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Bayes' theorem
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History

Bayes? Price

Laplace

e Thomas Bayes (~1701-1761) was an ordained minister and a
talented mathematician.

@ Bayes died before publishing his theorem, but Richard Price
carried his work further and published it in 1764.

@ Laplace rediscovered essentially the same idea in 1774, and
developed it much further.
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Bayes'

theorem

Let x = observed data, let § = unknown parameters.
Suppose p(x|6) is known for all z and 6.

Bayes' insight was that if one assumes a prior distribution
p(0), then the conditional distribution p(6|z) can be used to
quantify uncertainty in 6.

Bayes' theorem is simply a formula for this conditional:

pltle) = "R o i)
where p(z) = [ p(z|0)p(0)db.
In words, we say “the posterior is proportional to the
likelihood times the prior”.

From the modern perspective, Bayes' theorem is a trivial
consequence of the definition of a conditional
density—however, when Bayes wrote his paper, the idea of a

conditional probability density did not yet exist!
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Notation

o f(x)ocg(x) (“f is proportional to ¢") means there is a
constant ¢ such that f(z) = cg(x) for all z.
@ For functions of multiple variables, we write f(x,y) « g(z,y)
x

to indicate proportionality with respect to x. That is, for any
y, there exists ¢, such that f(x,y) = ¢, g(x,y) for all z.

@ Proportionality is surprisingly useful in Bayesian statistics.

@ Usually, we use capital letters to denote random variables
(e.g., X)) and lowercase for particular values (e.g., z).

@ For 0 and other greek letters, we use bold 8 to denote the
r.v., and unbold @ for particular values. (Note: This is not a
standard convention, but | like it.)

e We will usually use p for all p.d.f.s/p.m.f.s, following the usual
convention that the symbol used (e.g., 6 in the expression
p(0)) indicates which random variable we are talking about.
6/39



Outline

Beta-Bernoulli example

7/39



Beta-Bernoulli example

Jacob Bernoulli (1655-1705)

>

(I'm not in a bad mood, everyone is just annoying)
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Beta-Bernoulli example: Model/likelihood

@ Suppose X1,...,X, x Bernoulli(0), i.e.,

p(zil0) = P(X; = z; | 0) = 67(1 — )" L(x; € {0,1}).
e Notation: The indicator function I(E) equals 1 when E' is

true and 0 otherwise.

e For z1,...,x, € {0,1}, the likelihood function is

n

L(0: @1n) = plarnl6) = [ [ plail0) = 6270 (1 — o) =%,
=1

@ Viewed as a function of 6, p(z1.,|0) is called the likelihood
function. It is sometimes denoted L(0; x1.,) to emphasize this.
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Beta-Bernoulli example: Prior
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@ We write 8 ~ Beta(a,b) to indicate that € has p.d.f.

1

p(6) = Beta(f|a,b) = Bla.b)

i.e., p(f) o< 8271(1 — 0)°~1 on the interval from 0 to 1.

@ Here, B(a,b) is Euler's beta function and a,b > 0.
® The mean is E(0) = [0p(0)dd = a/(a +b).

611 - 010 < 6 < 1).
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Beta-Bernoulli example: Posterior

@ Using Bayes' theorem, and plugging in the likelihood and
prior, the posterior is

p(0|x1.0) ox 777

(Whiteboard exercise)
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Beta-Bernoulli example: Posterior

@ Using Bayes' theorem, and plugging in the likelihood and
prior, the posterior is

p(0lz1:n) o p(x1.0]0)p(6)
o gatmiml(p _gybin=2wmlig < 9 < 1)
o« Beta (0 |a+ >z, b+n—3 ;).

@ So, the posterior has the same form (a Beta distribution) as
the prior! When this happens, we say that the prior is
conjugate (more on this later).

@ Since the posterior has such a nice form, it is easy to work
with—e.g., for computing certain integrals with respect to the
posterior, sampling from the posterior, and computing the
posterior p.d.f. and its derivatives.
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Beta-Bernoulli example: Simulation
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o Simulation: X1,...,X, "5 Bernoulli(fy) with 6y = 0.51.
@ Suppose a = 1 and b = 1, so that the prior is uniform.

@ The figure shows the posterior p.d.f. for increasing amounts of
data. The dotted line indicates the true value of 6.
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Marginal likelihood and posterior predictive
@ The marginal likelihood is

p(x) = / p(]0)p(0) dB

i.e., the marginal p.d.f./p.m.f. of the observed data, obtained
by integrating 6 out of the joint density p(z, 0) = p(x|6)p(0).

@ When the data is a sequence = = (z1,...,xy,), the posterior
predictive is the distribution of X1 given X1.,, = z1.p.

@ When X,..., X, X,,+1 are independent given 0, the
posterior predictive is

p(xn+1|$1:n) = /p(xn+179|x1:n) do
_ / (@ns1]0, 210 )p(Ol1n) dB

= /p(:z:nH |0)p(0|x1.p,) dB.
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Beta-Bernoulli example: Marginal likelihood

@ In the Beta-Bernoulli example, the marginal likelihood is
p(x1m) =777

(Whiteboard exercise)
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Beta-Bernoulli example: Marginal likelihood

@ In the Beta-Bernoulli example, the marginal likelihood is
' > >
) = 9 Ti(] _ Q)i

1 ! 1 b 1
gan—L( n=1dp
- B a,b)/o

“”’b”)/ Beta(6) | an, by )dd
(aab) 0

B(an,by)
B(a,b)

——— 01— 0)ag

where a,, =a+ > z;and by, =b+n— > x;.
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Beta-Bernoulli example: Posterior predictive

o Lettinga, =a+> ; ;z;and b, =b+n—> ", x; for
brevity, and using the fact that p(0|x1.,) = Beta(0|ay, by,),

P(Xn—H =1 | .5(31;”) = /]P)(Xn+1 = 1 | 0)p(9|l‘1n)d9

= /0 Beta(f|ay, by) =

Gnp,
ay + by

@ Hence, the posterior predictive is

p(ni1|1.) = Bernoulli(xy 11 | an/(an + by)).
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/4uq¥nrSQcjwYxVRPA

(Three people per room, randomly assigned. 15 minutes.)
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https://forms.gle/4uqYnrSQcjwYxVRPA
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Bayesian decision theory

@ In decision theory, we start with the end in mind—how are we
actually going to use our inferences and what consequences
will this have?

@ Basic goal: minimize loss (or equivalently, maximize
utility/gain).

@ Multiple ways of making this precise, e.g., minimax, Bayes.

@ The standard Bayesian approach is to minimize posterior
expected loss.
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Bayesian decision theory

Abraham Wald (1902-1950)

“The father of statistical decision theory”
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Bayesian decision theory

o General setup

» S = the state of nature (unknown)

» 1z = observation (known)

» a = action

» ((S,a) = loss incurred for action a when state is S

@ Bayesian approach: Choose an action a that minimizes the
posterior expected loss,

pla,z) =E(S,a)|z) = /f(s,a)p(skz:)ds.

@ Here, S is a r.v. and p(s|x) is the posterior of S given x.

@ A decision procedure 0 is a map from x's to a's.

@ A Bayes procedure ¢ satisfies §(x) € argmin, p(a, z).
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Example 1: Estimating @ with quadratic loss

@ Setup:
> State: S=26
» Observation: z = x1.,,
> Action: a =0
> Loss: £(0,0) = (6 — 0)? (quadratic loss, a.k.a. square loss)

@ Using quadratic loss here works out nicely, since the optimal
decision is simply to estimate @ by the posterior mean:
0 = 6(x1.0) = E(O|x1.0).
o To see why, note that £(0,6) = 62 — 200 + 62, and thus
p(0,21.0) = E((O,0)|x1.,) = 777.
By calculus, the minimum occurs at 777.

(whiteboard)
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Example 1: Estimating @ with quadratic loss

@ Setup:
» State: S=106
» Observation: z = z1.,
> Action: a =6
> Loss: £(6,0) = (6 — 6)2 (quadratic loss, a.k.a. square loss)

@ Using quadratic loss here works out nicely, since the optimal
decision is simply to estimate 0 by the posterior mean:

0 = 6(x1.0) = E(O|z1.0).
o To see why, note that £(6,0) = 62 — 200 + 62, and thus
p(0,21.) = E(U(0,0)|z1.0) = B(02|21.0) — 20BE(8|21.0,) + 62

By calculus, the minimum occurs at 6 = E(8|z1.p)-
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Example 2: Predicting the next outcome with 0-1 loss

@ Assume X, ;1 is a discrete random variable.

@ Setup:
> State: S = X,41
» Observation: = = z1.,
> Action: a = Zy41
> Loss: {(s,a) =1I(s # a) (this is called the 0-1 loss)

@ Optimal decision: Predict the most probable value according
to the posterior predictive, i.e.,

Tpt1 = 0(x1:) = argmax p(Tp41|T1m).
Tn+1
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Real-world decision problems

@ Medical decision making

» When to perform early cancer screening?
@ Public health policy

» How much and what type of flu vaccine to produce each year?
@ Government regulations

» What type of emissions regulations are most effective for
improving health outcomes?

@ Personal financial decisions
» Should you buy life insurance?

@ A word of caution: In the end, use good judgment!
> A formal decision analysis is almost always oversimplified, and
it's a bad idea to adhere strictly to such a procedure.
Decision-theoretic analysis can help to understand a decision

problem, but after all the analysis, decisions should be made
based on your best judgment.
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Example: Resource allocation for disease treatment
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Example: Resource allocation for disease treatment

o City health officials need to decide how much money to use
for prevention and treatment of a certain disease.

@ The fraction @ of affected individuals in the city is unknown.

@ Suppose they allocate enough resources to treat a fraction ¢
of the population.

> If cis too large, there will be wasted resources, while if it is
too small, some individuals may go untreated.
@ They tentatively adopt the following loss function:

[ 18— ifc>0
£, ¢) _{ 1060 — ¢| if ¢ <.
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Example: Resource allocation for disease treatment

@ Prior: Based on data from other similar cities, they select a
Beta(a, b) prior with @ = 0.05 and b = 1.

@ Data: They conduct a survey of the disease status of n = 30
individuals, x1,..., 2.

o Likelihood/model: X1, ..., X, "5 Bernoulli(d).

@ Suppose that a single surveyed individual is affected, i.e.,
2im wi = 1.

29/39



Example: Resource allocation for disease treatment

@ The Bayes procedure is to minimize the posterior expected loss
ple. ) = E(U,c)lx) = [ €8, chp(o])ap

where x = x1.,. We can numerically compute this integral.
@ The minimum of p(c,x) occurs at ¢ ~ 0.08, so under the
assumptions above, this is the optimal amount to allocate.
@ This makes more sense than choosing ¢ = z = 1/30 ~ 0.03,
which does not account for the large loss that would result
from possible under-resourcing.
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Connections with frequentist concepts
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Frequentist risk and Integrated risk

@ Consider a decision problem in which S = 6.

@ The risk, or frequentist risk, for a decision procedure ¢ is

maazE@wjpoﬂozay:/aaa@m@wmm

@ The integrated risk for § is

M&zEW&&XD:/R@&M@M.
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Relationships between decision-theoretic objects

@ Denoting L = ¢(6,5(X)) for brevity, the diagram below
visualizes the relationships between all of these concepts.

Loss
L=100,6X))
Post. exp. loss Frequentist risk
E(L| X =x) E(L|6=06)

\ /

Integrated risk
E(L)
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Resource allocation example: Comparing procedures

I
o
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e Compare with two other procedures: choosing ¢ =  (sample
mean) or choosing ¢ = 0.1 (constant).

@ The figure shows each procedure as a function of ) x;, the
observed number of affected individuals.

@ The Bayes procedure picks c to be a little bigger than z.
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Resource allocation example: Comparing risk curves

— constant
08} — sample mean
— Bayes

0.0 0.2 0.4 0.6 0.8 1.0

@ The frequentist risk provides a useful way to compare decision
procedures in a prior-free way.

@ The figure shows the risk R(f, ) as a function of # for each
procedure. Smaller risk is better.

@ Recall that for each @, the risk is the expected loss, averaging

over all possible data sets. The observed data doesn’t factor
into it at all.
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Resource allocation example: Comparing risk curves

[
o

constant
sample mean
Bayes

°
@

o
o

risk, R(6,6)

0.2f

@ The constant procedure is great when 6 is near 0.1, but gets
very bad very quickly for larger 6.

@ The Bayes procedure is better than the sample mean for
nearly all 0's.

@ These curves reflect the usual situation—some procedures will
work better for some 0's and some will work better for others.
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Admissibility

@ Suppose § and ¢’ are two decision procedures.

e We say that ¢’ dominates § if R(0,¢") < R(0,9) for all § and
R(0,¢") < R(0,9) for at least one 6.

» That is, 0" at least as good as § for all § and strictly better for
some 6.

@ A decision procedure is admissible if there is no other
procedure that dominates it.

@ Bayes procedures are admissible under very general conditions.

@ Admissibility is nice to have, but it doesn’'t mean a procedure
is necessarily good. E.g., in this example, the constant
procedure ¢ = 0.1 is admissible too!
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/faPhDsz5v72NKWk16
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