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Univariate normal distribution

The normal (a.k.a. Gaussian) distribution N (µ, σ2) with mean
µ ∈ R and variance σ2 > 0 has p.d.f.

N (x | µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
for x ∈ R.

It is often convenient to work with the precision λ = 1/σ2

rather than the variance. In this parametrization, the p.d.f. is

N (x | µ, λ−1) =

√
λ

2π
exp

(
− 1

2λ(x− µ)2
)
.
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Univariate normal distribution

The normal distribution has special properties that give it a
unique position in probability and statistics.

Central limit theorem (CLT)
I CLT: The sum of a large number of independent random

variables is approximately normal.
I Consequently, many real-world quantities tend to be normally

distributed.
I When designing models, the CLT helps us understand when a

normal model would be appropriate.

Analytic tractability
I Posterior computations can often be done in closed form,

making normal models computationally convenient.
I Normal distributions can be combined to build complex models

that are still tractable.
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Conjugate prior for the mean
Consider an i.i.d. normal model:

X1, . . . , Xn
iid∼ N (θ, λ−1).

Assume the precision λ = 1/σ2 is known and fixed.

Assume the prior on the mean is p(θ) = N (θ | µ0, λ−1
0 ), i.e.,

θ ∼ N (µ0, λ
−1
0 ).

This is sometimes referred to as a Normal–Normal model.

The posterior is p(θ|x1:n) = N (θ |M,L−1), i.e.,

θ|x1:n ∼ N (M,L−1) (1)

where L = λ0 + nλ and

M =
λ0µ0 + λ

∑n
i=1 xi

λ0 + nλ
.

Thus, the normal distribution is a conjugate prior for the
mean of a normal distribution with known precision.
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Derivation of the Normal-Normal posterior

(Whiteboard activity)

8 / 47



Derivation of the Normal-Normal posterior (1/2)

For any x ∈ R, ` > 0,

N (x | θ, `−1) =

√
`

2π
exp

(
− 1

2`(x− θ)
2
)

∝
θ

exp
(
− 1

2`(x
2 − 2xθ + θ2)

)
∝
θ

exp
(
`xθ − 1

2`θ
2
)
. (2)

Due to the symmetry of the normal p.d.f.,

N (θ | µ0, λ−1
0 ) = N (µ0 | θ, λ−1

0 )

∝
θ

exp
(
λ0µ0θ − 1

2λ0θ
2
)

(3)

by Equation 2 with x = µ0 and ` = λ0.
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Derivation of the Normal-Normal posterior (2/2)

Therefore,

p(θ|x1:n) ∝ p(θ)p(x1:n|θ)

= N (θ | µ0, λ−1
0 )

n∏
i=1

N (xi | θ, λ−1)

(a)
∝ exp

(
λ0µ0θ − 1

2λ0θ
2
)

exp
(
λ(
∑
xi)θ − 1

2nλθ
2
)

= exp
(

(λ0µ0 + λ
∑
xi)θ − 1

2(λ0 + nλ)θ2
)

= exp(LMθ − 1
2Lθ

2)

(b)
∝ N (M | θ, L−1) = N (θ |M,L−1)

where L = λ0 + nλ and M = (λ0µ0 + λ
∑
xi)/L.

Step (a) uses Equations 2 and 3, and step (b) uses Equation 2
with x = M and ` = L. This proves Equation 1.
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Example: Is human height bimodal?

Heights of Dutch women (n = 695) and men (n = 562)

Human height is a classic example of a normal distributed
quantity, when separated by sex. (And it is actually
remarkable close to normal.)

This is probably due to the CLT, since it seems that many
independent genetic factors contribute to height.

Meanwhile, when pooling women and men, height is often
said to be bimodal (i.e., has two modes). But is it really?
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Example: Is human height bimodal?

This example illustrates:

I Bayesian analysis with a normal model

I computing a posterior quantity of interest

I prior selection

I a simple but interesting application
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Example: Is human height bimodal?

“Living histogram” of 143 UConn students
x-axis = height, color = sex (female/male)

The Hartford Courant (1996)

Crow (1997) writes, “Since both sexes are included, the
distribution is bimodal.”
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Example: Is human height bimodal?

Heights of Dutch women and men, combined
(assuming equal proportions of women and men in the population)

Visually, the combined distribution does not look bimodal, but
maybe we don’t have enough data yet.

How could we test whether the population distribution is
actually bimodal, accounting for uncertainty?
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Height bimodality example: Likelihood/model

Assume the female heights are

X1, . . . , Xk
iid∼ N (θf , σ

2),

where k = 695, and the male heights are

Y1, . . . , Y`
iid∼ N (θm, σ

2),

where ` = 562.

Assume the p.d.f. of the combined distribution of heights is

1
2N (x | θf , σ2) + 1

2N (x | θm, σ2).

This a two-component mixture distribution with equal
weights.
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Height bimodality example: Target of inference

By Helguerro (1904), the combined distribution is bimodal if
and only if

|θf − θm| > 2σ,

i.e., if the difference in means is greater than twice the
standard deviation.

So, to address our question of interest (“Is human height
bimodal?”), we would like to compute the posterior
probability of this event:

P(bimodal | data) = P
(
|θf − θm| > 2σ

∣∣ x1:k, y1:`).
To make this probability well-defined, we need to put priors on
the parameters.
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Group activity: Height bimodality example

Go to breakout rooms and work together to answer these questions:
https://forms.gle/WYkeHyRZFAxmYyEHA

(Two people per room, randomly assigned. 15 minutes.)
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Height bimodality example: Prior

Let’s put independent normal priors on θf and θm:

θf ∼ N (µ0,f , σ
2
0) θm ∼ N (µ0,m, σ

2
0).

Soon we will consider priors on σ2, but for now let’s assume
σ2 is fixed and known:

σ = 8 cm (about 3 inches).

Based on common knowledge of typical human heights, let’s
set the hyperparameters as follows:

µ0,f = 165 cm (≈ 5 feet, 5 inches)
µ0,m = 178 cm (≈ 5 feet, 10 inches)
σ0 = 15 cm (≈ 6 inches)

Note that σ0 represents our prior uncertainty about the mean
heights, not about the heights of individuals.
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Height bimodality example: Posterior

The details here are not important – just the general idea.
Since women and men are modeled independently,

p(θf , θm | x1:k, y1:`) = p(θf |x1:k)p(θm|y1:`).
Equation 1 gives us p(θf |x1:k) and p(θm|y1:`):

θf |x1:k ∼ N (Mf , L
−1
f ) θm|y1:` ∼ N (Mm, L

−1
m )

where

Mf = 168.0 cm (5’ 6.1”) 1/
√
Lf = 0.30 cm

Mm = 181.4 cm (5’ 11.4”) 1/
√
Lm = 0.34 cm
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Height bimodality example: Result
Since a linear combination of independent normals is normal,

θm − θf | x1:k, y1:` ∼ N (Mm −Mf , L
−1
m + L−1

f )

= N (13.4, 0.452).

So we can compute P(bimodal | data) using Φ(x | µ, σ2), the
c.d.f. of N (µ, σ2):

P(bimodal | data) = P
(
|θm − θf | > 2σ

∣∣ x1:k, y1:`)
= Φ(−2σ | 13.4, 0.452) +

(
1− Φ(2σ | 13.4, 0.452)

)
= 6.1× 10−9.

The posterior probability of bimodality is close to zero since
the posteriors are about 13 or 14 cm apart, which is under the
2σ = 16 cm threshold for bimodality, and they are sufficiently
concentrated.

Critical thinking: How sensitive is this result to our
assumptions?
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Conjugate prior for the mean and precision

Model: X1, . . . , Xn
iid∼ N (µ, λ−1).

Suppose that both µ and λ are unknown.

The NormalGamma(m, c, a, b) distribution, with m ∈ R and
c, a, b > 0, is a joint distribution on (µ, λ) obtained by letting

λ ∼ Gamma(a, b)

µ|λ ∼ N (m, (cλ)−1).

In other words, the joint p.d.f. is

p(µ, λ) = p(µ|λ)p(λ) = N (µ | m, (cλ)−1) Gamma(λ | a, b)

which we will denote by NormalGamma(µ, λ | m, c, a, b).

It turns out that this is a conjugate prior on (µ, λ).
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Conjugate prior for the mean and precision
Indeed, the posterior is

µ,λ|x1:n ∼ NormalGamma(M,C,A,B) (4)

where

M =
cm+

∑n
i=1 xi

c+ n

C = c+ n

A = a+ n/2

B = b+ 1
2

(
cm2 − CM2 +

∑n
i=1 x

2
i

)
.

For interpretation, B can also be written (by rearranging
terms) as

B = b+
1

2

n∑
i=1

(xi − x̄)2 +
1

2

cn

c+ n
(x̄−m)2. (5)
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Interpretation of posterior parameters

M = posterior mean of µ.
I Convex combination of the prior mean and the sample mean:

M =
c

c+ n
m+

n

c+ n
x̄.

C = “sample size” for estimating µ.
I The standard deviation of µ|λ is λ−1/2/

√
C.

A = shape parameter of the posterior on λ.
I Grows linearly with sample size.

B = rate parameter (inverse scale) of the posterior on λ.
I See Equation 5 for decomposition of B.
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Derivation of the posterior (1/2)

(Whiteboard activity)
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Derivation of the posterior (1/2)

Multiplying out (µ−m)2 = µ2 − 2µm+m2 and collecting
terms, we have

NormalGamma(µ, λ | m, c, a, b)

=

√
cλ

2π
exp

(
− 1

2cλ(µ−m)2
) ba

Γ(a)
λa−1 exp(−bλ)

∝
µ,λ

λa−1/2 exp
(
− 1

2λ(cµ2 − 2cmµ+ cm2 + 2b)
)
. (6)

Similarly, for any x,

N (x | µ, λ−1) ∝
µ,λ

λ1/2 exp
(
− 1

2λ(µ2 − 2xµ+ x2)
)
. (7)
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Derivation of the posterior (2/2)
Using Equations 6 and 7, we get

p(µ, λ|x1:n) ∝
µ,λ

NormalGamma(µ, λ | m, c, a, b)
n∏
i=1

N (xi | µ, λ)

∝
µ,λ

λa+n/2−1/2 exp
(
− 1

2λ
(
(c+ n)µ2 − 2(cm+

∑
xi)µ

+ cm2 + 2b+
∑

x2i
))

(a)
= λA−1/2 exp

(
− 1

2λ
(
Cµ2 − 2CMµ+ CM2 + 2B

))
(b)
∝ NormalGamma(µ, λ |M,C,A,B).

Step (b) is by Equation 6, and step (a) holds if

A = a+ n/2 CM = (cm+
∑
xi)

C = c+ n CM2 + 2B = cm2 + 2b+
∑

x2i .

Solving for M and B, we get the result in Equation 4.
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Example: The Pygmalion effect
Do a teacher’s expectations influence student achievement?

Rosenthal and Jacobson (1968) performed a famous
experiment to address this question.
I At the beginning of the year, all students were given an IQ test.
I The researchers randomly selected around 20% of the students

in each class.
I They told teacher these students were “spurters” (outstanding

students).
I At the end of the year, all students were given another IQ test.

The changes in IQ score for the first-grade students were:*
I spurters (S): x = (18, 40, 15, 17, 20, 44, 38)

I controls (C): y = (–4, 0, –19, 24, 19, 10, 5, 10, 29, 13, –9, –8, 20, –1,

12, 21, –7, 14, 13, 20, 11, 16, 15, 27, 23, 36, –33, 34, 13, 11, –19, 21, 6,

25, 30, 22, –28, 15, 26, –1, –2, 43, 23, 22, 25, 16, 10, 29)

*Note: The original data are not available. These data are from the ex1321 dataset of the R package Sleuth3,

which was constructed to match the summary statistics and conclusions of the original study.
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Example: The Pygmalion effect

Summary statistics:
spurters: nS = 7 x̄ = 27.4 σ̂x = 11.7
controls: nC = 48 ȳ = 12.0 σ̂y = 16.1

The average increase in IQ score is larger for the spurters.

How strongly do these data support the hypothesis that the
teachers’ expectations caused the spurters to perform better
than their classmates?
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Pygmalion example: Model & Target of inference

IQ tests are calibrated to make the scores normally
distributed, so it makes sense to use a normal model.

spurters: X1, . . . , XnS

iid∼ N (µS , λ
−1
S )

controls: Y1, . . . , YnC

iid∼ N (µC , λ
−1
C ).

We are interested in the difference between the means—in
particular, is µS > µC?

The Bayesian approach is simply to compute the posterior
probability that µS > µC :

P(µS > µC | x1:nS , y1:nC ).

As before, to make this well-defined we need to assume priors
on the parameters.

30 / 47



Pygmalion example: Prior

We don’t know the precisions λS and λC , and the sample
seems too small to estimate λS very well.

Thus, it is important to account for uncertainty in λS .

Let’s use independent NormalGamma priors:

spurters: (µS ,λS) ∼ NormalGamma(m, c, a, b)

controls: (µC ,λC) ∼ NormalGamma(m, c, a, b).

Choose hyperparameters based on subjective prior knowledge:

m = 0 Don’t know if students will improve or not, on average.

c = 1 Unsure how big the mean change will be.

(Prior certainty is equivalent to info in c datapoints.)

a = 1/2 Unsure how big the stddev of the changes will be.

(Prior certainty is equivalent to info in 2a datapoints.)

b = 102a Expect stddev of changes to be ≈ 10 =
√
b/a = E(λ)−1/2.
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Pygmalion example: Prior

Samples of (µ, σ) from the prior

Does the prior conform to our beliefs? Some ways to check:

1. Look at samples drawn from the prior. (RECOMMENDED)
2. Check prior moments, but beware—they can be misleading.
3. Look at hypothetical datasets X1:n from the prior+model.
4. Plot the prior c.d.f. and check various quantiles.
5. Plot the prior p.d.f., but beware—it can be misleading.
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Pygmalion example: Posterior

Answer these questions individually (5 minutes):
https://forms.gle/9tVWd73Pp7gvRdtz8
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Pygmalion example: Posterior

Samples of (µ, σ) from the posteriors for the two groups

By Equation 4, the posteriors are

µS ,λS | x1:nS ∼ NormalGamma(24.0, 8, 4, 855)

µC ,λC | y1:nC ∼ NormalGamma(11.8, 49, 24.5, 6344).
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Pygmalion example: Results
Now, what is the posterior probability that µS > µC?

Easiest way: Generate samples from the posterior and
calculate how frequently µS > µC .
I This is a Monte Carlo approximation . . . more to come on this!

To do this, we draw N = 106 i.i.d. samples from the posterior:

(µ
(i)
S , λ

(i)
S )

iid∼ NormalGamma(24.0, 8, 4, 855)

(µ
(i)
C , λ

(i)
C )

iid∼ NormalGamma(11.8, 49, 24.5, 6344)

for i = 1, . . . , N , and calculate the approximation

P(µS > µC | x1:nS , y1:nC ) ≈ 1

N

N∑
i=1

I
(
µ
(i)
S > µ

(i)
C

)
= 0.97.

Interpretation: These data seem to support the hypothesis
that the teachers’ expectations did in fact play a role.
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Conditionally conjugate prior for the mean and precision

The NormalGamma prior induces a strong dependency
between µ and λ, which can be undesirable.
I See plot of samples from the prior in Pygmalion example.

It is often more natural to make them independent a priori :

λ ∼ Gamma(a, b) and µ ∼ N (m, s2), independently.

This is not a conjugate prior, but it is conditionally conjugate
in the sense that:
I for any fixed λ, it is conjugate for µ, and
I for any fixed µ, it is conjugate for λ.

Conditionally conjugate priors are easy to work with in MCMC
and variational inference algorithms.
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Conjugate prior for the variance

So far, we’ve used a Gamma prior on the precision λ = 1/σ2.

What if we wanted to work directly with the variance σ2?

If X ∼ Gamma(a, b) then 1/X ∼ InvGamma(a, b).

So, putting a Gamma(a, b) prior on λ is equivalent to putting
an InvGamma(a, b) prior on σ2.

The p.d.f. of the Inverse Gamma distribution is

InvGamma(y|a, b) =
ba

Γ(a)
y−a−1 exp(−b/y).

Similarly to the NormalGamma prior on (µ, λ), the
Normal-InvGamma is a conjugate prior on (µ, σ2):

σ2 ∼ InvGamma(a, b) µ|σ2 ∼ N (m,σ2/c).
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Multivariate normal distribution

Let µ ∈ Rd, let C ∈ Rd×d symmetric positive definite (SPD).

The multivariate normal distribution N (µ,C) has p.d.f.

N (x | µ,C) =
1

(2π)d/2|C|1/2
exp

(
− 1

2(x− µ)TC−1(x− µ)
)

for x ∈ Rd. Here, |C| = |detC|.

In terms of the precision matrix Λ = C−1, the p.d.f. is

N (x | µ,Λ−1) =
|Λ|1/2

(2π)d/2
exp

(
− 1

2(x− µ)TΛ(x− µ)
)
.

Note that C is SPD if and only if Λ is SPD.
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Conjugate prior for the mean

Consider the model X1, . . . , Xn
iid∼ N (µ,Λ−1) given µ,Λ.

Similar to the univariate case, a conjugate prior on µ is

µ ∼ N (m,L−1)

for m ∈ Rd and L ∈ Rd×d SPD.

If Λ is fixed, then the resulting posterior is

µ|x1:n ∼ N (mn, L
−1
n )

where

Ln = L+ nΛ

mn = L−1
n (Lm+ Λ

∑n
i=1 xi).
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Conjugate prior for the precision matrix

Univariate: Gamma(a, b) is conjugate prior on λ.

Multivariate: Wishart(S−1, ν) is conjugate prior on Λ.

Given S ∈ Rd×d SPD and ν > d− 1, the Wishart distribution
with inverse scale S and ν degrees of freedom has density

Wd(X | S−1, ν) =
|S|ν/2|X|(ν−d−1)/2 exp(−1

2tr(SX))

2νd/2Γd(ν/2)

for X ∈ Rd×d SPD.

Here, Γd(ν/2) is the multivariate gamma function, and tr is
the trace, i.e., tr(A) =

∑d
i=1Aii.
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Conjugate prior for the precision matrix

Consider the model X1, . . . , Xn
iid∼ N (µ,Λ−1) given µ,Λ.

If µ is fixed and Λ ∼Wishart(S−1, ν), then the posterior is

Λ|x1:n ∼Wishart(S−1
n , νn)

where νn = ν + n and

Sn = S +

n∑
i=1

(xi − µ)(xi − µ)T.

Equivalently, one can put an Inverse Wishart prior on the
covariance matrix C.
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Joint priors on the mean and precision matrix

Generalizing from the univariate case, the NormalWishart
distribution is a conjugate prior on (µ,Λ).

Likewise, the Normal-InvWishart is conjugate for (µ,C).

However, as in the univariate case, we often prefer to place
independent priors on µ and Λ (or µ and C).

Thus, we often prefer the conditionally conjugate prior:

µ ∼ N (m,L−1) Λ ∼Wishart(S−1, ν)

independently.
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History

Gauss Maxwell Quetelet

In 1809, C.F. Gauss introduced the normal distribution as a
model for the errors made in astronomical measurements, to
justify the method of least squares in linear regression.

Laplace proved the central limit theorem in 1810 and
calculated the normalization constant of the normal.

James Clerk Maxwell (1831–1879) showed that the normal
distribution arose naturally in physics, particularly in
thermodynamics.

Adolphe Quetelet (1796–1874) pioneered the use of the
normal distribution in the social sciences.
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/SAm9W25RzDNP9W1GA
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