly on
p(z|X, y), since p(z|X, y) ∝ p(y|X, z)p(z).

Gibbs sampler algorithm for variable selection
I Initialize z1 = · · · = zp = 0.
I At each iteration, for each j = 1, . . . , J

Update zj by sampling from p(zj | X, y, z−j).

Here, z−j denotes all the entries of z except zj .

Note: Initializing zj = 0 speeds up burn-in when p is very
large and the posterior is concentrated on sparse z vectors.
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Gibbs sampling for Bayesian variable selection

The full conditional for zj is

p(zj | X, y, z−j) ∝
zj
p(y|X, z)p(z)

and p(y|X, z) is given by Equation 1 (earlier in these slides).

This can be written as

p(zj = 1 | X, y, z−j) = rj/(1 + rj)

p(zj = 0 | X, y, z−j) = 1/(1 + rj)

where

rj = rj(z−j) =
p(y | X, z−j , zj =1)

p(y | X, z−j , zj =0)

p(z−j , zj =1)

p(z−j , zj =0)
.
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Gibbs sampling for Bayesian variable selection
A Gibbs sampler in which some of the variables have been
integrated out is sometimes called a “collapsed Gibbs
sampler”.

What if we want to get posterior samples of β and γ as well?
It turns out that this is easy to do.

First run the Gibbs sampler for T iterations to get samples
z(1), . . . , z(T ) from p(z|X, y).

Then, for each t = 1, . . . , T ,
1. Sample γ(t) ∼ p(γ | X, y, z(t)).
2. Sample β(t) ∼ p(β | X, y, z(t), γ(t)).

Sampling γ(t) and β(t) can be done exactly, using the formulas
from the slides on g-priors for Bayesian linear regression.
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Diabetes example: Posterior

Run sampler for T = 10000 iterations, to get z(t), γ(t), β(t) for
t = 1, . . . , T .

Only a small fraction of the total number of models are ever
visited by the sampler.

However, if the sampler is performing reasonably well, then
the set of models that are not visited should have small
posterior probability.

Further, the samples often provide a reasonable approximation
to the marginal distribution of each zj and βj , even if the
joint posterior on z, β is not very well approximated.

29 / 32



Diabetes example: Posterior

Test MSE = 0.45 for Bayesian variable selection.

Bayes selects quite different variables than backward selection.

30 / 32



Diabetes example: Compare with backward selection

Test MSE = 0.53 for backward selection.
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