Bayesian linear regression

Bayesian Methodology in Biostatistics (BST 249)

Jeffrey W. Miller

Department of Biostatistics Harvard T.H. Chan School of Public Health

Model, prior, and posterior

Conditionally conjugate prior on β Conditionally conjugate prior on σ^2

Setting the hyperparameters

Unit information prior Zellner's g-prior Computation with Zellner's g-prior

Model, prior, and posterior

Conditionally conjugate prior on β Conditionally conjugate prior on σ^2

etting the hyperparameters Unit information prior Zellner's *g*-prior

Computation with Zellner's g-prior

Linear regression model

- Model: $Y_i \sim \mathcal{N}(x_i^{\mathsf{T}}\beta, \sigma^2)$ independently for $i = 1, \dots, n$.
- Throughout, we will treat $x_{1:n}$ as fixed and known.
- Equivalently, $Y \sim \mathcal{N}(X\beta,\,\sigma^2 I)$ where

$$Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \in \mathbb{R}^n \qquad X = \begin{bmatrix} & x_1^{\mathsf{T}} \\ & \vdots \\ & x_n^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{n \times p}$$

and I is the $p \times p$ identity matrix.

Conditionally conjugate prior on β

• Assume a multivariate normal prior on β :

 $\boldsymbol{\beta} \sim \mathcal{N}(m_0, L_0^{-1}).$

- For any fixed $\sigma^2,$ this is a conjugate prior.
- $\bullet\,$ The resulting posterior, with σ^2 fixed, is:

$$\boldsymbol{\beta}|y_{1:n} \sim \mathcal{N}(m_n, L_n^{-1})$$

where

$$L_n = L_0 + X^{\mathsf{T}} X / \sigma^2,$$

$$m_n = L_n^{-1} (L_0 m_0 + X^{\mathsf{T}} y / \sigma^2),$$

and $y = (y_1, \ldots, y_n)^{\mathsf{T}} \in \mathbb{R}^n$.

Connections with the MLE and ridge regression

- The *maximum a posteriori* (MAP) estimate is the mode of the posterior.
- Since the posterior is normal, the mode is equal to the mean:

$$\hat{\beta}_{\mathsf{MAP}} = m_n = (L_0 + X^{\mathsf{T}} X / \sigma^2)^{-1} (L_0 m_0 + X^{\mathsf{T}} y / \sigma^2).$$

- In the limit as $L_0 \to 0$, we have $L_n \to X^T X / \sigma^2$ and $\hat{\beta}_{MAP} = m_n \to (X^T X)^{-1} X^T y = \hat{\beta}_{MLE}.$
- Thus, in the limit of having "no prior information" about β , $\boldsymbol{\beta}|y_{1:n} \sim \mathcal{N}(\hat{\beta}_{\mathsf{MLE}}, \ \sigma^2(X^{\mathsf{T}}X)^{-1}).$
- Note that the frequentist sampling distribution of the MLE is $\hat{\beta}_{\rm MLE}\sim \mathcal{N}(\beta,\ \sigma^2(X^{\rm T}X)^{-1})$

when β is the true parameter, which exhibits perfect symmetry with the posterior above when we take $L_0 \rightarrow 0$.

Connections with the MLE and ridge regression

- Taking $L_0 \to 0$ is equivalent to using a *flat prior* $p(\beta) \propto 1$ and formally applying Bayes' theorem: $p(\beta|y_{1:n}) \propto p(y_{1:n}|\beta)$.
- $p(\beta) \propto 1$ is called an *improper* prior since it cannot be normalized to a probability density on \mathbb{R}^p .
- Even though the flat prior on β is improper, defining $p(\beta|y_{1:n}) \propto p(y_{1:n}|\beta)$ still results in a well-defined posterior distribution as long as $n \ge 1$.
- This is an example of a *noninformative* prior.
- The MAP estimate also generalizes ridge regression.
- Specifically, if $m_0=0$ and $L_0=\alpha I/\sigma^2$ then

$$\hat{\beta}_{\mathsf{MAP}} = (X^{\mathsf{T}}X + \alpha I)^{-1}X^{\mathsf{T}}y = \hat{\beta}_{\mathsf{ridge}}.$$

Model, prior, and posterior Conditionally conjugate prior on β Conditionally conjugate prior on σ^2

Setting the hyperparameters

Unit information prior Zellner's *g*-prior Computation with Zellner's *g*-prior

Conjugate prior on σ^2

- Similar to the case of a univariate normal model, the Inverse Gamma distribution is a conjugate prior for σ^2 .
- Suppose β is fixed, and define the prior on σ^2 as:

$$\boldsymbol{\sigma}^2 \sim \text{InvGamma}\left(\frac{1}{2}\nu_0, \ \frac{1}{2}\nu_0\sigma_0^2\right).$$

- This parametrization facilitates interpretation:
 - $\sigma_0^2 = \text{prior guess of } \sigma^2$ (since σ_0 is between the mean and the mode of this prior on σ^2)
 - ▶ $\nu_0 = \text{confidence}$ in the choice of σ_0^2 , in units of sample size i.e., the strength of the prior is equivalent to ν_0 samples.
- $\bullet\,$ The resulting posterior on σ^2 is then

$$\boldsymbol{\sigma}^2 | y_{1:n} \sim ???$$

(Whiteboard activity)

Conjugate prior on σ^2

- Similar to the case of a univariate normal model, the Inverse Gamma distribution is a conjugate prior for σ^2 .
- Suppose β is fixed, and define the prior on σ^2 as:

$$\boldsymbol{\sigma}^2 \sim \text{InvGamma}\left(\frac{1}{2}\nu_0, \ \frac{1}{2}\nu_0\sigma_0^2\right).$$

- This parametrization facilitates interpretation:
 - σ₀² = prior guess of σ² (since σ₀ is between the mean and the mode of this prior on σ²)
 - ▶ $\nu_0 = \text{confidence in the choice of } \sigma_0^2$, in units of sample size i.e., the strength of the prior is equivalent to ν_0 samples.
- $\bullet\,$ The resulting posterior on σ^2 is then

$$\boldsymbol{\sigma}^2 | y_{1:n} \sim \text{InvGamma}\left(\frac{1}{2}(\nu_0 + n), \frac{1}{2}(\nu_0 \sigma_0^2 + \text{SSR}(\beta))\right)$$

where
$$SSR(\beta) = \sum_{i=1}^{n} (y_i - x_i^{\mathsf{T}}\beta)^2$$
.

Inference for β and σ^2 jointly

- We've seen conjugate priors for β and σ^2 , given the other.
- Thus, these define a conditionally conjugate prior, combined:

$$\boldsymbol{\beta} \sim \mathcal{N}(m_0, L_0^{-1}) \qquad \boldsymbol{\sigma}^2 \sim \text{InvGamma}\left(\frac{1}{2}\nu_0, \ \frac{1}{2}\nu_0\sigma_0^2\right)$$

independently.

- We know how to compute $\beta | \sigma^2, y_{1:n}$ and $\sigma^2 | \beta, y_{1:n}$. How can we infer β and σ^2 jointly?
- One way: Initialize β, σ^2 and iteratively repeat the following:
 - 1. update β by sampling from $\beta | \sigma^2, y_{1:n}$
 - 2. update σ^2 by sampling from $\sigma^2|\beta,y_{1:n}$
- It turns out that this generates approximate samples from $\beta, \sigma^2 | y_{1:n}$. This is an example of a *Gibbs sampler*, which is type of a Markov chain Monte Carlo algorithm.

Group activity: Statistics trivia challenge!

Go to breakout rooms and work together to answer these questions: https://forms.gle/agm9P7PpLTWNUmDr5

(Three people per room, randomly assigned. 5 minutes.)

Model, prior, and posterior Conditionally conjugate prior o

Setting the hyperparameters

Unit information prior Zellner's g-prior Computation with Zellner's g-prior

Setting hyperparameters: Data-dependent, Unit info

- The subjective Bayesian approach is to set hyperparameters based solely on prior beliefs. However, sometimes we prefer to use *default priors* that don't require subjective input.
- Data-dependent priors are a useful way of creating default priors, even though, strictly speaking, they violate the principle of not using the data twice.
- Kass & Wasserman (1995) propose the following settings: $m_0 = \hat{\beta}_{\mathsf{MLE}} \qquad L_0 = X^{\mathsf{T}} X / (n\sigma^2).$
- Similarly, we can define a data-dependent prior on σ^2 :

$$\sigma_0^2 = \hat{\sigma}_{\mathsf{MLE}}^2 \qquad \quad \nu_0 = 1$$

where $\hat{\sigma}^2_{\rm MLE}$ is the maximum likelihood estimate of $\sigma^2.$

• These are both *unit information priors* — the strength of the prior is equivalent to one sample.

- A compelling property of $\hat{\beta}_{\text{MLE}}$ is that the scale of the predictors doesn't matter, in the following sense:
 - Suppose one of the predictors is age in years.
 - If we change the units of age to months, then entry of β_{MLE} corresponding to age is scaled accordingly by 1/12.
 - Consequently, $X\hat{\beta}_{MLE}$ is invariant to the choice of units.
- Mathematically, changing the units means using the model $Y \sim \mathcal{N}(\tilde{X}\beta, \sigma^2 I)$ with $\tilde{X} = XH$ in place of X, where H is a diagonal matrix with $H_{jj} > 0$ for all j. Observe that

$$\tilde{X}\tilde{\hat{\beta}}_{\mathsf{MLE}} = ??? = X\hat{\beta}_{\mathsf{MLE}}.$$

(Whiteboard activity)

- A compelling property of $\hat{\beta}_{\text{MLE}}$ is that the scale of the predictors doesn't matter, in the following sense:
 - Suppose one of the predictors is age in years.
 - If we change the units of age to months, then entry of β_{MLE} corresponding to age is scaled accordingly by 1/12.
 - Consequently, $X\hat{\beta}_{MLE}$ is invariant to the choice of units.
- Mathematically, changing the units means using the model $Y \sim \mathcal{N}(\tilde{X}\beta, \sigma^2 I)$ with $\tilde{X} = XH$ in place of X, where H is a diagonal matrix with $H_{jj} > 0$ for all j. Observe that

$$\begin{split} \tilde{X}\tilde{\hat{\beta}}_{\mathsf{MLE}} &= \tilde{X}(\tilde{X}^{\mathsf{T}}\tilde{X})^{-1}\tilde{X}^{\mathsf{T}}y \\ &= XH(H^{\mathsf{T}}X^{\mathsf{T}}XH)^{-1}H^{\mathsf{T}}X^{\mathsf{T}}y \\ &= XHH^{-1}(X^{\mathsf{T}}X)^{-1}H^{-\mathsf{T}}H^{\mathsf{T}}X^{\mathsf{T}}y \\ &= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y = X\hat{\beta}_{\mathsf{MLE}}. \end{split}$$

- This is nice since, intuitively, the units shouldn't matter.
- For the Bayesian model, the invariance property we seek is:
 ▶ Suppose X̃ = XH for some invertible H ∈ ℝ^{p×p}.
 - Let β be distributed according to the posterior using X.
 - Let $\tilde{\beta}$ be distributed according to the posterior using \tilde{X} .
 - We would like $X\beta$ and $\tilde{X}\tilde{\beta}$ to have the same distribution.
- Unfortunately, for most choices of prior, the posterior doesn't have this invariance property.
- However, if we can make it so that β and Hβ have the same distribution, then this will work, since then Xβ has the same distribution as XHβ = Xβ.

• This invariance property is satisfied by Zellner's g-prior:

 $\boldsymbol{\beta} | \sigma^2 \sim \mathcal{N}(m_0, L_0^{-1})$ where $m_0 = 0$ and $L_0 = X^{\mathrm{T}} X / (g\sigma^2)$.

- Here, g > 0 is a free parameter.
- Given σ^2 , the posterior on β under a g-prior simplifies to:

$$\boldsymbol{\beta} \mid \sigma^2, y_{1:n} \sim \mathcal{N}(m_n, L_n^{-1})$$

where

$$L_n = L_0 + X^{\mathsf{T}} X / \sigma^2 = \frac{g+1}{g\sigma^2} X^{\mathsf{T}} X,$$

$$m_n = L_n^{-1} (L_0 m_0 + X^{\mathsf{T}} y / \sigma^2) = \frac{g}{g+1} (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} y.$$

• To check that the invariance property is satisfied, suppose:

$$\tilde{m}_0 = 0 \qquad \quad \tilde{L}_0 = (XH)^{\mathsf{T}}(XH)/(g\sigma^2).$$

• Then the posterior is $\tilde{\beta} \mid \sigma^2, y_{1:n} \sim \mathcal{N}(\tilde{m}_n, \tilde{L}_n^{-1})$ where

$$\tilde{L}_n = ???$$
$$\tilde{m}_n = ???.$$

• Since $H\tilde{\beta} \mid \sigma^2, y_{1:n} \sim \mathcal{N}(???,???)$, the invariance property requires that

$$H\tilde{m}_n = m_n$$
 and $H\tilde{L}_n^{-1}H^{\mathrm{T}} = L_n^{-1}$.

• Group activity: Go to breakout rooms and work together to (1) fill in the blanks above and (2) check that the equations above in red hold. (15 minutes)

Model, prior, and posterior

Conditionally conjugate prior on β Conditionally conjugate prior on σ^2

Setting the hyperparameters

Unit information prior Zellner's *g*-prior Computation with Zellner's *g*-prior

Posterior computation with Zellner's g-prior

- The g-prior also simplifies posterior inference for (β, σ^2) .
- Assume a g-prior on $\beta | \sigma^2$ and an InvGamma prior on σ^2 :

$$\boldsymbol{\beta} | \boldsymbol{\sigma}^2 \sim \mathcal{N} (0, \, g \boldsymbol{\sigma}^2 (X^{\mathsf{T}} X)^{-1}) \\ \boldsymbol{\sigma}^2 \sim \operatorname{InvGamma} \left(\frac{1}{2} \nu_0, \, \frac{1}{2} \nu_0 \boldsymbol{\sigma}_0^2 \right)$$

- It turns out that we can generate i.i.d. samples from the posterior on (β, σ^2) , so we don't need to use MCMC.
- These samples can be used for Monte Carlo approximation of posterior expectations, e.g., for any integrable function *h*,

$$\mathbb{E}(h(\boldsymbol{\beta}, \boldsymbol{\sigma^2}) \mid y_{1:n}) \approx \frac{1}{T} \sum_{t=1}^T h(\beta_t, \sigma_t^2).$$

• Monte Carlo has various advantages over MCMC: simplicity, efficiency, and reliable quantification of approximation error.

Posterior computation with Zellner's g-prior

• Under the prior on the previous slide, it can be shown that the posterior is (Hoff, 2009):

$$\boldsymbol{\sigma^{2}} \mid y_{1:n} \sim \operatorname{InvGamma}\left(\frac{1}{2}(\nu_{0}+n), \ \frac{1}{2}(\nu_{0}\sigma_{0}^{2}+\mathrm{SSR}_{g})\right)$$
$$\boldsymbol{\beta} \mid \sigma^{2}, y_{1:n} \sim \mathcal{N}\left(\frac{g}{g+1}\hat{\beta}_{\mathsf{MLE}}, \ \frac{g}{g+1}\sigma^{2}(X^{\mathsf{T}}X)^{-1}\right)$$

where

$$\mathrm{SSR}_g = y^{\mathsf{T}}y - \frac{g}{g+1}y^{\mathsf{T}}X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y.$$

Thus, we can generate i.i.d. samples from the posterior by:
1. sampling σ² | y_{1:n},
2. sampling β | σ², y_{1:n}.

References and supplements

- Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer, New York.
- Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90(431), 928-934.
- Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Bayesian inference and Decision Techniques, vol 6, North-Holland, Amsterdam, 233-243.

Setting hyperparameters: Zellner's *g*-prior (SOLUTIONS)

• To check that the invariance property is satisfied, suppose:

$$\tilde{m}_0 = 0$$
 $\tilde{L}_0 = (XH)^{\mathsf{T}}(XH)/(g\sigma^2).$

• Then the posterior is $\tilde{\beta} \mid \sigma^2, y_{1:n} \sim \mathcal{N}(\tilde{m}_n, \tilde{L}_n^{-1})$ where

$$\tilde{L}_n = \frac{g+1}{g\sigma^2} H^{\mathsf{T}} X^{\mathsf{T}} X H$$
$$\tilde{m}_n = \frac{g}{g+1} (H^{\mathsf{T}} X^{\mathsf{T}} X H)^{-1} H^{\mathsf{T}} X^{\mathsf{T}} y.$$

• Since $H\tilde{\beta} \mid \sigma^2, y_{1:n} \sim \mathcal{N}(H\tilde{m}_n, H\tilde{L}^{-1}H^{\mathrm{T}})$, the invariance property requires that

$$H\tilde{m}_n = m_n$$
 and $H\tilde{L}_n^{-1}H^{\mathsf{T}} = L_n^{-1}$.

Setting hyperparameters: Zellner's *g*-prior (SOLUTIONS)

These equations hold since:

$$H\tilde{m}_{n} = \frac{g}{g+1} H (H^{\mathsf{T}} X^{\mathsf{T}} X H)^{-1} H^{\mathsf{T}} X^{\mathsf{T}} y$$

= $\frac{g}{g+1} H H^{-1} (X^{\mathsf{T}} X)^{-1} H^{-\mathsf{T}} H^{\mathsf{T}} X^{\mathsf{T}} y$
= $\frac{g}{g+1} (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} y = m_{n}$

and

$$\begin{split} H\tilde{L}_n^{-1}H^{\mathsf{T}} &= H\left(\frac{g+1}{g\sigma^2} H^{\mathsf{T}}X^{\mathsf{T}}XH\right)^{-1}H^{\mathsf{T}} \\ &= HH^{-1}\left(\frac{g+1}{g\sigma^2} X^{\mathsf{T}}X\right)^{-1}H^{-\mathsf{T}}H^{\mathsf{T}} \\ &= \left(\frac{g+1}{g\sigma^2} X^{\mathsf{T}}X\right)^{-1} = L_n^{-1}. \end{split}$$