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History

Bayes? Price Laplace

Thomas Bayes (≈1701-1761) was an ordained minister and a
talented mathematician.

Bayes died before publishing his theorem, but Richard Price
carried his work further and published it in 1764.

Laplace rediscovered essentially the same idea in 1774, and
developed it much further.
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Bayes’ theorem
Let x = observed data, let θ = unknown parameters.
Suppose p(x|θ) is known for all x and θ.

Bayes’ insight was that if one assumes a prior distribution
p(θ), then the conditional distribution p(θ|x) can be used to
quantify uncertainty in θ.
Bayes’ theorem is simply a formula for this conditional:

p(θ|x) =
p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ)

where p(x) =
∫
p(x|θ)p(θ)dθ.

In words, we say “the posterior is proportional to the
likelihood times the prior”.

From the modern perspective, Bayes’ theorem is a trivial
consequence of the definition of a conditional
density—however, when Bayes wrote his paper, the idea of a
conditional probability density did not yet exist!
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Notation
f(x) ∝ g(x) (“f is proportional to g”) means there is a
constant c such that f(x) = cg(x) for all x.

For functions of multiple variables, we write f(x, y) ∝
x
g(x, y)

to indicate proportionality with respect to x. That is, for any
y, there exists cy such that f(x, y) = cy g(x, y) for all x.

Proportionality is surprisingly useful in Bayesian statistics.

Usually, we use capital letters to denote random variables
(e.g., X) and lowercase for particular values (e.g., x).

For θ and other greek letters, we use bold θ to denote the
r.v., and unbold θ for particular values. (Note: This is not a
standard convention, but I like it.)

We will usually use p for all p.d.f.s/p.m.f.s, following the usual
convention that the symbol used (e.g., θ in the expression
p(θ)) indicates which random variable we are talking about.
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Beta-Bernoulli example

Jacob Bernoulli (1655–1705)

(I’m not in a bad mood, everyone is just annoying)
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Beta-Bernoulli example: Model/likelihood

Suppose X1, . . . , Xn
iid∼ Bernoulli(θ), i.e.,

p(xi|θ) = P(Xi = xi | θ) = θxi(1− θ)1−xiI(xi ∈ {0, 1}).

Notation: The indicator function I(E) equals 1 when E is
true and 0 otherwise.

For x1, . . . , xn ∈ {0, 1}, the likelihood function is

L(θ;x1:n) := p(x1:n|θ) =

n∏
i=1

p(xi|θ) = θ
∑

xi(1− θ)n−
∑

xi .

Viewed as a function of θ, p(x1:n|θ) is called the likelihood
function. It is sometimes denoted L(θ;x1:n) to emphasize this.
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Beta-Bernoulli example: Prior

We write θ ∼ Beta(a, b) to indicate that θ has p.d.f.

p(θ) = Beta(θ|a, b) =
1

B(a, b)
θa−1(1− θ)b−1I(0 < θ < 1).

i.e., p(θ) ∝ θa−1(1− θ)b−1 on the interval from 0 to 1.

Here, B(a, b) is Euler’s beta function and a, b > 0.

The mean is E(θ) =
∫
θ p(θ)dθ = a/(a+ b).
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Beta-Bernoulli example: Posterior

Using Bayes’ theorem, and plugging in the likelihood and
prior, the posterior is

p(θ|x1:n) ∝ ???

(Whiteboard exercise)
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Beta-Bernoulli example: Posterior

Using Bayes’ theorem, and plugging in the likelihood and
prior, the posterior is

p(θ|x1:n) ∝ p(x1:n|θ)p(θ)
∝ θa+

∑
xi−1(1− θ)b+n−

∑
xi−1I(0 < θ < 1)

∝ Beta
(
θ | a+

∑
xi, b+ n−

∑
xi
)
.

So, the posterior has the same form (a Beta distribution) as
the prior! When this happens, we say that the prior is
conjugate (more on this later).

Since the posterior has such a nice form, it is easy to work
with—e.g., for computing certain integrals with respect to the
posterior, sampling from the posterior, and computing the
posterior p.d.f. and its derivatives.
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Beta-Bernoulli example: Simulation

Simulation: X1, . . . , Xn
iid∼ Bernoulli(θ0) with θ0 = 0.51.

Suppose a = 1 and b = 1, so that the prior is uniform.

The figure shows the posterior p.d.f. for increasing amounts of
data. The dotted line indicates the true value of θ.
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Marginal likelihood and posterior predictive
The marginal likelihood is

p(x) =

∫
p(x|θ)p(θ) dθ

i.e., the marginal p.d.f./p.m.f. of the observed data, obtained
by integrating θ out of the joint density p(x, θ) = p(x|θ)p(θ).

When the data is a sequence x = (x1, . . . , xn), the posterior
predictive is the distribution of Xn+1 given X1:n = x1:n.
When X1, . . . , Xn, Xn+1 are independent given θ, the
posterior predictive is

p(xn+1|x1:n) =

∫
p(xn+1, θ|x1:n) dθ

=

∫
p(xn+1|θ, x1:n)p(θ|x1:n) dθ

=

∫
p(xn+1|θ)p(θ|x1:n) dθ.
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Beta-Bernoulli example: Marginal likelihood

In the Beta-Bernoulli example, the marginal likelihood is

p(x1:n) = ???

(Whiteboard exercise)
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Beta-Bernoulli example: Marginal likelihood

In the Beta-Bernoulli example, the marginal likelihood is

p(x1:n) =

∫ 1

0
θ
∑

xi(1− θ)n−
∑

xi
1

B(a, b)
θa−1(1− θ)b−1dθ

=
1

B(a, b)

∫ 1

0
θan−1(1− θ)bn−1dθ

=
B(an, bn)

B(a, b)

∫ 1

0
Beta(θ | an, bn)dθ

=
B(an, bn)

B(a, b)

where an = a+
∑
xi and bn = b+ n−

∑
xi.
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Beta-Bernoulli example: Posterior predictive

Letting an = a+
∑n

i=1 xi and bn = b+ n−
∑n

i=1 xi for
brevity, and using the fact that p(θ|x1:n) = Beta(θ|an, bn),

P(Xn+1 = 1 | x1:n) =

∫
P(Xn+1 = 1 | θ)p(θ|x1:n)dθ

=

∫
θ Beta(θ|an, bn) =

an
an + bn

.

Hence, the posterior predictive is

p(xn+1|x1:n) = Bernoulli(xn+1 | an/(an + bn)).
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/4uqYnrSQcjwYxVRPA

(Three people per room, randomly assigned. 15 minutes.)
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Bayesian decision theory

In decision theory, we start with the end in mind—how are we
actually going to use our inferences and what consequences
will this have?

Basic goal: minimize loss (or equivalently, maximize
utility/gain).

Multiple ways of making this precise, e.g., minimax, Bayes.

The standard Bayesian approach is to minimize posterior
expected loss.
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Bayesian decision theory

Abraham Wald (1902–1950)
“The father of statistical decision theory”
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Bayesian decision theory

General setup
I S = the state of nature (unknown)
I x = observation (known)
I a = action
I `(S, a) = loss incurred for action a when state is S

Bayesian approach: Choose an action a that minimizes the
posterior expected loss,

ρ(a, x) = E(`(S, a)|x) =

∫
`(s, a)p(s|x)ds.

Here, S is a r.v. and p(s|x) is the posterior of S given x.

A decision procedure δ is a map from x’s to a’s.

A Bayes procedure δ satisfies δ(x) ∈ argmina ρ(a, x).
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Example 1: Estimating θ with quadratic loss
Setup:
I State: S = θ
I Observation: x = x1:n
I Action: a = θ̂
I Loss: `(θ, θ̂) = (θ − θ̂)2 (quadratic loss, a.k.a. square loss)

Using quadratic loss here works out nicely, since the optimal
decision is simply to estimate θ by the posterior mean:

θ̂ = δ(x1:n) = E(θ|x1:n).

To see why, note that `(θ, θ̂) = θ2 − 2θθ̂ + θ̂2, and thus

ρ(θ̂, x1:n) = E(`(θ, θ̂)|x1:n) = ???.

By calculus, the minimum occurs at ???.

(whiteboard)
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Example 1: Estimating θ with quadratic loss

Setup:
I State: S = θ
I Observation: x = x1:n
I Action: a = θ̂
I Loss: `(θ, θ̂) = (θ − θ̂)2 (quadratic loss, a.k.a. square loss)

Using quadratic loss here works out nicely, since the optimal
decision is simply to estimate θ by the posterior mean:

θ̂ = δ(x1:n) = E(θ|x1:n).

To see why, note that `(θ, θ̂) = θ2 − 2θθ̂ + θ̂2, and thus

ρ(θ̂, x1:n) = E(`(θ, θ̂)|x1:n) = E(θ2|x1:n)− 2θ̂E(θ|x1:n) + θ̂2.

By calculus, the minimum occurs at θ̂ = E(θ|x1:n).
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Example 2: Predicting the next outcome with 0-1 loss

Assume Xn+1 is a discrete random variable.

Setup:
I State: S = Xn+1

I Observation: x = x1:n
I Action: a = x̂n+1

I Loss: `(s, a) = I(s 6= a) (this is called the 0-1 loss)

Optimal decision: Predict the most probable value according
to the posterior predictive, i.e.,

x̂n+1 = δ(x1:n) = argmax
xn+1

p(xn+1|x1:n).

25 / 39



Real-world decision problems

Medical decision making
I When to perform early cancer screening?

Public health policy
I How much and what type of flu vaccine to produce each year?

Government regulations
I What type of emissions regulations are most effective for

improving health outcomes?

Personal financial decisions
I Should you buy life insurance?

A word of caution: In the end, use good judgment!
I A formal decision analysis is almost always oversimplified, and

it’s a bad idea to adhere strictly to such a procedure.
Decision-theoretic analysis can help to understand a decision
problem, but after all the analysis, decisions should be made
based on your best judgment.
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Example: Resource allocation for disease treatment

City health officials need to decide how much money to use
for prevention and treatment of a certain disease.

The fraction θ of affected individuals in the city is unknown.

Suppose they allocate enough resources to treat a fraction c
of the population.
I If c is too large, there will be wasted resources, while if it is

too small, some individuals may go untreated.

They tentatively adopt the following loss function:

`(θ, c) =

{
|θ − c| if c ≥ θ
10|θ − c| if c < θ.
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Example: Resource allocation for disease treatment

Prior: Based on data from other similar cities, they select a
Beta(a, b) prior with a = 0.05 and b = 1.

Data: They conduct a survey of the disease status of n = 30
individuals, x1, . . . , xn.

Likelihood/model: X1, . . . , Xn
iid∼ Bernoulli(θ).

Suppose that a single surveyed individual is affected, i.e.,∑n
i=1 xi = 1.
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Example: Resource allocation for disease treatment

The Bayes procedure is to minimize the posterior expected loss

ρ(c, x) = E(`(θ, c)|x) =

∫
`(θ, c)p(θ|x)dθ

where x = x1:n. We can numerically compute this integral.

The minimum of ρ(c, x) occurs at c ≈ 0.08, so under the
assumptions above, this is the optimal amount to allocate.

This makes more sense than choosing c = x̄ = 1/30 ≈ 0.03,
which does not account for the large loss that would result
from possible under-resourcing.
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Frequentist risk and Integrated risk

Consider a decision problem in which S = θ.

The risk, or frequentist risk, for a decision procedure δ is

R(θ, δ) = E
(
`(θ, δ(X)) | θ = θ

)
=

∫
`(θ, δ(x)) p(x|θ) dx.

The integrated risk for δ is

r(δ) = E(`(θ, δ(X)) =

∫
R(θ, δ) p(θ) dθ.
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Relationships between decision-theoretic objects

Denoting L = `(θ, δ(X)) for brevity, the diagram below
visualizes the relationships between all of these concepts.

Loss
L = `(θ, δ(X))

Post. exp. loss Frequentist risk

E(L | X = x) E(L | θ = θ)

Integrated risk

E(L)
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Resource allocation example: Comparing procedures

Compare with two other procedures: choosing c = x̄ (sample
mean) or choosing c = 0.1 (constant).

The figure shows each procedure as a function of
∑
xi, the

observed number of affected individuals.

The Bayes procedure picks c to be a little bigger than x̄.
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Resource allocation example: Comparing risk curves

The frequentist risk provides a useful way to compare decision
procedures in a prior-free way.

The figure shows the risk R(θ, δ) as a function of θ for each
procedure. Smaller risk is better.

Recall that for each θ, the risk is the expected loss, averaging
over all possible data sets. The observed data doesn’t factor
into it at all.
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Resource allocation example: Comparing risk curves

The constant procedure is great when θ is near 0.1, but gets
very bad very quickly for larger θ.

The Bayes procedure is better than the sample mean for
nearly all θ’s.

These curves reflect the usual situation—some procedures will
work better for some θ’s and some will work better for others.
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Admissibility
Suppose δ and δ′ are two decision procedures.

We say that δ′ dominates δ if R(θ, δ′) ≤ R(θ, δ) for all θ and
R(θ, δ′) < R(θ, δ) for at least one θ.

I That is, δ′ at least as good as δ for all θ and strictly better for
some θ.

A decision procedure is admissible if there is no other
procedure that dominates it.

Bayes procedures are admissible under very general conditions.

Admissibility is nice to have, but it doesn’t mean a procedure
is necessarily good. E.g., in this example, the constant
procedure c = 0.1 is admissible too!
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/faPhDsz5v72NKWk16
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