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Monte Carlo techniques we’ve covered so far

Simple Monte Carlo

Importance sampling

Gibbs sampling

Metropolis–Hastings

Combining MCMC moves

MCMC algorithms for various models
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Quasi-Monte Carlo (QMC)
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Quasi-Monte Carlo (QMC)
Quasi-Monte Carlo uses well-spaced deterministic points
instead of random samples to approximate integrals.

These deterministic sequences of points are also known as
“low-discrepancy sequences” (LDSs).

In simple Monte Carlo, the error is of order O(1/
√
n).

In quasi-Monte Carlo, the error is of order O((log n)d/n)
where d is the dimension. (Major improvement!)

When d = 1 or d = 2, we could just use a grid, but the
number of points in a grid grows exponentially with d.

Consequently, as d grows, it is far from obvious how to
construct good LDSs.
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Quasi-Monte Carlo (QMC): Constructions

Low-discrepancy sequences (LDSs) are usually defined to
target the uniform distribution on [0, 1]d.

Standard choices of LDS:
I Sobol sequence
I Halton sequence
I Hammersley sequence
I Faure sequence

By using inverse CDFs, it is easy to transform LDSs to target
other probability distributions, e.g., multivariate Gaussians,
discrete distributions, copulas.
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Quasi-Monte Carlo (QMC): Issues

Even though QMC is asymptotically superior, in high-dim
spaces the benefit does not kick in until n is very large.

The issue is that when d is large, the (log n)d factor often
makes QMC slower in practice.

So far, QMC has had limited success in high-dim applications
in statistics.

Notable exception: In finance applications, QMC is reported
to outperform Monte Carlo in many high-dim problems.
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Quasi-Monte Carlo (QMC) and MCMC

Part of the issue is that QMC does not work well when the
target distribution is concentrated on a small set, since most
of the samples are wasted.

MCMC does not have this problem since it tends to stay in
regions where the target distribution is concentrated.

It is not clear how to combine QMC and MCMC in a way that
obtains the nice properties of both.

There have been efforts to use QMC in MCMC moves (Owen
& Tribble, 2005), but so far there is not a clear benefit of this
over standard MCMC.

This remains an interesting open research problem.
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Auxiliary variable technique
Many advanced MCMC methods employ auxiliary variables to
construct moves with the desired stationary distribution.

Suppose p(x, z) is such that π(x) =
∫
p(x, z)dz and Taug is a

move on (x, z) that preserves p(x, z).

Interpretation:
I π = target distribution,
I x = state of the Markov chain,
I z = auxiliary variable.

Define a move T on x as follows:
1. Suppose the current state is x.
2. Sample z from p(z|x).
3. Generate (x′, z′) by applying the move Taug to (x, z).
4. Define the new state to be x′.

It can be shown that πT = π, that is, T preserves π.
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Auxiliary variable technique
An auxiliary variable move T constructed in this way is
guaranteed to have π as its stationary distribution.

However, it is not guaranteed to yield an irreducible Markov
chain (and in practice, often it does not).

Auxiliary moves are often combined with other moves to
improve mixing. Irreducibility can be obtained with an
appropriate combination of moves.

Special cases of the auxiliary variable technique:
I Metropolis–Hastings (and Gibbs)
I Mixture model sampler with allocation variables
I Probit regression sampler with data augmentation
I Slice sampling
I Reversible jump MCMC
I Hamiltonian Monte Carlo
I MCMC for doubly intractable models
I Swendsen-Wang algorithm for Ising model 13 / 40
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Auxiliary variable technique: MH as a special case

How can we view Metropolis–Hastings (MH) as an auxiliary
variable move?

First, the Metropolis algorithm is an older and simpler version
of MH in which the proposal distribution is symmetric:

q(xprop|x) = q(x|xprop).

Consequently, the proposal distribution cancels in the MH
acceptance probability.

Thus, in a Metropolis move, the acceptance probability is

α = min
{

1,
π(xprop)

π(x)

}
.
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Auxiliary variable technique: MH as a special case
MH can be viewed as performing a simple Metropolis move in
an augmented space.

Suppose z = xprop is the proposed new value of x in MH.

Then p(x, z) = p(x, xprop) = π(x)q(xprop|x).

Now, apply a Metropolis move on (x, xprop) as follows:
Propose to swap x and xprop, that is, (x, xprop) 7→ (xprop, x).

The acceptance probability of this Metropolis move on
(x, xprop) is

α = min
{

1,
π(xprop)q(x|xprop)

π(x)q(xprop|x)

}
.

This coincides with the standard MH acceptance probability!
16 / 40



Outline

Quasi-Monte Carlo

Auxiliary variable methods
Auxiliary variable technique
MH as a special case
Probit regression with data augmentation
Slice sampling
Reversible jump MCMC

Handling intractable likelihoods
Approximate Bayesian computation (ABC)
MCMC for doubly intractable models

17 / 40



Example: Probit regression with data augmentation

Probit regression for binary outcomes Yi given covariates xi:

P(Yi = 1 | β, xi) = Φ(βTxi)

where Φ(·) is the standard normal CDF.

The posterior on β is not amenable to Gibbs sampling.

We could use MH, but we would have to tune the proposal
distribution.

Auxiliary variables (a.k.a. data augmentation) allow us to use
Gibbs on an augmented space.
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Example: Probit regression with data augmentation
Augmented model:

β ∼ N (µ,C) (prior on β)

Zi ∼ N (βTxi, 1) (auxiliary variables)

Yi = I(Zi > 0). (outcomes)

Integrating out the Zi’s, this is equivalent to the probit
regression model.

The nice thing is that given the Zi’s, this is just a linear
regression model with the Zi’s playing the role of the data.

Thus, the full conditional for β is the usual linear regression
posterior with Zi’s as data.

This approach to probit regression is due to Albert & Chib
(1993).
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Slice sampling

Like MH, slice sampling can be used on complicated target
distributions π(x) ∝ π̃(x).

Slice sampling is way of constructing MCMC moves that
sometimes have better mixing than MH.

The advantage is that slice sampling makes moves that
automatically adapt to the shape of the target distribution.

Basic idea: Sample uniformly from the region under the target
density by alternating between “horizontal” and “vertical”
Gibbs updates.

Slice sampling was introduced by Neal (2003).
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Slice sampling: Recall the projection principle

Suppose we want to sample from a distribution on Rd with
p.d.f. π(x) ∝ π̃(x).

Consider the region of Rd+1 under π̃:

A =
{

(x, y) ∈ Rd+1 : 0 < y < π̃(x)
}
.

It turns out that if (X,Y ) ∼ Uniform(A), then X ∼ π.
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Slice sampling: Idea of the algorithm

Slice sampling: Sample uniformly from the region under the
target density

A =
{

(x, y) ∈ Rd+1 : 0 < y < π̃(x)
}

by alternating between “horizontal” and “vertical” Gibbs
updates to x and y, respectively.
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Slice sampling: Algorithm
The vertical update (sampling from the full conditional of y)
is trivial:

Y |x ∼ Uniform(0, π̃(x)).

For the horizontal update (sampling from the full conditional
of x), ideally we would sample uniformly from the “slice”:

Ay =
{
x ∈ Rd : (x, y) ∈ A

}
=
{
x ∈ Rd : y < π̃(x)

}
.

Exactly sampling from Uniform(Ay) is often difficult.
Fortunately, however, we only need to make a move that has
Uniform(Ay) as its stationary distribution.

For instance, we can use an MH move with proposal
Uniform(Br(x)) where Br(x) = {x′ ∈ Rd : ‖x′ − x‖ < r} is
the ball of radius r, centered at x. The radius r can be
chosen adaptively; see Neal (2003) for details.
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Reversible jump MCMC (RJMCMC)

RJMCMC is a technique for sampling from spaces of varying
dimension.

For instance, suppose models M1,M2, . . . have parameter
spaces of dimension d1, d2, . . ., and we want to sample from
the posterior on models, but the marginal likelihood cannot be
computed.

Examples:
I Variable selection with non-conjugate priors

I Mixture models with an unknown number of components (with
non-conjugate priors on the component parameters)

I Time-series models of unknown order (with non-conjugate
priors)
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Reversible jump MCMC (RJMCMC)
It is not obvious how to construct valid MCMC updates for
moving between spaces with different dimension.

Part of the issue is that the meaning of the density is different
in different dimensions.

RJMCMC (Green, 1995) is a general way of constructing
“transdimensional” moves with the correct stationary
distribution.

Basic idea: Introduce auxiliary variables that embed multiple
models into spaces of common dimension, and make a move
in this augmented space.

Unfortunately, RJMCMC often mixes very slowly because it is
difficult to design good proposals for moving between models.
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Approximate Bayesian computation (ABC)
Sometimes your model is so complicated that you can’t even
compute the likelihood p(x|θ) as a function of θ.

This is sometimes referred to as a “doubly intractable model”.

Suppose you want to sample from the posterior. If you can’t
compute p(x|θ), then most MCMC methods cannot be used.
E.g., you can’t compute the MH acceptance probabilities.

Suppose, on the other hand, that you can easily generate data
sets from p(x|θ). ABC is designed for such situations.

This is actually pretty common, for instance, in:
I evolutionary biology,
I ecology models,
I epidemiology,
I weather and climate models,
I physics/biophysics models, and
I dynamical systems models. 30 / 40



ABC: Naive version (Rejection sampling)
Suppose x is discrete and the observed value is xobs.

Generate samples of θ according to the following procedure:

1. Draw θ ∼ p(θ) and x|θ ∼ p(x|θ), so that (x, θ) ∼ p(x, θ).

2. If x = xobs, then accept θ. Otherwise, reject θ and go back to
step 1.

Then the accepted θ’s are samples from the posterior
p(θ|xobs), by the rejection principle.

(Rejection principle: If we sample Z, and reject unless Z ∈ A,
then we get samples from Z | Z ∈ A.)

This naive version of ABC is extremely inefficient unless x can
only take a relatively small number of values.
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ABC: Standard version (Rejection + summary statistics)
To make this work more generally, the idea of ABC is accept θ
if x is close to xobs, rather than requiring x = xobs.

Usually, “closeness” is defined by accepting if

d(s(x), s(xobs)) ≤ ε

where s(x) ∈ Rk is a vector of summary statistics and d(·, ·) is
Euclidean distance.

This generates samples from the “ABC posterior”

p
(
θ | d(s(X), s(xobs)) ≤ ε

)
,

which is intended to approximate the standard posterior
p(θ | X = xobs).

If s(x) = x and ε = 0, then the ABC posterior equals the
standard posterior.
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ABC: Pros and cons
ABC is very easy to use, even for complex models with
intractable likelihoods.

However, the accuracy of the approximation can be poor,
unless the summary statistics s(x) are chosen well and the
tolerance ε is small.

Choosing good summary statistics is tricky, and while there is
some theory, it remains something of an art.

Further, when ε is small, the number of rejected samples is
large, making ABC very computationally burdensome.

Adding to the computational burden is the fact that in many
models with intractable likelihoods, generating samples from
p(x|θ) can be slow.
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ABC: Refined version (Nonparametric regression)
A more refined version of ABC uses nonparametric regression
rather than rejection sampling.

This allows one to use all of the samples, and tends to
improve the accuracy of the approximation.

The idea is to view the calculation of a posterior expectation
E(h(θ)|x) as a regression problem, as follows.

As before, generate a bunch of samples (xi, θi) ∼ p(x, θ) i.i.d.

Consider h(θ) to be the outcome, x to be the predictor, and
(x1, h(θ1)), . . . , (xT , h(θT )) to be the data.

Use nonparametric regression to fit this “data”. Then the
estimated regression function Ê(h(θ)|xobs) is an
approximation of E(h(θ)|xobs), the quantity of interest.
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MCMC for doubly intractable models

ABC can be used very generally — whenever we can generate
data sets from the assumed model.

In some doubly intractable models, we can compute the
likelihood p(x|θ) up to a normalization constant c(θ), that is,

p(x|θ) = f(x, θ)c(θ)

where f(x, θ) can be computed but c(θ) cannot.

In such cases, there are very clever MCMC techniques for
sampling from the posterior p(θ|x).

Basic idea: Introduce an auxiliary data set in such a way that
c(θ) cancels in the MH acceptance probability.
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MCMC for doubly intractable models

The posterior is

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
f(x, θ)c(θ)p(θ)

p(x)
.

Introduce an auxiliary variable z that takes values in the same
space as x and has some conditional density p(z|x, θ) that can
be computed and sampled from.

Consider using an MH move preserving the augmented
posterior,

p(z, θ|x) = p(z|x, θ)p(θ|x) =
p(z|x, θ)f(x, θ)c(θ)p(θ)

p(x)
.
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MCMC for doubly intractable models
If the MH proposal distribution is q(z′, θ′|z, θ, x), then the
MH acceptance probability is

α = min
{

1,
p(z′, θ′|x)

p(z, θ|x)

q(z, θ|z′, θ′, x)

q(z′, θ′|z, θ, x)

}
= min

{
1,

p(z′|x, θ′)
p(z|x, θ)

f(x, θ′)c(θ′)p(θ′)

f(x, θ)c(θ)p(θ)

q(z, θ|z′, θ′, x)

q(z′, θ′|z, θ, x)

}
.

Now, suppose we choose the proposal distribution such that

q(z′, θ′|z, θ, x) = g(θ′|x, θ)f(z′, θ′)c(θ′),

in other words, propose θ′ from some density g(θ′|θ, x) and
propose z′ by sampling from the model given θ′.

Plugging this into the MH acceptance probability, the c(θ)
and c(θ′) factors cancel, and we have

α = min
{

1,
p(z′|x, θ′)
p(z|x, θ)

f(x, θ′)p(θ′)

f(x, θ)p(θ)

g(θ|x, θ′)f(z, θ)

g(θ′|x, θ)f(z′, θ′)

}
.
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MCMC for doubly intractable models

Every factor in this MH acceptance probability can be
computed.

Hence, this yields a tractable MCMC sampler for p(z, θ|x).
Discarding the z samples and keeping the θ samples, we
obtain samples from p(θ|x).

While it works in principle, this sampler can suffer from low
acceptance probability.

Improvements upon this basic idea have been developed by
Murray et al. (2006).

The algorithm above was introduced by Møller et al. (2006).
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