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Outline

Univariate normal model
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Univariate normal distribution

@ The normal (a.k.a. Gaussian) distribution N (u, 2) with mean
1 € R and variance 02 > 0 has p.d.f.

1 1
N | 0% = —— e (=530 —w?)

for x € R.

e It is often convenient to work with the precision A = 1/0?
rather than the variance. In this parametrization, the p.d.f. is

Nz | p A = \/;exp (— 3\ — ,u)Z).
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Univariate normal distribution

@ The normal distribution has special properties that give it a
unique position in probability and statistics.

e Central limit theorem (CLT)
» CLT: The sum of a large number of independent random
variables is approximately normal.
» Consequently, many real-world quantities tend to be normally
distributed.
» When designing models, the CLT helps us understand when a
normal model would be appropriate.

@ Analytic tractability
» Posterior computations can often be done in closed form,
making normal models computationally convenient.
» Normal distributions can be combined to build complex models
that are still tractable.
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Outline

Conjugate prior for the mean
Example: Is human height bimodal?
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Conjugate prior for the mean
@ Consider an i.i.d. normal model:
X1, X SN, A7),

Assume the precision A\ = 1/02 is known and fixed.
Assume the prior on the mean is p(6) = N(0 | o, Ay '), i-e.,

0~ N(/‘LO’ )\al)

This is sometimes referred to as a Normal-Normal model.

The posterior is p(f|x1.,) = N(0 | M, L71), i.e.,
Olz1, ~ N (M, L) (1)
where L = A\g +nA and

Aopo + AD i x
Ao+ nA .

@ Thus, the normal distribution is a conjugate prior for the
mean of a normal distribution with known precision.

M =

7/47



Derivation of the Normal-Normal posterior

(Whiteboard activity)
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Derivation of the Normal-Normal posterior (1/2)

@ Foranyxz € R, £ >0,

14
Nz | 6,07 = \/27 exp (— ¢(z — 0)?)
s
2 2
ogcexp(f $0(x* — 220 + 6%))
2
09( exp (8950 — %69 ) (2)
@ Due to the symmetry of the normal p.d.f.,

NO | po, A" = N(uo | 0,757)
o exp ()\ouoe - %)\092) (3)

by Equation 2 with x = pp and £ = ).
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Derivation of the Normal-Normal posterior (2/2)

@ Therefore,

p(0]21:0) < p(0)p(21:|0)

= N0 | o, A [N (i | 6,471

=1
% exp (Mopod — $206%) exp (A(X 24)0 — 2nr6?)
= exp (()\o,uo + A 2)0 — 3(Ao + n)\)02)
= exp(LM6 — %L@Q)
® NM|6,L7YHY=N(6| ML

where L = \g + nA and M = (Aopo + A D ;) /L.

e Step (a) uses Equations 2 and 3, and step (b) uses Equation 2
with © = M and £ = L. This proves Equation 1.
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Example: Is human height bimodal?
Heights of Dutch women (n = 695) and men (n = 562)

estimated density
o
o
3

0.00
140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215
height (cm)

@ Human height is a classic example of a normal distributed
quantity, when separated by sex. (And it is actually
remarkable close to normal.)

@ This is probably due to the CLT, since it seems that many
independent genetic factors contribute to height.

@ Meanwhile, when pooling women and men, height is often

said to be bimodal (i.e., has two modes). But is it really?
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Example: Is human height bimodal?

@ This example illustrates:
» Bayesian analysis with a normal model
» computing a posterior quantity of interest
P prior selection

» a simple but interesting application
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Example: Is human height bimodal?

“Living histogram” of 143 UConn students

x-axis = height, color = sex (female/male)

B / sl \ =

The Hartford Courant (1996)

e Crow (1997) writes, “Since both sexes are included, the
distribution is bimodal.”
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Example: Is human height bimodal?

Heights of Dutch women and men, combined
(assuming equal proportions of women and men in the population)
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@ Visually, the combined distribution does not look bimodal, but
maybe we don’t have enough data yet.

@ How could we test whether the population distribution is
actually bimodal, accounting for uncertainty?
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Height bimodality example: Likelihood/model
@ Assume the female heights are
X1, X SN (0, 0%),
where k = 695, and the male heights are
iid

Yla"'a}/fNN(en“O-Q)’

where ¢ = 562.

@ Assume the p.d.f. of the combined distribution of heights is
%N(CL‘ | 0f,0%) + %/\/’(m | O, ).

@ This a two-component mixture distribution with equal
weights.
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Height bimodality example: Target of inference

e By Helguerro (1904), the combined distribution is bimodal if
and only if
‘Qf — 0m| > 20,

i.e., if the difference in means is greater than twice the
standard deviation.

@ So, to address our question of interest (“Is human height
bimodal?”), we would like to compute the posterior
probability of this event:

P(bimodal | data) = P(|6; — O] > 20 | 21, y1:0).

@ To make this probability well-defined, we need to put priors on
the parameters.
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Group activity: Height bimodality example

Go to breakout rooms and work together to answer these questions:
https://forms.gle/WYkeHyRZFAxmYyEHA

(Two people per room, randomly assigned. 15 minutes.)
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https://forms.gle/WYkeHyRZFAxmYyEHA

Height bimodality example: Prior

@ Let's put independent normal priors on 6; and 0,,:
ef NN(MO,fva(%) O, NN(MO,maU(%)'

@ Soon we will consider priors on 2, but for now let's assume
o2 is fixed and known:

o = 8 cm (about 3 inches).

@ Based on common knowledge of typical human heights, let's
set the hyperparameters as follows:
po,f = 165 cm (= 5 feet, 5 inches)
to.m = 178 cm (= 5 feet, 10 inches)
oo = 15 cm (= 6 inches)

@ Note that o( represents our prior uncertainty about the mean
heights, not about the heights of individuals.
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Height bimodality example: Posterior

14

1.2

O --- female, prior

S 08 —— female, posterior
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% 0.6} —— male, posterior
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6 (mean height, cm)

@ The details here are not important — just the general idea.
@ Since women and men are modeled independently,

p(0f, 0 | 2185 y1:0) = PO |21:8)POma|y1:0)-
o Equation 1 gives us p(0f|x1.) and p(Op|y1:0):
Ol ~ N(My, Lfl) O ly1:e ~ N (M, L)1)

where
M; =168.0 cm (5' 6.1") 1/y/L; = 0.30 cm
M, =181.4 cm (5" 11.4") 1/v/Ly, = 0.34 cm
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Height bimodality example: Result
@ Since a linear combination of independent normals is normal,
Om — 07 | w1k, Y120 ~ N (M, — My, L' + L)
= N(13.4,0.45%).
@ So we can compute P(bimodal | data) using ®(x | ,0?), the
c.d.f. of N(u,0?):
P(bimodal | data) = P(|6,,, — 0f| > 20 | 21, y1.0)
= ®(—20 | 13.4,0.45%) + (1 — ®(20 | 13.4,0.45%))
=6.1x 107,
@ The posterior probability of bimodality is close to zero since
the posteriors are about 13 or 14 cm apart, which is under the

20 = 16 cm threshold for bimodality, and they are sufficiently
concentrated.

@ Critical thinking: How sensitive is this result to our

assumptions?
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Outline

Conjugate prior for the mean and precision
Example: The Pygmalion effect
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Conjugate prior for the mean and precision
o Model: X1, ..., Xn " N (u, A1),
@ Suppose that both ;1 and A are unknown.

@ The NormalGamma(m, c, a,b) distribution, with m € R and
¢,a,b >0, is a joint distribution on (p, \) obtained by letting

A ~ Gamma(a,b)
uIx ~ N (m, (X)),

@ In other words, the joint p.d.f. is
(1t A) = p(p|Np(X) = N (g | m, (eA) ™) Gamma(A | a, b)

which we will denote by NormalGamma(u, A | m, ¢, a,b).

@ It turns out that this is a conjugate prior on (u, \).
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Conjugate prior for the mean and precision

@ Indeed, the posterior is

wy Alz1., ~ NormalGamma(M,C, A, B) (4)
where
Ao et o
c+n
C=c+n
A=a+n/2

B=b+3%(em*—CM*+ Y1 22).

e For interpretation, B can also be written (by rearranging
terms) as

n

1 1 ¢cn
B=b+2) (xi—2)°+ 7 —m)2
+2i:1(a: z) +20+n(x m) (5)
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Interpretation of posterior parameters

@ M = posterior mean of p.
» Convex combination of the prior mean and the sample mean:

n
+ z.
c+n

= m
c+n

o C = "sample size" for estimating p.
> The standard deviation of u|\ is A\='/2/1/C.

@ A = shape parameter of the posterior on .
» Grows linearly with sample size.

@ B = rate parameter (inverse scale) of the posterior on A.
» See Equation 5 for decomposition of B.
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Derivation of the posterior (1/2)

(Whiteboard activity)
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Derivation of the posterior (1/2)

e Multiplying out (1 — m)? = u? — 2um + m? and collecting
terms, we have
NormalGamma(u, A | m, ¢, a, b)
[ A 1 2) 0" a1
=1/ 5, &P ( — 5cA(p—m) )M)\“ exp(—bA)

s

o Similarly, for any z,

N [ A1) oc AV exp < — AW — 2z + mQ))- (7)

)
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Derivation of the posterior (2/2)
@ Using Equations 6 and 7, we get

Py Az1:0) o NormalGamma(u, A | m, ¢, a,b) 1_[/\/(95Z | 1, A)
Ho i=1

;x)\ AF/2=1/2 oy ( — (e + n)p? = 2(em + 3 x)p
+cem? 4 2b + fo))
()

DN 2 exp (= SA(C? — 20Mp+ CM? 4+ 2B))

(obc) NormalGamma(u, A | M,C, A, B).

e Step (b) is by Equation 6, and step (a) holds if
A=a+n/2 CM = (em+ > x;)
C=c+n CM2+ZB:cm2+2b+Zx$.

@ Solving for M and B, we get the result in Equation 4.
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Example: The Pygmalion effect

@ Do a teacher’s expectations influence student achievement?

@ Rosenthal and Jacobson (1968) performed a famous
experiment to address this question.

» At the beginning of the year, all students were given an IQ test.

» The researchers randomly selected around 20% of the students
in each class.

> They told teacher these students were “spurters” (outstanding
students).

» At the end of the year, all students were given another 1Q test.

@ The changes in IQ score for the first-grade students were:*
> spurters (S): = = (18, 40, 15, 17, 20, 44, 38)
» controls (C): y = (-4, 0, -19, 24, 19, 10, 5, 10, 29, 13, -9, -8, 20, -1,
12, 21, -7, 14, 13, 20, 11, 16, 15, 27, 23, 36, -33, 34, 13, 11, -19, 21, 6,
25, 30, 22, -28, 15, 26, -1, -2, 43, 23, 22, 25, 16, 10, 29)

*Note: The original data are not available. These data are from the ex1321 dataset of the R package Sleuth3,

which was constructed to match the summary statistics and conclusions of the original study.
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Example: The Pygmalion effect

10

I spurters
Hl controls

21 H L L i [ Lo
REEENE N I ‘
—50-45-40-35-30-25-20-15-10 =5 0 5 10 15 20 25 30 35 40 45 50
Change in 1Q score

# of students

@ Summary statistics:
spurters: ng =7 =274 4&,=11.7
controls: ng =48 y=120 &,=16.1

@ The average increase in |1Q score is larger for the spurters.

@ How strongly do these data support the hypothesis that the
teachers' expectations caused the spurters to perform better

than their classmates?
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Pygmalion example: Model & Target of inference

@ |Q tests are calibrated to make the scores normally
distributed, so it makes sense to use a normal model.

spurters: Xi,..., X, S (us,/\gl)
controls: Y7,...,Yy, G (,uc,)\al).

@ We are interested in the difference between the means—in
particular, is g > pc?

@ The Bayesian approach is simply to compute the posterior
probability that ug > pc:

]P([J;S > e ’ $1:n5>y1:nc)-

@ As before, to make this well-defined we need to assume priors
on the parameters.
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Pygmalion example: Prior
@ We don't know the precisions Ag and A¢, and the sample
seems too small to estimate Ag very well.
@ Thus, it is important to account for uncertainty in Ag.

@ Let's use independent NormalGamma priors:

spurters: (pg, Ag) ~ NormalGamma(m, ¢, a, b)

controls: (pc, Ac) ~ NormalGamma(m, ¢, a, b).

@ Choose hyperparameters based on subjective prior knowledge:

m=20 Don’t know if students will improve or not, on average.
c=1 Unsure how big the mean change will be.
(Prior certainty is equivalent to info in ¢ datapoints.)
a =1/2  Unsure how big the stddev of the changes will be.
(Prior certainty is equivalent to info in 2a datapoints.)
b=10%a Expect stddev of changes to be ~ 10 = \/b/a = E(\) /2.
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Pygmalion example: Prior

40 ——

Samples of (yu, o) from the prior

351
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T

0 L L L L L L L L L L
—50 —45 —40 —35 =30 =25 -20-15-10 =5 0

5 10 15 20 25 30 35 40 45 50

1 (Mean change in 1Q score)

@ Does the prior conform to our beliefs? Some ways to check:

1. Look at samples drawn from the prior. (RECOMMENDED)

ok wDd

Check prior moments, but beware—they can be misleading.
Look at hypothetical datasets X7.,, from the prior+model.
Plot the prior c.d.f. and check various quantiles.

Plot the prior p.d.f., but beware—it can be misleading.
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Pygmalion example: Posterior

Answer these questions individually (5 minutes):
https://forms.gle/9tVWd73Pp7gvRdtz8
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https://forms.gle/9tVWd73Pp7gvRdtz8

Pygmalion example: Posterior

Samples of (u, o) from the posteriors for the two groups
40—

! j ! ! j ! ! ! ! i ! j j ! ! !
35}-
30|

25}
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201
e controls

15}

10

A2 (std.dev. of change)

s5f-

0 I S S S N SN (N S (N S S S S S S S S
—50-45 —40 —35 —-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50
4 (Mean change in IQ score)

@ By Equation 4, the posteriors are

13, As | 1:ng ~ NormalGamma(24.0, 8, 4, 855)
Bes A | Yime ~ NormalGamma(11.8, 49, 24.5, 6344).
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Pygmalion example: Results
@ Now, what is the posterior probability that pug > pc?

o Easiest way: Generate samples from the posterior and
calculate how frequently pug > pc.
» This is a Monte Carlo approximation ... more to come on this!

e To do this, we draw N = 10 i.i.d. samples from the posterior:

(Mg)’ )\g)) id NormalGamma(24.0, 8, 4, 855)
(1 A1) % NormalGamma(11.8, 49, 24.5, 6344)

fori=1,..., N, and calculate the approximation
1
P(ps > po | Timg, Yime) = NZ;I Mg > Nc = 0.97.
1=

@ Interpretation: These data seem to support the hypothesis
that the teachers’ expectations did in fact play a role.
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Outline

Other common priors for normal parameters
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Conditionally conjugate prior for the mean and precision

@ The NormalGamma prior induces a strong dependency
between 1 and A, which can be undesirable.

» See plot of samples from the prior in Pygmalion example.

@ It is often more natural to make them independent a priori:
X ~ Gamma(a, b) and g ~ N(m, s?), independently.

@ This is not a conjugate prior, but it is conditionally conjugate
in the sense that:

» for any fixed A, it is conjugate for p, and
» for any fixed p, it is conjugate for A.

e Conditionally conjugate priors are easy to work with in MCMC
and variational inference algorithms.
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Conjugate prior for the variance

@ So far, we've used a Gamma prior on the precision A = 1/02.

e What if we wanted to work directly with the variance o%?

If X ~ Gamma(a,b) then 1/X ~ InvGamma(a,b).

So, putting a Gamma(a, b) prior on \ is equivalent to putting

an InvGamma(a, b) prior on o2

The p.d.f. of the Inverse Gamma distribution is

a

F(a)y’“"le><p(—b/y)~

InvGamma(y|a, b) =

Similarly to the NormalGamma prior on (i, ), the
Normal-lnvGamma is a conjugate prior on (j, o2):

o? ~ InvGamma(a, b) plo? ~ N(m,o?/c).
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Outline

Multivariate normal
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Multivariate normal distribution

o Let 4 € RY, let C € R symmetric positive definite (SPD).

@ The multivariate normal distribution AV (u, C) has p.d.f.

N | 1.C) = e b (= 3o = w707 o = )

for z € RY. Here, |C| = | det C.

@ In terms of the precision matrix A = C~!, the p.d.f. is

1/2
s o0 (= bl =)™ =)

Nz | A7) =

@ Note that C is SPD if and only if A is SPD.
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Conjugate prior for the mean
o Consider the model X4,..., X, S N(u, A=1) given p, A.

@ Similar to the univariate case, a conjugate prior on p is
-1

for m € R% and L € R%%4 SPD.

@ If A is fixed, then the resulting posterior is
W|T1p ~ N(mnvL;1>
where

L,=L+nA
mp = Ly (Lm + AT @;).
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Conjugate prior for the precision matrix

@ Univariate: Gamma(a, b) is conjugate prior on A.

e Multivariate: Wishart(S—1,v) is conjugate prior on A.
o Given S € R¥*? SPD and v > d — 1, the Wishart distribution
with inverse scale S and v degrees of freedom has density

_ISP2IX] VI exp(— 5tr(S X))
2’/d/2Fd(y/2)

Wa(X | S71v)
for X € R4 SPD.

e Here, T'y(v/2) is the multivariate gamma function, and tr is
the trace, i.e., tr(A) = Zle Aii.
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Conjugate prior for the precision matrix

@ Consider the model X1,..., X, i N(u, A=1) given p, A.

o If yu is fixed and A ~ Wishart(S~!,v), then the posterior is
Alzy., ~ Wishart(S, 1, v,)

where v, = v+ n and

n

Sn =8+ Y (wi—p)(wi — )"

=1

@ Equivalently, one can put an Inverse Wishart prior on the
covariance matrix C.
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Joint priors on the mean and precision matrix

@ Generalizing from the univariate case, the NormalWishart
distribution is a conjugate prior on (p, A).

o Likewise, the Normal-InvWishart is conjugate for (i, C').

@ However, as in the univariate case, we often prefer to place
independent priors on p and A (or  and C).

@ Thus, we often prefer the conditionally conjugate prior:
e~ N(m, L™ A ~ Wishart(S™!,v)

independently.
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History

Maxwell Quetelet
,‘,’ﬂ

@ In 1809, C.F. Gauss introduced the normal distribution as a
model for the errors made in astronomical measurements, to
justify the method of least squares in linear regression.

@ Laplace proved the central limit theorem in 1810 and
calculated the normalization constant of the normal.

@ James Clerk Maxwell (1831-1879) showed that the normal
distribution arose naturally in physics, particularly in
thermodynamics.

@ Adolphe Quetelet (1796-1874) pioneered the use of the

normal distribution in the social sciences.
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/SAmOW25RzDNPIW1GA
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https://forms.gle/SAm9W25RzDNP9W1GA
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