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Introduction
Sampling-based methods are widely used due to the ease and
generality with which they can be applied.

Basic task: Approximation of expectations such as

Eh(X) =

∫
h(x)p(x)dx

in the case of a continuous random variable X with p.d.f. p, or

Eh(X) =
∑
x

h(x)p(x)

in the case of a discrete random variable X with p.m.f. p.

General principle: Expectations can be approximated by

Eh(X) ≈ 1

N

N∑
i=1

h(Xi),

where X1, . . . , XN are samples from p.
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Introduction

In Bayesian statistics, most inferential tasks require
computation of some expectation.

Examples
I posterior probabilities
I posterior densities
I posterior expected loss
I posterior predictive distribution
I marginal likelihood
I goodness-of-fit statistics

Samples are also a good way of visualizing where a probability
distribution is putting most of its mass.
I This is especially useful for distributions on complex/high-dim

spaces, e.g., the folding of a protein or RNA strand.
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Introduction

Advantages of sampling-based methods:
I easy to implement
I general-purpose / widely applicable
I reliable
I work in complex and high-dimensional spaces

Disadvantages of sampling-based methods:
I slow (require more time to achieve the same level of accuracy)
I getting “true” samples may be difficult
I can be difficult to assess accuracy
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Monte Carlo approximation
Suppose we want to know the expectation of a random
variable X ∼ P .

Simple Monte Carlo: Draw samples X1, . . . , XN
iid∼ P and use

1

N

N∑
i=1

Xi

as an approximation to EX.

More generally,

E
(
h(Y ) | Z = z

)
≈ 1

N

N∑
i=1

h(Yi)

where Y1, . . . , YN are i.i.d. samples from the distribution of
Y | Z = z.
I This can be viewed as a special case of EX where X is defined

to have the same distribution as h(Y ) | Z = z.
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Monte Carlo: Basic properties

If E|X| <∞, then 1
N

∑
Xi is a consistent estimator of EX:

1

N

N∑
i=1

Xi −→ EX

as N →∞, with probability 1, by the law of large numbers.

1
N

∑
Xi is an unbiased estimator of EX, that is,

E
(

1
N

∑
Xi

)
= EX.

Who can tell me the variance of 1
N

∑
Xi?
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Monte Carlo: Basic properties

The variance is V
(
1
N

∑
Xi

)
= 1

NV(X).

Due to unbiasedness, the root-mean-squared-error (RMSE) of
1
N

∑
Xi equals the standard deviation of 1

N

∑
Xi,

RMSE =
[
E
(
| 1N
∑
Xi − EX|2

)]1/2
=
[
V
(
1
N

∑
Xi

)]1/2
=

1√
N

V(X)1/2 =
σ(X)√
N
. (1)

The RMSE tells us how far the approximation will be from the
true value, on average. This tells us that the rate of
convergence is of order 1/

√
N .
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Example: The Pygmalion effect
To compute the posterior probability that the spurters had a
larger mean increase in IQ score, we used the Monte Carlo
approximation

P(µS > µC | data) ≈ 1

N

N∑
i=1

I
(
µ
(i)
S > µ

(i)
C

)
.

Using the same approach, we could easily approximate any
number of other posterior quantities as well, for example,

E
(
|µS − µC |

∣∣ data
)
≈ 1

N

N∑
i=1

|µ(i)
S − µ

(i)
C |

E
(
µS/µC

∣∣ data
)
≈ 1

N

N∑
i=1

µ
(i)
S /µ

(i)
C .

The posterior density can also be approximated using samples
from the posterior.
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Example: The Pygmalion effect

The plot shows Monte Carlo approximations for an increasing
number of samples, N .

Red, blue, and green indicate three repetitions using different
sequences of Monte Carlo samples.

Dotted lines indicate the true value ± the theoretical RMSE
of the Monte Carlo estimator.
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Approximating the posterior predictive density

A Monte Carlo approximation to the posterior predictive p.d.f.
or p.m.f. can be made using samples from the posterior:

p(xn+1|x1:n) =
∫
p(xn+1|θ)p(θ|x1:n)dθ

= E
(
p(xn+1|θ) |x1:n

)
≈ 1

N

N∑
i=1

p(xn+1|θi)

where θ1, . . . ,θN
iid∼ p(θ|x1:n).

This is useful when it is difficult or impossible to evaluate the
integral analytically.
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Importance sampling approximation
Importance sampling (IS) is a more powerful type of Monte
Carlo approximation.

The name “importance sampling” is somewhat misleading,
since it is not really a method for drawing samples, but rather,
a method for approximating expectations—a better name
might be importance-weighted Monte Carlo approximation.

Advantages of importance sampling over simple Monte Carlo:
I Can significantly improve accuracy, by reducing the variance.
I Can use samples from a different distribution, say q, to

compute expectations with respect to p.
I Can compute the normalization constant of p.

Disadvantages
I Need to be able to evaluate the p.d.f.s/p.m.f.s p(x) and q(x),

at least up to proportionality constants.
I It might be hard to choose a good q.
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Importance sampling: Basic idea
Suppose X is a continuous random variable with p.d.f. p(x).
I The same thing works in the discrete case — just replace

integrals by sums.

Let q be another p.d.f. on the same space, such that
1. we can easily sample from q, and
2. q(x) > 0 wherever p(x) > 0.

(Whiteboard:) An importance sampling approximation is

Eh(X) =

∫
h(x)p(x)dx

=

∫
h(x)

p(x)

q(x)
q(x)dx

≈ 1

N

N∑
i=1

h(Yi)
p(Yi)

q(Yi)

where Y1, . . . , YN
iid∼ q.
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Importance sampling: Basic idea

Importance sampling: Eh(X) ≈ 1

N

N∑
i=1

h(Yi)
p(Yi)

q(Yi)
.

The approximation step here is just a simple Monte Carlo
approximation, applied to a different function and distribution.

q is sometimes called the proposal distribution.

The ratios w(Yi) := p(Yi)/q(Yi) are referred to as the
importance weights.

Intuitive interpretation: The importance weights correct for
the fact that we are sampling from q rather than p.
I y’s that occur less frequently under q than p have large

importance weight w(y), and vice versa.
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Importance sampling: Properties

Evaluating the IS weights
I For the version of IS above, we need to be able to compute

p(x) and q(x) in order to get the importance weights.

I There is a more general version for which p(x) and q(x) only
need to be computable up to constants of proportionality.

Since the IS approximation is just a simple Monte Carlo
approx of Eh(Y )p(Y )/q(Y ), it has the following properties:

I consistent, as long as E|h(Y )p(Y )/q(Y )| <∞, where Y ∼ q

I unbiased

I the variance of the estimator is 1
NV
(
h(Y )p(Y )/q(Y )

)
I the RMSE is σ

(
h(Y )p(Y )/q(Y )

)
/
√
N .
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Importance sampling: Choosing the proposal distribution

The rate of convergence is still of order 1/
√
N , however, the

constant σ
(
h(Y )p(Y )/q(Y )

)
may be smaller or larger.

How to choose q to minimize RMSE?

RMSE is minimized when q(x) ∝ h(x)p(x), since then
σ
(
h(Y )p(Y )/q(Y )

)
= 0.

I In other words, the error would be zero after only one sample!

I In this case, we could trivially compute Eh(X) since
Eh(X) = h(x)p(x)/q(x) for almost all x.

Although this ideal choice of q is unrealistic, it indicates that:

1. IS can be very accurate if we choose q well, and
2. we want q(x) to look roughly like h(x)p(x).
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Importance sampling: Choosing the proposal distribution

In practice, we often want to estimate Eh(X) for a variety of
different functions h.

Thus, we often choose q(x) to approximate p(x) rather than
h(x)p(x).
I That way, we can obtain decent estimators for many h’s.
I Plus, we can reuse the same samples Yi and the same

importance weights w(Yi) = p(Yi)/q(Yi).

When choosing q(x), it is better to err on the side of making
it a little more spread out than p(x) (or h(x)p(x)).
I This is done so that q(x) is not too small in areas where p(x)

is large.
I Otherwise, we would occasionally encounter very large IS

weights w(Yi) = p(Yi)/q(Yi), which would increase the RMSE.
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GPS example: Approximating the marginal likelihood
Outside of conjugate priors, computing the marginal likelihood
can be very hard and is often not recommended.

If it must be computed, IS and related techniques are one
reasonable approach.

Suppose we are using a Cauchy model, to handle outliers:

X1, . . . , Xn
iid∼ Cauchy(θ, s).

The Cauchy distribution with location θ and scale s has p.d.f.

Cauchy(x | θ, s) = 1

πs
(
1 +

(
x−θ
s

)2) .
Unfortunately, there is not a nice conjugate prior for θ.

Let’s put a Cauchy prior on θ:

θ ∼ Cauchy(θ0, s0).
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GPS example: Data
GPS measurements are usually fairly accurate, but it is not
uncommon to get extreme outliers.

In wildlife management and conservation, animals are tagged
with GPS devices in order to track their movements.

Urbano (2014) provide GPS data on wildlife tracking in
northern Italy. Here is a sample of 8 points for illustration:

Latitude Longitude

36.077916 N 79.009266 W
36.078032 N 79.009180 W
36.078129 N 79.009094 W
36.078048 N 79.008891 W
36.077942 N 79.008962 W
36.089612 N 79.035760 W
36.077789 N 79.008917 W
36.077563 N 79.009281 W

To keep things simple, let’s consider only the latitudes.
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GPS example: Data

Animal-tracking GPS measurements with extreme outliers

(Urbano et al., 2014)
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GPS example: Approximating the marginal likelihood

Suppose we need to know the marginal likelihood p(x1:n).

Since we can’t compute it analytically (as far as I know), an
approximation is needed.

One approach would be a simple Monte Carlo approximation:

p(x1:n) =

∫
p(x1:n|θ)p(θ)dθ ≈

1

N

N∑
i=1

p(x1:n|θi)

where θ1, . . . ,θN
iid∼ p(θ).

However, this is a poor approximation (the RMSE is large).
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GPS example: Approximating the marginal likelihood
We can do much better with importance sampling if we make
a good choice of q:

p(x1:n) =

∫
p(x1:n|θ)

p(θ)

q(θ)
q(θ)dθ ≈ 1

N

N∑
i=1

p(x1:n|θi)
p(θi)

q(θi)

where θ1, . . . ,θN
iid∼ q(θ).

We want q(θ) to look as much like p(x1:n|θ)p(θ) as possible,
and if necessary, to err on the side of being a little more
spread out.

By cheating (a little bit) and looking at a plot of the
posterior, let’s choose

q(θ) = Cauchy(θ | median(x1:n), 10
−4).
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GPS example: Approximating the marginal likelihood

Histogram of latitude measurements

Prior, posterior, and proposal densities

(To make them all visible on one plot, each curve is scaled so that the maximum is 1.)
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GPS example: Approximating the marginal likelihood

Convergence of Monte Carlo and IS approximations as N increases

The IS approximations appear to converge much more quickly,
by several orders of magnitude.
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GPS example: Approximating the marginal likelihood

Why does IS do so much better than Monte Carlo here?

The prior is so spread out, compared to the likelihood, that
samples from the prior very rarely land in the small region
where the likelihood is large.

So most of the terms in the Monte Carlo approximation are
essentially zero, and a small number of terms are enormous.

Caution: Approximating the marginal likelihood can be a
tricky business, and I would avoid it unless strictly necessary.
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IS with unknown normalization constants

Often, we cannot compute p and q, but we can compute
functions p̃ and q̃ proportional to p and q.

Fortunately, there is a neat trick that still allows us to make
an IS approximation in this situation.

Suppose

p(x) = p̃(x)/Zp

q(x) = q̃(x)/Zq

where p̃(x) and q̃(x) are easy to compute (but Zp and Zq
may be intractable).

Further, assume that q̃(x) > 0 wherever p̃(x) > 0.
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IS with unknown normalization constants

Define

w̃(x) =

{
p̃(x)/q̃(x) if q̃(x) > 0
0 if q̃(x) = 0.

The general form of the IS approximation is then

Eh(X) =

∫
h(x)p(x)dx ≈

1
N

∑N
i=1 h(Yi)w̃(Yi)

1
N

∑N
i=1 w̃(Yi)

=

N∑
i=1

h(Yi)

(
w̃(Yi)∑N
j=1 w̃(Yj)

)

where Y1, . . . , YN
iid∼ q.

This can be interpreted as a weighted average of the h(Yi)’s,
with weights w̃(Yi)/

∑
j w̃(Yj).
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Example: Approximating posterior expectations
Consider the animal-tracking GPS example, and now suppose
we would like to estimate the posterior mean. Define

π(θ) := p(θ|x1:n)
π̃(θ) := p(x1:n|θ)p(θ)

Zπ := p(x1:n) =

∫
p(x1:n|θ)p(θ)dθ =

∫
π̃(θ)dθ.

Then π(θ) = π̃(θ)/Zπ, and using the general IS formula,

E(θ|x1:n) =
∫
θp(θ|x1:n)dθ =

∫
θπ(θ)dθ

≈
1
N

∑N
i=1 θiw̃(θi)

1
N

∑N
i=1 w̃(θi)

.

where θ1, . . . ,θN
iid∼ q and w̃(θ) = π̃(θ)/q(θ).

For the GPS data, this yields E(θ|x1:n) ≈ 36.0780.
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Derivation of the general IS formula

(Whiteboard activity)
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Derivation of the general IS formula (1/2)

Letting S = {x : p̃(x) > 0}, we have

Eh(X) =

∫
h(x)p(x)dx

(a)
=

∫
S
h(x)

p̃(x)

Zp

Zq
q̃(x)

q(x)dx

(b)
=
Zq
Zp

∫
h(x)w̃(x)q(x)dx

(c)
≈ Zq
Zp

1

N

N∑
i=1

h(Yi)w̃(Yi).

In step (a), we use the fact that q̃(x) > 0 whenever p̃(x) > 0.

In step (b), we use the fact that w̃(x) = 0 for any x 6∈ S.

Step (c) is a simple Monte Carlo approximation.
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Derivation of the general IS formula (2/2)

Similarly, for the ratio of normalizing constants Zp/Zq,

Zp
Zq

=
1

Zq

∫
S
p̃(x)dx

=
1

Zq

∫
S

p̃(x)

q̃(x)
q̃(x)dx

=

∫
S

p̃(x)

q̃(x)
q(x)dx

=

∫
w̃(x)q(x)dx

≈ 1

N

N∑
i=1

w̃(Yi).

Plugging this into the equation on the previous slide yields the
result.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/NKwmWrwNMF6ezoBm6

(Three people per room, randomly assigned. 15 minutes.)
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Inverse c.d.f. method / Smirnov transform
The inverse c.d.f. method is a common way of generating
random samples from univariate probability distributions when
the inverse of the c.d.f. can be easily computed.

The basic idea is that if G is the inverse (in a generalized
sense) of the c.d.f. F , and U ∼ Uniform(0, 1), then G(U) is a
random variable with c.d.f. F .

Exp(θ) example:
I The Exp(θ) c.d.f. is F (x) = (1− e−θx)I(x > 0).
I F is invertible on (0,∞), with inverse

G(u) = −(1/θ) log(1− u) for u ∈ (0, 1).
I Therefore, if U ∼ Uniform(0, 1) then G(U) ∼ Exp(θ).

Precise statement: Let F be a c.d.f. on R, and define
G(u) = inf{x ∈ R : F (x) ≥ u} for u ∈ (0, 1). If
U ∼ Uniform(0, 1), then G(U) ∼ F .
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Rejection sampling

Rejection sampling is a method for drawing samples when the
p.d.f. can be evaluated up to a constant of proportionality.

Rejection sampling can be applied in multivariate settings, but
one has to design a good proposal distribution q.
I Finding a good q can be difficult, especially in high-dim cases.

The method relies on two principles:

1. The rejection principle: Rejecting results in conditional
samples. That is, if we reject any samples falling outside of a
given set, the remaining samples are distributed according to
the conditional distribution on that set.

2. The projection principle: If we sample uniformly from the
region under the p.d.f. of a distribution (or a function
proportional to it), and discard the “height”, then we obtain a
sample from that distribution.
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The rejection principle

How to draw samples from the uniform distribution on A?

Rejection-based approach: Draw samples uniformly from B
and keep only those that are in A.

To minimize rejections, we want the bounding region B to be
as small as possible, while still containing A.

More generally, if we sample X, and reject unless X ∈ A, we
get samples from the conditional distribution X | X ∈ A.
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The projection principle

Suppose we want to sample from a distribution on Rd with
p.d.f. π(x) = π̃(x)/Zπ.

Consider the region of Rd+1 under π̃:

A =
{
(x, y) : x ∈ Rd, 0 < y < π̃(x)

}
.

It turns out that if (X,Y ) ∼ Uniform(A), then X ∼ π.
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The projection principle

To see why, first note that the volume of A is

Vol(A) =

∫
π̃(x)dx =

∫
Zππ(x)dx = Zπ.

Since the p.d.f. of the uniform distribution on A is constant,
we have

p(x, y) = Uniform(x, y | A) =
I
(
0 < y < π̃(x)

)
Zπ

.

Therefore,

p(x) =

∫ ∞
−∞

p(x, y)dy =

∫ ∞
−∞

I
(
0 < y < π̃(x)

)
Zπ

dy

=
1

Zπ

∫ π̃(x)

0
dy =

π̃(x)

Zπ
= π(x).
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Rejection sampling procedure

Combining these two principles leads to rejection sampling.

Basic idea: Generate samples uniformly under a curve that
dominates p̃(x), and only keep samples that land under p̃(x).

This generates samples from p(x) ∝ p̃(x).
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Rejection sampling procedure

Objective: Generate samples from a distribution on Rd with
p.d.f. p(x) ∝ p̃(x).

Choose a proposal distribution q that is easy to sample from,
and is as close as possible to being proportional to p̃.

Choose c > 0 such that c q(x) ≥ p̃(x) for all x.

Then, to draw a sample from p:

1. Sample X ∼ q.

2. Sample Y ∼ Uniform(0, c q(X)).

3. If Y ≥ p̃(X), then go back to step 1.

4. Otherwise, output X as a sample.
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/mQeZJHMFZdz1oUAh6
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