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Consensus Monte Carlo: Motivation

As data sets grow, it eventually becomes infeasible to hold
them in memory on a single machine.

One way of dealing with this is to split the data into “shards”,
and process each shard on a different machine.

However, sharing information across machines in a fully
integrated way is difficult because:

1. between-machine communication is slow, and
2. it can be tricky to code algorithms involving communication

between multiple asynchronous processes.

If possible, it is simpler to independently process each shard,
and combine the results in some way.
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Consensus Monte Carlo: Setup

Basic idea: Run a sampling algorithm on multiple machines,
independently, and combine the samples at the end by taking
a weighted average.

Consider a generic i.i.d. model X1, . . . , Xn
iid∼ p(x|θ) along

with a prior p(θ).

Assume θ ∈ Rd is a continuous parameter vector.

Split the data into S subsets, or “shards”: for s = 1, . . . , S,

xAs = (xi : i ∈ As)

where (A1, . . . , AS) is a partition of {1, . . . , n}.
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Consensus Monte Carlo: Method
For shard s, define

q(θ|xAs) ∝ p(xAs |θ)q(θ)

to be the posterior based on that shard only, using a
downweighted prior q(θ).

A natural choice of downweighted prior is q(θ) ∝ p(θ)1/S .

The overall posterior p(θ|x1:n) can then be written as

p(θ|x1:n) ∝ p(x1:n|θ)p(θ)

=
S∏

s=1

p(xAs |θ)p(θ)1/S

∝
S∏

s=1

q(θ|xAs).
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Consensus Monte Carlo: Method
Let θ

(1)
s , . . . , θ

(T )
s be samples from q(θ|xAs) (e.g., via MCMC).

The consensus Monte Carlo samples are defined as

θt =
( S∑

s=1

Λs

)−1
S∑

s=1

Λsθ
(t)
s

for t = 1, . . . , T , where Λs is a weight matrix that needs to be
chosen appropriately.

A natural choice of weight matrix is the posterior precision
under q(θ|xAs), that is, choose Λs to be the inverse of the
covariance matrix of θ ∼ q(θ|xAs).

The consensus MC method is justified by a Gaussian
approximation to q(θ|xAs), as follows.
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Consensus Monte Carlo: Justification (1/2)
Under fairly general conditions, the posterior is asymptotically
Gaussian as the data grows. Hence, it is natural to suppose
that q(θ|xAs) is approximately Gaussian.

For the moment, let’s suppose q(θ|xAs) is exactly Gaussian:

q(θ|xAs) = N (θ | µs,Λ−1
s ).

By the properties of Gaussians,∏
s

N (θ | µs,Λ−1
s ) ∝ N (θ | µ,Λ−1)

where Λ =
∑

s Λs and µ = Λ−1
∑

s Λsµs.

Then, the overall posterior is also Gaussian:

p(θ|x1:n) ∝
∏
s

q(θ|xAs) ∝ N (θ | µ,Λ−1).
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Consensus Monte Carlo: Justification (2/2)
Now, we see how the consensus MC method yields
approximate samples from the posterior.

If θ
(t)
s ∼ N (θ | µs,Λ−1

s ) independently for s = 1, . . . , S, then∑
s Λsθ

(t)
s ∼ N

(∑
s Λsµs,

∑
s Λs

)
by the properties of Gaussians. Therefore,

(
∑

s Λs)
−1
∑

s Λsθ
(t)
s ∼ N

(
µ,Λ−1

)
where µ and Λ are exactly the same as on the previous slide.

Since the left-hand side is precisely the consensus MC sample,
θt, and the right-hand side is the overall posterior, we have

θt ∼ N
(
θ | µ,Λ−1

)
= p(θ|x1:n).
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Consensus Monte Carlo: Practicalities

Typically, q(θ|xAs) is not exactly Gaussian and we only have
approximate samples from q(θ|xAs), so the consensus MC
samples are approximate draws from the posterior.

Further, we typically cannot compute Λs, the precision matrix
of q(θ|xAs), exactly.

If dim(θ) is not too big, we can use the samples themselves to
estimate Λs using the sample precision matrix.

However, if dim(θ) is large, then a regularized or constrained
estimate of Λs may be preferable.

E.g., one could use Λs = diag(λs1, . . . , λsd) where λsj is the
sample precision of the jth component of θ under q(θ|xAs).
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Consensus Monte Carlo: Algorithm

1. Let (A1, . . . , AS) be a random partition of {1, . . . , n}.

2. For each s = 1, . . . , S,

I Let θ
(1)
s , . . . , θ

(T )
s be samples from q(θ|xAs

), where

q(θ|xAs
) ∝ p(xAs

|θ)p(θ)1/S .

I Let Λs be an estimate of the precision matrix of q(θ|xAs
).

3. For t = 1, . . . , T , define

θt =
( S∑

s=1

Λs

)−1
S∑

s=1

Λsθ
(t)
s .

4. Use θ1, . . . , θT as approximate samples from p(θ|x1:n).
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Consensus Monte Carlo: Pros and cons
Pros:

Parallization: For each s, we can sample from q(θ|xAs)
independently on different machines, using only xAs .

Ease of use: Can simply use existing code for sampling from
the posterior, as long as you can adjust it to use the
downweighted prior q(θ) ∝ p(θ)1/S .

Theoretical justification: The Gaussian approximation is often
reasonable for large datasets.

Cons:

Insufficient information per shard: Each shard needs to have
enough information to infer θ reasonably accurately, but often
this is not the case in complex models.

Limited to continuous parameters θ ∈ Rd.

The Gaussian approximation breaks down in many models
such as mixtures, matrix factorization models, and variable
selection.
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Consensus Monte Carlo: Small-sample bias issue

Perhaps surprisingly, small-sample bias can be problematic
when using consensus MC on large datasets.

For many models, there is a bias that would normally go to
zero as the data grows.

However, since the size of each shard is not growing, each
shard posterior is potentially biased.

This bias can remain when aggregating all of the shard
posteriors, making consensus MC biased.

16 / 36



Consensus Monte Carlo: Small-sample bias example

Model: Yi ∼ N (µ, 1) and p(µ) ∝ 1.

Data: Yi ∼ N (3, 1) for i = 1, . . . , 10000.

Consensus MC using S = 10 equally weighted shards.

Parameter of interest is µ2.

(figure from Scott et al., 2013)
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Consensus Monte Carlo: Small-sample bias correction

The consensus MC paper proposes using the jackknife to
correct this bias.

Suppose the posterior mean exhibits a bias of B/n on
average, for a sample of size n.

The basic idea is to estimate the bias by comparing the
posterior mean for two different sample sizes.
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Consensus Monte Carlo: Binomial simulation example

Model: X1, . . . , Xn ∼ Bernoulli(θ) and θ ∼ Beta(1, 1).

Data: x1 = 1 and x2 = · · · = xn = 0, where n = 1000.

Consensus MC using S = 100 equally sized shards.

For the downweighted prior on each shard, using a
Beta(0.01, 0.01) prior.

Note that this is different than using p(θ)1/S as the shard
prior.
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Consensus Monte Carlo: Binomial example

(figure from Scott et al., 2013)
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Consensus Monte Carlo: Binomial simulation example

Now, consider a modified version of this example with unequal
shard sizes.

Model: X1, . . . , Xn ∼ Bernoulli(θ) and θ ∼ Beta(1, 1).

Data simulated as Xi ∼ Bernoulli(0.01).

Consensus MC using 5 shards of sizes 100, 20, 20, 70, 500.

For the downweighted prior on each shard, compare using
Beta(1, 1) versus Beta(1/5, 1/5).
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Consensus Monte Carlo: Binomial example

(figure from Scott et al., 2013)
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Consensus Monte Carlo: Gaussian simulation example
Model: X1, . . . , Xn ∼ N (µ,Σ).

Data simulated as Xi ∼ N (µ,Σ) where µ = (1, 2, 3, 4, 5)T and

Three scenarios: Consensus MC using S = 100 shards of sizes
(a) 50, (b) 100, and (c) 1000 samples each.

The consensus MC approximation for µ is nearly exact,
making it less interesting as a test case.

The posterior on Σ is more interesting.
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Consensus Monte Carlo: Gaussian simulation example

(figure from Scott et al., 2013)
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Consensus Monte Carlo: Logistic regression example
Model: Yi ∼ Bernoulli(logit−1(βTxi)).
Data: p = 5 covariates, n = 10000 samples

(table from Scott et al., 2013) 26 / 36



Consensus Monte Carlo: Logistic regression example

Comparing 3 weighting schemes:

I “equal”: weight each shard posterior equally

I “matrix”: weight using inverse of sample covariance matrix

I “scalar”: weight using inverse of diagonal of sample covariance
matrix
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Consensus Monte Carlo: Logistic regression example
100 samples per shard

(figure from Scott et al., 2013)
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Consensus Monte Carlo: Logistic regression example
1000 samples per shard

(figure from Scott et al., 2013)
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Consensus Monte Carlo: Logistic regression example
10000 samples per shard

(figure from Scott et al., 2013)
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Application: Hierarchical Poisson regression on internet ads

Large distributed data set of internet advertising data.

n ≈ 24 million observations across 11000 advertisers.

yij = number of times that ad i from advertiser j was clicked.

Eij = number of times that ad i from advertiser j was shown.

xij = small set of predictor variables (ad format, continuous
quality score, etc.).
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Application: Hierarchical Poisson regression on internet ads

Model:

Yij ∼ Poisson(Eij exp(βTj xij))

βj ∼ N (µ,Σ)

µ ∼ N (0, Σ/κ)

Σ−1 ∼Wishart(I, ν).

Consensus Monte Carlo using 867 shards with between 10000
to 50000 observations each. The scalar precision weights were
used.

For comparison, the full posterior was computed using only 5
shards because it took very long to compute.
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Application: Hierarchical Poisson regression on internet ads

(figure from Scott et al., 2013)
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Application: Hierarchical Poisson regression on internet ads

(figure from Scott et al., 2013)
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