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Hamiltonian Monte Carlo: Introduction

Recall that reducing the correlation between successive states
is key to improving the accuracy of MCMC approximations.

Many MCMC samplers tend to exhibit so-called “random
walk” behavior, roughly meaning that they meander to and
fro as they sample from the target distribution.

Using well-chosen transformations and large moves can
improve mixing performance, but often they are hard to
construct for complex distributions on high-dimensional
spaces.

Hamiltonian Monte Carlo (HMC), also referred to as Hybrid
Monte Carlo, employs a dynamical systems approach to more
quickly traverse the space and thus improve MCMC mixing.
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Hamiltonian Monte Carlo: Introduction

(figure from Gelman et al. (2013), BDA3, Chapter 11)
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Hamiltonian Monte Carlo: Introduction

(figure from Neal (2011))
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Hamiltonian Monte Carlo: Introduction

HMC Harlem Shake:
https://www.youtube.com/watch?v=Vv3f0QNWvWQ
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Hamiltonian Monte Carlo: Introduction

Tutorial with nice demos of Hamiltonian Monte Carlo:
http://arogozhnikov.github.io/2016/12/19/markov_

chain_monte_carlo.html
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Hamiltonian Monte Carlo: Basic idea

Goal: Sample from target density π(x), where x ∈ Rd is a
continuous variable.

Assume we can compute the gradient of the log density,
∇ log π(x). Analogously to gradient-based optimization
methods, HMC uses gradients to improve MCMC mixing.

Basic idea:

1. Sample an auxiliary variable z ∈ Rd where zi|x ∼ N (0,mi)
independently for i = 1, . . . , d.

2. Jointly transform (x, z) in a way that leaves p(x, z) roughly
constant by using Hamiltonian dynamics.

3. Use a Metropolis–Hastings step to accept or reject the
transformed (x, z).

9 / 39



Outline

Hamiltonian Monte Carlo (HMC)

Hamiltonian dynamics

HMC algorithm

HMC tuning parameters

Illustrations

No U-turn sampler (NUTS)

10 / 39



Hamiltonian dynamics: Physical interpretation
The transformation of (x, z) is done by running a dynamical
system with Hamiltonian H(x, z) forward in time, where

H(x, z) := − log π(x) +
1

2

d∑
i=1

z2i /mi.

Note that p(x, z) ∝ exp(−H(x, z)).

Later, we will see the step-by-step algorithm, but abstractly,
the idea is to run the dynamical system

∂xi
∂t

:=
∂H

∂zi
= zi/mi

∂zi
∂t

:= −∂H
∂xi

=
∂

∂xi
log π(x)

where t is time.
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Hamiltonian dynamics: Physical interpretation
Intuition: x moves like a ball rolling on the surface − log π(x).

Physical interpretation:

x1, . . . , xd = position coordinates

z1, . . . , zd = momentum coordinates (zi = mivi)

− log π(x) = potential energy

1
2

∑d
i=1 z

2
i /mi = kinetic energy =

∑
i
1
2miv

2
i .

The Hamiltonian represents the total energy of the system:

H = Total energy = Potential energy + Kinetic energy.

By conservation of energy, H remains constant as the
dynamical system evolves over time.

Thus, p(x, z) ∝ exp(−H(x, z)) also remains constant as
(x, z) evolves according to the dynamical system.
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Hamiltonian dynamics: Intuition

In vector form, the equations defining the dynamics are:

velocity =
∂

∂t
position =

∂x

∂t
= M−1z,

force = mass×acceleration =
∂

∂t
momentum =

∂z

∂t
= ∇ log π(x)

where M = diag(m1, . . . ,md).

To gain some intuition for how the system evolves, first
suppose π(x) is flat in some region. Then ∇ log π(x) = 0, so
there is zero acceleration and consequently, x will move at
constant velocity through this region.

Meanwhile, if π(x) is not flat, then force = ∇ log π(x) means
that x is accelerating in the direction of the gradient, i.e., it is
accelerating towards a region of higher density.
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Hamiltonian dynamics: Discretization
In practice, it is necessary to discretize. Consequently, the
Hamiltonian (total energy) is not exactly constant over time.

HMC uses “leapfrog” discretization, which allows the
Hamiltonian to oscillate somewhat but prevents it from
drifting significantly over time.

(figure from Neal (2011))
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Hamiltonian Monte Carlo: Algorithm
An HMC move on x consists of the following steps.

1. Sample z ∼ N (0,M) where M = diag(m1, . . . ,md).

2. x0 ← x and z0 ← z.

3. For ` = 1, . . . , L,

(a) z ← z + 1
2ε∇ log π(x)

(b) x← x+ εM−1z

(c) z ← z + 1
2ε∇ log π(x)

4. Metropolis accept/reject step:

(a) α← min
{

1,
π(x)N (z | 0,M)

π(x0)N (z0 | 0,M)

}
(b) With probability α, accept x as the new state, otherwise reject

and keep the state as x0.

Note that π(x) can be replaced by π̃(x) ∝ π(x).
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Hamiltonian Monte Carlo: Leapfrog discretization

Step 2 numerically propagates the dynamical system using a
discrete approximation. Normally, the error of a discrete
approximation would grow as the system is propagated.

However, the “leapfrog” discretization in 2(a)-(c) has the
special property that p(x, z) does not significantly change as `
goes from 1 to L.

This helps regulate the Metropolis acceptance probability.
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Hamiltonian dynamics: Leapfrog discretization

(figure from Neal (2011))
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Hamiltonian Monte Carlo: Leapfrog discretization

Note that steps 2(a) and 2(c) are identical updates to z.

2(a) and 2(c) are “half-step” updates to z that sandwich the
full-step update to x.

Thus, steps 2(c) and 2(a) for each successive pair (`, `+ 1)
can be combined into a single full step z ← z + ε∇ log π(x).

The accuracy of the discrete approximation improves as ε
goes to 0, but the number of steps L needs to increase
proportionally in order to move the same distance.

For instance, it is natural to choose ε and L such that εL = 1.
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HMC: Handling regions of zero probability

HMC is designed for strictly positive target densities
π(x) > 0. If the algorithm lands in a region where π(x) = 0,
then a few common strategies can be applied.

One approach is to reject if π(x) = 0 during step 2, and set
the state back to x0 for another iteration.

An alternative is to “bounce”: If π(x) = 0 during step 2,
change the sign of the momentum z ← −z in order to go in
the opposite direction.

A third approach is to transform x so that the target density
is positive on all of Rd. This is attractive if the transformation
and its Jacobian can be worked out analytically.
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HMC: Setting the tuning parameters

The algorithm has several tuning parameters:

1. M = diag(m1, . . . ,md), the covariance matrix of z,

2. ε > 0, the discretization step size, and

3. L, the number of leapfrog steps.

These settings can be fixed at the start of the algorithm or
chosen adaptively.
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HMC: Setting the tuning parameters
The following guidelines can be used to choose M , ε, and L.
I Set M to approximate the inverse of the covariance of the

target distribution. (Or, as a default, just use M = I.)

I Find a value of ε that yields good mixing. (Or, a reasonable
default is ε = 0.1.)

I Set L = 1/ε as a default.

Roughly speaking, these choices calibrate the algorithm to the
scale of the target distribution:
I Suppose Σ is the covariance of the target and M−1 ≈ Σ.

I Since z ∼ N (0,M) initially, we have M−1z ∼ N (0,M−1).

I Recall that we take L steps of the form x← x+ εM−1z.

I Thus, if z was the same throughout the trajectory, then the
full trajectory would be LεM−1z ∼ N (0,M−1) ≈ N (0,Σ).
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HMC: Setting the tuning parameters
As a rough guide, theory suggests adjusting ε so that the
acceptance rate (in step 3 of the algorithm) is around 65%.

As usual, MCMC tuning parameters can be adapted during
the burn-in period, but adapting throughout the MCMC run
can cause it to fail to converge to the target distribution.

The “no U-turn sampler” (NUTS) is a method for adapting
HMC to the local properties of the target distribution
throughout the MCMC run.

Also, randomly perturbing the tuning parameters (within a
reasonable range) can help prevent the algorithm from getting
stuck. Random perturbations that do not depend on the
MCMC state can be done throughout the MCMC run without
compromising the guarantee of convergence.
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HMC: Bivariate Gaussian example

(figure from Neal (2011))

26 / 39



HMC: Bivariate Gaussian example

(figure from Neal (2011))
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HMC: 100-dim Gaussian example

(figure from Neal (2011))
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Adapting MCMC over time
Mixing can often be improved by tuning the MCMC settings
(such as the proposal distribution) based on lookng at the
MCMC samples themselves.

For instance, one could select the MH proposal distribution to
match the estimated covariance of the target distribution.

Or, one could adjust the size of proposals to attain a desired
MH acceptance rate.

It is always valid to adapt the MCMC settings based on a trial
run or the burn-in period.

However, if you want to continue adapting throughout the
MCMC run, you need to be very careful, since otherwise the
chain may fail to converge to the target distribution.
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No U-turn sampler (NUTS): Introduction

HMC’s performance depends strongly on the tuning
parameters M (momentum covariance), ε (step size), and L
(number of steps per iteration).

NUTS is an extension of HMC that adaptively tunes M and ε
during burn-in, and adapts L throughout the MCMC run.

NUTS eliminates the need to select the tuning paramters.

Empirically, the mixing of NUTS is as good as hand-tuned
HMC, and sometimes better.

NUTS is the standard MCMC algorithm used in Stan.
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No U-turn sampler (NUTS): Basic idea

Basic idea: Roughly, NUTS propagates the Hamiltonian
dynamics until the trajectory starts going back towards where
it started.

Mathematically, “going back” means the momentum vector z
points in the direction of the starting position x0.

The intuition is that we want to make as big a move as
possible. So going back toward where we started is
undesirable.

Unfortunately, stopping as soon as we start going back
doesn’t work since it doesn’t yield a valid MCMC move.
(Detailed balance is violated.)
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No U-turn sampler (NUTS): Basic idea

NUTS is a way of constructing trajectories to avoid going
back, while still satisfying detailed balance.

This is implemented via a procedure for choosing L adaptively.

NUTS also employs a method of adapting ε and M during
the burn-in period.

ε and M are held fixed after burn-in is over, but L is chosen
adaptively at each iteration.
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No U-turn sampler (NUTS): Method

To ensure detailed balance is satisfied, NUTS runs the
dynamics both forward and backward in time.

First, it goes forward or backward 1 step, then forward or
backward 2 steps, then forward or backward 4 steps, and so
on, doubling each time.

This doubling process stops when either the forward endpoint
or the backward endpoint starts to go back.

Finally, NUTS samples from the set of points generated
during the doubling procedure, in a way that preserves
detailed balance.
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No U-turn sampler (NUTS): Method

(figure from Hoffman & Gelman (2014))
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Illustration: NUTS versus Metropolis and Gibbs

(figure from Hoffman & Gelman (2014))
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Illustration: Performance of NUTS versus HMC

(figure from Hoffman & Gelman (2014))
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Illustration: Performance of NUTS versus HMC

(figure from Hoffman & Gelman (2014))
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