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Introduction
Exponential families (expfams) are a unifying generalization of
many basic models, and they possess many nice properties.

In Bayesian statistics, a key feature of expfams is that the
posterior often has a nice form when using conjugate priors.

Individually, expfams are often too simple for real applications.

However, they can easily be combined to build complex
hierarchical models that are amenable to inference with
Markov chain Monte Carlo or variational inference.

Examples of exponential families:
I Bernoulli, binomial, Poisson, exponential, beta, gamma,

inverse gamma, normal (Gaussian), multivariate Gaussian,
log-normal, inverse Gaussian, multinomial, Dirichlet.
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Introduction

Pitman Koopman Darmois

The concept of exponential families was developed by E. J. G.
Pitman (1897–1993), Bernard Koopman (1900–1981), and
Georges Darmois (1888–1960).
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One-parameter exponential families

A one-parameter exponential family is a collection of
distributions indexed by θ ∈ Θ, with p.d.f.s/p.m.f.s of the
form

p(x|θ) = exp
(
ϕ(θ)t(x)− κ(θ)

)
h(x)

for some functions ϕ(θ), t(x), κ(θ), and h(x).

κ(θ) is a log-normalization constant: since
∫
p(x|θ)dx = 1,

κ(θ) = log

∫
exp

(
ϕ(θ)t(x)

)
h(x) dx.

t(x) is called the sufficient statistic.
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Examples of one-parameter expfams

The Exp(θ) distributions form an exponential family, since the
p.d.f.s are

p(x|θ) = θe−θxI(x > 0) = exp
(
ϕ(θ)t(x)− κ(θ)

)
h(x)

for θ ∈ Θ = (0,∞), where t(x) = −x, ϕ(θ) = θ,
κ(θ) = − log θ, and h(x) = I(x > 0).

The Poisson(θ) distributions form an exponential family, since
the p.m.f.s are

p(x|θ) =
θxe−θ

x!
I(x ∈ S) = ??? (Whiteboard)

for θ ∈ Θ = ???, where S = {0, 1, 2, . . .}, t(x) = ???,
ϕ(θ) = ???, κ(θ) = ???, and h(x) = ???.
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Examples of one-parameter expfams

The Exp(θ) distributions form an exponential family, since the
p.d.f.s are

p(x|θ) = θe−θxI(x > 0) = exp
(
ϕ(θ)t(x)− κ(θ)

)
h(x)

for θ ∈ Θ = (0,∞), where t(x) = −x, ϕ(θ) = θ,
κ(θ) = − log θ, and h(x) = I(x > 0).

The Poisson(θ) distributions form an exponential family, since
the p.m.f.s are

p(x|θ) =
θxe−θ

x!
I(x ∈ S) = exp

(
ϕ(θ)t(x)− κ(θ)

)
h(x)

for θ ∈ Θ = (0,∞), where S = {0, 1, 2, . . .}, t(x) = x,
ϕ(θ) = log θ, κ(θ) = θ, and h(x) = I(x ∈ S)/x!.
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Conjugate priors
Consider some family of distributions M = {p(x|θ) : θ ∈ Θ}.

A family of priors {pα(θ) : α ∈ H} is conjugate for M if for
any α and any data, the resulting posterior equals pα′(θ) for
some α′ ∈ H.

Example: {Beta(θ|a, b) : a, b > 0} is a conjugate prior family
for {Bernoulli(θ) : θ ∈ (0, 1)} since the posterior is

p(θ|x1:n) = Beta(θ | a+
∑
xi, b+ n−

∑
xi).

Example: {Gamma(θ|a, b) : a, b > 0} is a conjugate prior
family for {Exp(θ) : θ > 0} since the posterior is

p(θ|x1:n) = ??? (Whiteboard).
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Conjugate priors
Consider some family of distributions M = {p(x|θ) : θ ∈ Θ}.

A family of priors {pα(θ) : α ∈ H} is conjugate for M if for
any α and any data, the resulting posterior equals pα′(θ) for
some α′ ∈ H.

Example: {Beta(θ|a, b) : a, b > 0} is a conjugate prior family
for {Bernoulli(θ) : θ ∈ (0, 1)} since the posterior is

p(θ|x1:n) = Beta(θ | a+
∑
xi, b+ n−

∑
xi).

Example: {Gamma(θ|a, b) : a, b > 0} is a conjugate prior
family for {Exp(θ) : θ > 0} since the posterior is

p(θ|x1:n) = Gamma(θ | a+ n, b+
∑
xi).
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Conjugate priors for exponential families

Under general conditions, for any exponential family there is a
family of conjugate priors with p.d.f.

pn0,t0(θ) ∝ exp
(
n0t0ϕ(θ)− n0κ(θ)

)
I(θ ∈ Θ)

for all n0 > 0 and t0 ∈ R for which this is normalizable.

The resulting posterior is pn′,t′(θ) where n′ = ??? and

t′ = ???

(Whiteboard)
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Conjugate priors for exponential families

Under general conditions, for any exponential family there is a
family of conjugate priors with p.d.f.

pn0,t0(θ) ∝ exp
(
n0t0ϕ(θ)− n0κ(θ)

)
I(θ ∈ Θ)

for all n0 > 0 and t0 ∈ R for which this is normalizable.

The resulting posterior is pn′,t′(θ) where n′ = n0 + n and

t′ =
n0t0 +

∑n
i=1 t(xi)

n0 + n
=

n0
n0 + n

t0 +
n

n0 + n

1

n

n∑
i=1

t(xi).

Note that t′ is a convex combination of t0 and 1
n

∑
t(xi).

This helps interpret and select the hyperparameters t0, n0:
I t0 represents a prior “guess” at the expected value of t(x), and
I n0 represents the prior “number of samples” (roughly

speaking, how certain we are about t0).
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Conjugate priors for exponential families

In most cases, it is probably just as easy to guess a conjugate
prior and verify it, rather than use this general construction.

Also, in some cases, this construction is not the most
convenient, for example, for the N (µ, σ2) model.

Rather, the purpose of showing this construction is to provide:

I intuition for how to derive conjugate priors and posteriors,

I understanding of how to interpret prior parameters, and

I a theoretical result on existence of conjugate priors for
exponential families.
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Multi-parameter exponential families

The generalization to more than one parameter is
straightforward.

An exponential family is a collection of distributions indexed
by θ ∈ Θ, with p.d.f.s/p.m.f.s of the form

p(x|θ) = exp
(
ϕ(θ)Tt(x)− κ(θ)

)
h(x)

for some vector-valued functions

ϕ(θ) =

ϕ1(θ)
...

ϕk(θ)

 and t(x) =

t1(x)
...

tk(x)


and some real-valued functions κ(θ) and h(x).

As before, κ(θ) is the log-normalization constant.

Conjugate priors can be constructed in the same way as the
one-parameter case, except that now t0 ∈ Rk and t′ ∈ Rk.
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Example of multi-param exponential family

The Gamma(a, b) distributions, with a, b > 0, are an
exponential family:

Gamma(x|a, b) =
ba

Γ(a)
xa−1 exp(−bx)I(x > 0)

= ??? (Whiteboard)

where θ = ???, ϕ(θ) = ???, t(x) = ???, and h(x) = ???.
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Example of multi-param exponential family

The Gamma(a, b) distributions, with a, b > 0, are an
exponential family:

Gamma(x|a, b) =
ba

Γ(a)
xa−1 exp(−bx)I(x > 0)

= exp
(
ϕ(θ)Tt(x)− κ(θ)

)
h(x)

where θ = (a, b)T, ϕ(θ) = (−b, a− 1)T, t(x) = (x, log x)T,
and h(x) = I(x > 0).
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/o9tzjuC3BXqkV4hZ8

(Three people per room, randomly assigned. 15 minutes.)
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Constructing new conjugate priors by reweighting
Technically, for any model M, there exists a conjugate prior
family—namely, the set of all distributions on Θ.

However, usually people only consider conjugate priors that
are computationally tractable or closed form.

Reweighting is a one way of constructing new conjugate priors
from existing ones:
I Suppose {pα(θ) : α ∈ H} is conjugate for a model M.
I Let g(θ) be any nonnegative function, and define

z(α) =
∫
pα(θ)g(θ)dθ.

I If 0 < z(α) <∞ for all α ∈ H, then{
pα(θ)g(θ)/z(α) : α ∈ H

}
is also a conjugate prior family.

A useful special case is to take g(θ) = I(θ ∈ A) for some A.

If pα(θ) is computationally nice and g(θ) is well-chosen, then
the reweighted family is often computationally nice too.
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Constructing new conjugate priors by mixing
Mixtures are another way of making new conjugate priors:

If {pα(θ) : α ∈ H} is a conjugate prior family for M, then{ k∑
i=1

πipαi
(θ) : α1, . . . , αk ∈ H, π ∈ ∆k

}
is also conjugate for M, where

∆k =
{
π ∈ Rk : π1, . . . , πk ≥ 0,

k∑
i=1

πi = 1
}
.

In other words, finite mixtures of conjugate priors are
conjugate priors.

If pα(θ) is computationally nice, then the mixture family will
usually be nice as well, in terms of posterior computation.

By reweighting and mixing, we can construct very flexible
classes of computationally nice conjugate priors.
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Table of conjugate priors

Wikipedia has a nice table for reference — but double-check
it for correctness. (https://en.wikipedia.org/wiki/Conjugate_prior)
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Some expfam forms are more convenient than others

There are multiple ways of putting a distribution in expfam
form, some of which may be more useful than others.

Example: We can write N (µ, σ2) as a two-param expfam,

N (x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2 (x− µ)2
)

= exp
( µ
σ2
x− 1

2σ2
x2 − µ2

2σ2
− 1

2
log(2πσ2)

)
= exp

(
θTt(x)− κ(θ)

)
where θ =

( µ
σ2
, − 1

2σ2

)T
and t(x) =

[
x
x2

]
.

However, we usually prefer to keep µ and σ2 separate to
facilitate prior specification.
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Not all conjugate priors are useful
We mentioned that for any model, the set of all distributions
on Θ is a conjugate prior family — albeit a useless one.

Even when a parametric conjugate prior exists, it is not always
very useful.

Example: Damsleth (1975) showed that for β, ν > 0,

pβ,ν(a) ∝ βa

Γ(a)ν
I(a > 0)

is a conjugate prior on the shape parameter a of a Gamma

distribution, Gamma(x|a, b) =
ba

Γ(a)
xa−1 exp(−bx).

However, this family is difficult to use, computationally — it
does not seem to permit closed-form calculation of samples,
moments, or the normalization constant.
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Auxiliary variable trick for mixtures of expfams
Mixtures of expfams are often computationally tractable, for
instance:
I t-distribution (a continuous mixture of normals with common

mean), useful for robustness to outliers,

I mixture of Gaussians (a discrete mixture of normals with
different means), useful for handling heterogeneity, or

I models where expectation–maximization would be useful.

Auxiliary variable trick (surprisingly powerful!):
I Suppose the likelihood is p(x|θ) =

∑
z p(x|z, θ)p(z|θ).

I Suppose p(x|z, θ) is easy to work with (e.g., an expfam).

I Sample from the joint posterior on z and θ, i.e., p(z, θ|x).

I Note that if (Z,θ) ∼ p(z, θ|x), then θ ∼ p(θ|x).

I So just keep the θ part of each sample and discard the z part.
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/KHYKT28AaVSFp5jy7
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