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Likelihood construction

The specification of the likelihood is often the most important
part of model building.

Sometimes default choices of likelihood are used for
convenience.

While defaults can be useful, it is preferable to use a model
that reflects the “physics” of the data generating process.

Various aspects to consider:
I Special properties of distributions
I Parametrization (e.g., multiplicative versus additive effects)
I Conditional independence properties (e.g., Markov, etc.)
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Likelihood construction: Special properties
Many distributions have special properties that make them
well-justified in particular applications.

Examples
I Gaussian: Central limit theorem

I Poisson: Law of small numbers

I Exponential: Memorylessness

I Pareto: Power law

I Exponential families: Maximum entropy

I Poisson process: Limit of Bernoulli processes

Combining or transforming distributions according to the
physics of the data generating process is also useful.
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Likelihood construction: Poisson process example

Consider dividing Rd into tiny boxes and putting an
independent Bernoulli(p) random variable in each box, where
p =

∫
box f(x)dx for some nonnegative function f .

This converges to a Poisson process as the resolution of the
grid goes to infinity.

The “limit of Bernoulli processes” perspective gives intuition
into when a Poisson process model might be reasonable.

Examples
I times of neuron spikes
I locations of mutations in a genome
I times of speciation events in phylogenetic history
I emission times of radioactively decaying particles
I locations of organisms in a habitat at a given time
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Objective Bayesian inference
If there is universally-accepted prior information, then almost
no one would argue with using it.

But what if you really have no idea at all?

Or, more likely, what if it is critical that your results not
depend on any personal biases? e.g.,
I clinical trials for a new drug,
I testing of a medical device,
I evidence to be presented in a court of law.

The original motivation of objective Bayes was to find priors
that contain little or no information.

That has evolved into a more attainable goal of finding
“default” priors that provide reliable and interpretable results,
to be used as conventions when more specific prior
information can’t or shouldn’t be used.
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Non-informative priors
Such priors are called non-informative, and they are often
improper, in the sense that they do not integrate to a finite
value.

If we are using a gamma prior θ ∼ Gamma(a, b), then since
the prior variance Var(θ) = a/b2 is finite, in some sense the
prior contains some information.

This is apparent in the shrinkage that occurs, with the
posterior mean being a convex combination of the sample
mean and prior mean.

If we take a = b = ε for ε small, then the prior mean stays at
a/b = 1 and the variance becomes large. As ε→ 0, the shape
of the prior becomes ∝ 1/θ.

In this limit, the gamma prior becomes non-informative.
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Jeffreys priors

The Jeffreys prior is defined (in the univariate case) as

π(θ) ∝
√
I(θ)

where I(θ) =
∫ (

∂
∂θ log p(y|θ)

)2
p(y|θ)dy is the Fisher

information for θ.

The Jeffreys prior is a classical non-informative prior.

Examples
I Gaussian mean: π(µ) ∝ 1.

I Gaussian standard deviation: π(σ) ∝ 1/σ.

I Poisson rate: π(λ) ∝ 1/
√
λ.

I Bernoulli success probability: π(p) ∝ 1/
√
p(1− p).
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Jeffreys priors: Invariance property

Suppose π(θ) is the Jeffreys prior for θ in some model p(y|θ).

Suppose we have an alternate parametrization of the model,
say q(y|φ) = p(y|θ) where θ = h(φ) and h is a smooth 1-to-1
function.

By change of variables, the induced prior on φ is

p(φ) ∝ π(h(φ))|h′(φ)|.

If π̃(φ) is the Jeffreys prior for φ then it turns out that

π̃(φ) ∝ π(h(φ))|h′(φ)|.

Thus, the Jeffreys prior for φ coincides with the prior on φ
induced by the Jeffreys prior for θ.
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Comments on improper priors
Bayesian inferences under improper priors are sometimes
similar to frequentist inferences.

If using an improper prior, it is important to make sure the
resulting posterior is proper.

Improper posteriors can arise, for example, when there is
non-identifiability and the prior is improper.

If the posterior is improper, inferences are typically
meaningless — the posterior mean, credible intervals, etc., are
undefined.

Even if the posterior is proper, serious issues sometimes arise
when using improper priors: contradictory probabilities, prior
can dominate for large n, inadmissible estimators,
marginalization paradoxes.
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Weakly informative priors

Often, weakly informative priors are preferable to
non-informative priors.

A weakly informative prior is proper, but is more diffuse than
a typical subjective prior.

In many situations, a weakly informative prior will outperform
a non-informative one.

In small sample sizes and data sparse situations, weakly
informative priors stabilize inferences through mild shrinkage
towards the prior mean.

This is the bias-variance tradeoff — the prior introduces a bit
of bias to greatly reduce variance.
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Model criticism

Once you have built and implemented a model, it is important
to see how well it agrees with the data.

In addition to checking how well the model fits the data
distribution, it is also important to check whether the
parameter inferences are appropriate.

This is referred to as model criticism or model checking.

Unfortunately, there does not seem to be a fully Bayesian way
to do model criticism, since Bayes assumes the model is
correct.

Nonetheless, there are a number of commonly used techniques
for model criticism in the Bayesian setting.
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Model criticism

Lack of fit can be due to the prior and/or the likelihood. The
likelihood usually has a much bigger impact, especially
asymptotically.

The term “model” sometimes refers to just the likelihood, but
here we say “model” to mean both the likelihood and the
prior, together.

“All models are wrong, but some are useful.” – George Box

In practice, we can never hope to model the data generating
process perfectly, but we can often find a model that is
adequate for a given application.
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Goals of model criticism

A good model criticism procedure not only tells you if the
model is wrong, but also in what ways the model is wrong,
and ideally, whether the models’ inadequacies significantly
affect the results.

Comparison with sensitivity analysis
I Sensitivity analysis = Seeing whether other plausible models

give similar results.

I This is important, but it is different than model criticism. All
of the other models you consider might give similar results,
and all of them might be very wrong.

I Conversely, even if the model seems to fit well, it is still a good
idea to do sensitivity analysis.
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Approaches to model criticism

Two general approaches to model criticism

1. Checking whether the results are consistent with other
information not used when constructing the model or
computing the posterior. (For example, other domain
knowledge, other data, etc.) This is the approach taken by
cross-validation.

2. Checking whether the results are consistent with the
information used to construct the model and compute the
posterior. This is the approach taken by “posterior predictive
checks”. This has some issues due to the fact that it is “using
the data twice”, but it serves as a useful check of internal
consistency.
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Example: 1992 election forecast

(Figure 6.1 from BDA3, Gelman et al., 2013)

Forecast of 1992 US presidential election. For each state, the height of
the black bar indicates the probability of Clinton winning the election,
and the width is the number of electoral votes. Polls from Texas and
Florida not used in the forecast indicated much less support for Clinton
than predicted, indicating a possible inadequacy of the model.
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Posterior predictive checks
The basic idea of posterior predictive model checks is that the
observed data set should look “typical”, relative to replicate
data sets sampled from the posterior predictive distribution.

Below are 66 measurements of the speed of light made by
Simon Newcomb in 1882. This is a classic example of a data
set with outliers. Note that the lowest two measurements are
significantly lower than the rest. (Incidentally, Newcomb
threw out the lowest one, but kept the second lowest one.)
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Example: Newcomb’s speed of light measurements

A naive approach would be to model the data as N (µ, σ2).

In this case, we can visually see that there may be issues with
this model, but in more complicated, high-dimensional
situations, it is difficult to visually assess whether a model will
fit. Let’s see what happens if we use the normal model.

Below are 20 replicate data sets sampled from the posterior
predictive (see BDA for prior details).

Each replicate dataset was generated by first sampling (µ, σ2)
from the posterior, and then sampling 66 points xrepi from a
normal with this mean and variance (i.e., using the same
mean and variance for all 66 points).
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Example: Newcomb’s speed of light measurements
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Example: Newcomb’s speed of light measurements
Visually, none of these posterior predictive datasets look much
like the original observed data set.

To quantify this, below is a histogram of the 20 minimum
values, min{xrep1 , . . . , xrep66 } from the 20 replicate data sets,
compared to the observed minimum, min{x1, . . . , x66}.

The minimum is just one possible choice of statistic that
could be used to check the model fit.
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The idea of posterior predictive checks

If by some miracle the likelihood is exactly correct, and we
have a very large amount of data, then the posterior should
be highly concentrated at the true parameter value.

In this case, the distribution of the observed data should be
basically identical to the distribution of the replicate data sets.
However, this is more than we can hope for.

On the other hand, if the likelihood or prior are very wrong,
then basically none of the replicate data sets will look like the
observed data set, indicating mismatch between the model
and the data.
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The idea of posterior predictive checks

If the likelihood and prior are close enough to being correct,
relative to the amount of data, then some of the replicate
data sets should look roughly like the observed data set. This
is what we aim for.

A nice thing about posterior predictive checks is that they are
computationally cheap, since they only involve generation of
replicate data sets, as opposed to computing the posterior for
multiple data sets.
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Definition of posterior predictive for replicate data sets

Recall that the posterior predictive distribution of a single
future sample is

p(xn+1|x1:n) =
∫
p(xn+1|θ)p(θ|x1:n)dθ

(assuming the data is conditionally independent given θ).

Here, we will be considering the posterior predictive
distribution of an entire replicate data set, xrep1:n,

p(xrep1:n|x1:n) =
∫
p(xrep1:n|θ)p(θ|x1:n)dθ.

We can sample each of these posterior predictive datasets by
first sampling θ|x1:n, and then sampling xrep1:n|θ.
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Test statistics and test quantities

To perform a posterior predictive check, we compare the
observed value of some test statistic/quantity to its
distribution under the posterior predictive.

Test statistic = function of the data only, T (x1:n).

Test quantity = function of data and parameter, T (x1:n, θ).
This is a generalization that is sometimes useful.

The speed of light example used the test statistic
T (x1:n) = min{x1, . . . , xn}.

Using different test statistics/quantities will allow you to
probe different aspects of model fit.
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Posterior predictive p-values

To simplify the notation, let’s abbreviate x = x1:n.

Recall that the classical frequentist p-value for a test statistic
T (x) is defined as

pC = P
(
T (X) ≥ T (x) | θ0

)
,

where x is the observed data, X is distributed according to
Pθ0 , and θ0 corresponds to the null hypothesis.

The idea is that if the p-value is very small, then the observed
data is very atypical under the null hypothesis, providing
evidence for rejecting the null.
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Posterior predictive p-values
The posterior predictive p-value for T (x) is defined as

pB = P
(
T (Xrep) ≥ T (x) | x

)
,

or more generally, for a test quantity T (x, θ),

pB = P
(
T (Xrep, θ) ≥ T (x, θ) | x

)
.

In this expression, x is fixed and equal to the observed data,
and (Xrep, θ)|x is distributed according to

p(xrep, θ|x) = p(xrep|θ)p(θ|x),

which we sample from as described earlier.

We use these samples in a Monte Carlo approximation,

pB ≈
1

S

S∑
s=1

I
(
T (xrep,s, θs) ≥ T (x, θs)

)
.
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Example: Speed of light (continued)
How well is the model capturing the variance? What happens
if we choose T (x) = σ̂2?
The p-value is around 0.48, which seems to indicate that the
model is doing okay. However, the sample variance is a poor
choice of test statistic for this model.
It is a sufficient statistic, so the model is already paying very
close attention to matching it. Consequently, it isn’t really
helping us recognize poor model fit!

(BDA figure 6.4) Histogram of the sample variance over the 200 replicate
data sets, compared with the observed sample variance.
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Example: Speed of light (continued)
How well is the model capturing any asymmetry in the
distribution? We can compare distance from the 90% and
10% quantiles to the center, θ:

T (x, θ) = |x(61) − θ| − |x(6) − θ|.
The p-value is around 0.26, so the model actually seems to be
doing okay in this respect.

(BDA figure 6.4) Scatterplot of T (x, θ) versus T (xrep, θ) for the
asymmetry statistic; the p-value is the fraction above the diagonal.
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Interpretation of posterior predictive checks

The purpose of posterior predictive checks is not to formally
test goodness of fit, but rather, to explore and visualize how
well the model is capturing various aspects of the data
distribution.

As usual, if you are computing multiple p-values, it is
important to be aware of the fact that some of them may be
small or large simply by chance—i.e., remember the multiple
testing issue.

We are not constructing a formal hypothesis test, but it is
important to keep this in mind when interpreting the results.
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Interpretation of posterior predictive checks

Ideally, a frequentist p-value is uniformly distributed over the
interval from 0 to 1.

Posterior predictive p-values do not always have this property,
which can complicate their interpretation somewhat.

This is another reason to view them as tools for exploratory
purposes, rather than precisely calibrated tests of model fit.
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Interpretation of posterior predictive checks
Also remember that each posterior predictive check is only
assessing model fit with respect to one particular statistic.

What should you do if your posterior predictive check
indicates a problem?

In some cases, the inferences you draw from the model might
not be negatively affected by the lack of model fit.

Otherwise, the posterior predictive check can provide valuable
insight into how to modify the model in order to improve it.

If you do modify the model, you need to be careful not to
overfit—after all, you could match every statistic perfectly by
using a model which simply reproduces the observed data set
every time!
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