Gibbs sampling

Bayesian Methodology in Biostatistics (BST 249)

Jeffrey W. Miller

Department of Biostatistics Harvard T.H. Chan School of Public Health

Outline

Introduction

Gibbs sampling Basics of Gibbs sampling Toy example

Example: Normal with semi-conjugate prior

Example: Censored data

Example: Hyperpriors and hierarchical models

Outline

Introduction

Gibbs sampling Basics of Gibbs sampling Toy example

Example: Normal with semi-conjugate prior

Example: Censored data

Example: Hyperpriors and hierarchical models

- In many real-world applications, we have to deal with complex distributions on complicated high-dimensional spaces.
- On rare occasions, it is possible to sample exactly from the distribution of interest, but typically exact sampling is not feasible.
- Further, high-dimensional distributions are hard to visualize, making it difficult to even guess where the regions of high probability are located.
- As a result, it may be challenging to even design a reasonable proposal distribution to use with importance sampling.

- Markov chain Monte Carlo (MCMC) is a sampling technique that works remarkably well in many situations like this.
- MCMC constructs a sequence of correlated samples X_1, X_2, \ldots that meander through the region of high probability by making a sequence of incremental movements.
- Even though the samples are not independent, it turns out that when constructed properly,

$$\operatorname{E}h(X) \approx \frac{1}{N} \sum_{i=1}^{N} h(X_i)$$

as in the case of simple Monte Carlo approximation.

 By a powerful result called the ergodic theorem, these approximations are guaranteed to converge to the true value.

- Advantages of MCMC:
 - applicable even when we can't directly draw samples.
 - works for complicated distributions in high-dimensional spaces.
 - relatively easy to implement.
 - fairly reliable.
- Disadvantages of MCMC:
 - slower than simple Monte Carlo or importance sampling, i.e., more samples are often needed to attain the same accuracy.
 - can be very difficult to assess accuracy and convergence.
- Since it is easy to use, MCMC is often used out of convenience, even when better methods exist.
- MCMC opens up a world of possibilities, allowing us to work with far more interesting and realistic models than we could without it.

- The two main ways of constructing MCMC algorithms are:
 - 1. Gibbs sampling, and
 - 2. the Metropolis-Hastings algorithm.
- We'll start with Gibbs sampling (Geman & Geman, 1984) since it is easiest to understand.
- Later, we will also consider more advanced MCMC algorithms.
- We'll illustrate with some examples involving Gibbs sampling:
 - Normal with semi-conjugate priors,
 - Censored data / missing data,
 - Hyperpriors and hierarchical models.

Outline

Introduction

Gibbs sampling Basics of Gibbs sampling Toy example

Example: Normal with semi-conjugate prior

Example: Censored data

Example: Hyperpriors and hierarchical models

Gibbs sampling with two variables

- Suppose p(x, y) is difficult to sample from directly.
- Suppose, though, that we can easily sample from the conditional distributions p(x|y) and p(y|x).
- Gibbs sampling: Initialize x and y and iteratively repeat
 - 1. update \boldsymbol{x} by sampling from $\boldsymbol{x}|\boldsymbol{y}\text{,}$ and
 - 2. update y by sampling from y|x.
- Each iteration through all variables (x and y, in this case) is referred to as a *sweep* or *scan*.
- When updating a variable, we always use the most recent value of the other variables.

Gibbs sampling with two variables

• This algorithm generates a sequence of pairs of r.v.s

 $(X_0, Y_0), (X_1, Y_1), (X_2, Y_2), (X_3, Y_3), \dots$

that is a *Markov chain*: the distribution of (X_i, Y_i) given all of the previous values depends only on (X_{i-1}, Y_{i-1}) .

• Under quite general conditions, the *ergodic theorem* guarantees that for any h(x,y) such that $E|h(X,Y)| < \infty$,

$$\frac{1}{N}\sum_{i=1}^{N}h(X_i,Y_i)\longrightarrow \mathrm{E}h(X,Y)$$

as $N \to \infty$, with probability 1, where $(X, Y) \sim p(x, y)$.

• This justifies the use of $\frac{1}{N} \sum_{i=1}^{N} h(X_i, Y_i)$ as an approximation to Eh(X, Y), like a simple Monte Carlo approximation, even though $(X_1, Y_1), (X_2, Y_2), \ldots$ are not i.i.d.

Burn-in period

- If the starting point (x_0, y_0) is far from the region of high probability under p(x, y), it may take a while for the chain to get to a good place.
- During this *burn-in period*, the distribution of the samples (X_i, Y_i) does not approximate p(x, y).
- Thus, it is recommended to run the chain for a while before starting to compute sample averages.
- In other words, discard $(X_1, Y_1), \ldots, (X_B, Y_B)$ and only use $(X_{B+1}, Y_{B+1}), \ldots$ for inference. For example,

$$\frac{1}{N-B}\sum_{i=B+1}^{N}h(X_i,Y_i).$$

• How to choose *B*? Traceplots and running averages (see below) are useful for assessing the burn-in.

Mixing

- Roughly speaking, the performance of an MCMC algorithm—that is, how quickly the sample averages $\frac{1}{N}\sum_{i=1}^{N}h(X_i,Y_i)$ converge—is referred to as the *mixing rate*.
- An algorithm with good performance is said to "have good mixing" or to "mix well".
- There are various empirical diagnostics for assessing burn-in and mixing, but none are foolproof.
- Sometimes, a chain may appear to be mixing well, but if you ran it longer you would see that it was actually doing poorly.

• Suppose we need to sample from

$$p(x,y) \propto e^{-xy} \mathbf{I}(x,y \in (0,c))$$

where c > 0, and (0, c) is the open interval between 0 and c. This example is due to Casella & George, 1992.

- Gibbs sampling: Iteratively sample from p(x|y) and p(y|x).
- Let's look at p(x|y):

 $p(x|y) \propto \frac{???}{x}$

(Whiteboard activity)

• Suppose we need to sample from

$$p(x,y) \propto e^{-xy} \mathbf{I}(x,y \in (0,c))$$

where c > 0, and (0, c) is the open interval between 0 and c.
► This example is due to Casella & George, 1992.

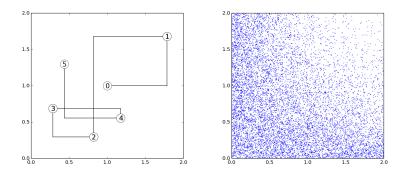
• Gibbs sampling: Iteratively sample from p(x|y) and p(y|x).

 $p(x|y) \underset{x}{\propto} p(x,y) \underset{x}{\propto} e^{-xy} \operatorname{I}(0 < x < c) \underset{x}{\propto} \operatorname{Exp}(x|y) \operatorname{I}(x < c).$

- So, p(x|y) is a truncated Exp(y) distribution, TExp(y, (0, c)).
- By symmetry, p(y|x) = TExp(x, (0, c)).

• Denote S = (0, c) for brevity.

- Gibbs sampler algorithm:
 - **0**. Initialize $x_0, y_0 \in S$.
 - 1. Sample $x_1 \sim \text{TExp}(y_0, S)$, then sample $y_1 \sim \text{TExp}(x_1, S)$.
 - 2. Sample $x_2 \sim \text{TExp}(y_1, S)$, then sample $y_2 \sim \text{TExp}(x_2, S)$.
 - N. Sample $x_N \sim \text{TExp}(y_{N-1}, S)$, then sample $y_N \sim \text{TExp}(x_N, S)$.



- Demonstration with c = 2 and initial point $(x_0, y_0) = (1, 1)$.
- (Left plot) First 5 Gibbs sampling iterations/sweeps/scans.
- (Right plot) Scatterplot of 10^4 Gibbs sampling iterations.

- How to sample from a truncated exponential distribution?
- Here's an easy way based on the inverse c.d.f. method.
- The c.d.f. and inverse c.d.f. of $Exp(\theta)$ are:

$$F(x|\theta) = 1 - e^{-\theta x}$$
$$F^{-1}(u|\theta) = -(1/\theta)\log(1-u)$$

for x > 0 and $u \in (0, 1)$.

• Let $U \sim \text{Uniform}(0, F(c|\theta))$ and let $Z = F^{-1}(U|\theta)$.

• Then $Z \sim \text{TExp}(\theta, (0, c))$.

Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions: https://forms.gle/nmFvWuSZJW3P9nfX9

(Three people per room, randomly assigned. 15 minutes.)

Outline

Introduction

Gibbs sampling Basics of Gibbs sampling Toy example

Example: Normal with semi-conjugate prior

Example: Censored data

Example: Hyperpriors and hierarchical models

Example: Normal with semi-conjugate prior

• Consider an i.i.d. multivariate normal model

$$X_1,\ldots,X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu,\Lambda^{-1}).$$

• Assume conditionally conjugate (a.k.a., semi-conjugate) priors:

$$\boldsymbol{\mu} \sim \mathcal{N}(m, L^{-1})$$
 $\boldsymbol{\Lambda} \sim \text{Wishart}(S^{-1}, \nu)$

independently.

- A Gibbs sampler for μ, Λ | x_{1:n} is to iteratively:
 1. update μ by sampling from μ | Λ, x_{1:n}, and
 2. update Λ by sampling from Λ | μ π.
 - 2. update Λ by sampling from $\Lambda \mid \mu, x_{1:n}$.
- From before, we know that

$$\boldsymbol{\mu}|\Lambda, x_{1:n} \sim \mathcal{N}(m_n, L_n^{-1})$$
$$\boldsymbol{\Lambda}|\mu, x_{1:n} \sim \text{Wishart}(S_n^{-1}, \nu_n)$$

with m_n, L_n, S_n , and ν_n as in the slides on Gaussian models.

Gibbs sampling with multiple variables

- More generally, Gibbs sampling is done by updating each variable in turn, given everything else.
- In each update, we always use the most recent values of all other variables.
- The conditional distribution of a variable given everything else is referred to as the *full conditional*.
- $\theta | \cdots$ denotes the full conditional of a variable θ .
- The order in which variables are updated is usually fixed ("fixed scan") but more general schemes are also possible, e.g., random scan.

Outline

Introduction

Gibbs sampling Basics of Gibbs sampling Toy example

Example: Normal with semi-conjugate prior

Example: Censored data

Example: Hyperpriors and hierarchical models

Example: Censored data

- Often, some data is missing or partially obscured.
- Gibbs sampling provides a natural Bayesian method for dealing with missing data:
 - Treat missing variables just like an unknown parameter, and update them in each Gibbs iteration.
 - As a side benefit, this also allows us to infer the missing data.
- Censoring is one way in which data can be partially obscured.
 - Censoring occurs when we know a data point lies in a particular interval, but we don't get to observe it exactly.
 - For instance, in medical research, some patients may be lost to follow-up during the study.
 - Another example: Measurements may exceed the lower/upper limits of the instrument being used.

Censoring example: Data

- Suppose researchers are studying the length of life (survival) following a new medical intervention.
- In a study of 12 patients, the survival times (in years) are

3.4, 2.9, 1.2+, 1.4, 3.2, 1.8, 4.6, 1.7+, 2.0+, 1.4+, 2.8, 0.6+

where x+ indicates that the patient was alive after x years, but the researchers lost contact with the patient at that point.

• Usually, there would be a control group too, but let's focus on one group to keep things simple.

Censoring example: Model

• Consider the following model:

$$\boldsymbol{\theta} \sim \operatorname{Gamma}(a, b)$$

$$Z_1, \dots, Z_n | \boldsymbol{\theta} \stackrel{\text{iid}}{\sim} \operatorname{Gamma}(r, \boldsymbol{\theta})$$

$$X_i = \begin{cases} Z_i & \text{if } Z_i \leq c_i \\ * & \text{if } Z_i > c_i. \end{cases}$$

where a, b, and r are known, and * is a special value to indicate that censoring has occurred. The interpretation is:

- θ is the parameter of interest—the rate parameter for the survival distribution.
- Z_i is the survival time for patient i, however, this is not directly observed.
- c_i is the censoring time for patient i, which is fixed, but known only if censoring occurs.
- ► X_i is the observation—if the survival time is less than c_i then we get to observe it (X_i = Z_i), otherwise all we know is that the survival time is greater than c_i (X_i = *).

Censoring example: The posterior is complicated

- Unfortunately, the posterior $p(\theta|x_{1:n}) \propto p(x_{1:n}|\theta)p(\theta)$ does not reduce to a simple form that we can easily work with.
- The reason is that the $p(x_{1:n}|\theta)$ involves the distribution of the observations x_i given θ , integrating out the z_i 's.
- In the case of censored observations $x_i = *$, we have

$$p(x_i|\theta) = \mathbb{P}(X_i = * \mid \theta) = \mathbb{P}(Z_i > c \mid \theta),$$

which involves the incomplete gamma function.

- Also, $p(z_{1:n}|x_{1:n})$ (the posterior on the z_i 's, with θ integrated out) looks a bit nasty as well.
- Thus, it is not obvious how to sample directly (i.i.d.) from this posterior.

Censoring example: Gibbs sampler

- Meanwhile, the Gibbs sampling approach is a cinch.
- We cycle through the full conditional distributions,

$$\begin{array}{c|c} \theta \mid z_{1:n}, x_{1:n} \\ z_1 \mid \theta, z_{-1}, x_{1:n} \\ z_2 \mid \theta, z_{-2}, x_{1:n} \\ \vdots \\ z_n \mid \theta, z_{-n}, x_{1:n} \end{array}$$

sampling from each in turn. (Recall: $z_{-j} = \text{all } z$'s except z_j .)

• The full conditionals are easy to calculate. First, consider θ :

$$p(\theta|\cdots) \propto p(x_{1:n}, z_{1:n}, \theta) \underset{\theta}{\propto} \text{Gamma}\left(\theta \mid a + nr, b + \sum_{i=1}^{n} z_i\right).$$

Censoring example: Gibbs sampler

• Now, consider
$$z_i | \cdots$$

• If $x_i \neq *$ then z_i is forced to be equal to x_i .

Otherwise,

$$p(z_i|\dots) \propto p(x_{1:n}, z_{1:n}, \theta)$$

$$\underset{z_i}{\propto} p(x_i|z_i)p(z_i|\theta)$$

$$= I(z_i > c_i) \operatorname{Gamma}(z_i \mid r, \theta)$$

$$\underset{z_i}{\propto} \operatorname{TGamma}(z_i \mid r, \theta, (c_i, \infty))$$

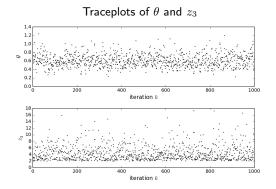
where TGamma is the truncated Gamma distribution.

- We can sample from $\operatorname{TGamma}(r, \theta, (c, \infty))$ with the same technique we used for the truncated exponential:
 - Let $F(x|r, \theta)$ denote the Gamma (r, θ) c.d.f.
 - Let $U \sim \text{Uniform}(F(c|r, \theta), 1)$, and let $V = F^{-1}(U|r, \theta)$.
 - Then $V \sim \operatorname{TGamma}(r, \theta, (c, \infty))$.

Censoring example: Results

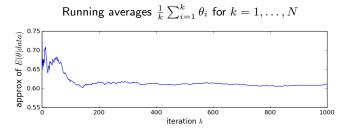
- For the hyperparameters, let's assume a = b = 1 and r = 2.
- To illustrate, let's run the sampler for ${\cal N}=10^3$ iterations.
- For the starting values, let's set $\theta = 1$ and $z_i = c_i + 1$ for those *i*'s that were censored. (I chose these pretty much arbitrarily.)
- Some diagnostic plots are useful to visualize the MCMC run:
 - Traceplots
 - Running averages
 - Histograms

Censoring example: Traceplots



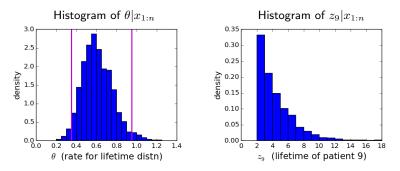
- A traceplot simply shows the sequence of samples, for instance, θ_i versus i.
- Traceplots are a simple but very useful way to visualize how the sampler is behaving.
- The traceplots above look good the sampler doesn't appear to be getting stuck anywhere.

Censoring example: Running averages



- Running averages are another useful heuristic for assessing MCMC convergence.
- Running averages can be expected to drift and wander a bit and then settle down as k increases.
 - Drifting in one direction often indicates that the sampler has not yet "burned in".
 - Wandering back and forth around the same spot indicates that the sampler has not yet "mixed" sufficiently.

Censoring example: Histograms



- We are primarily interested in the posterior on θ , since it represents the rate parameter for the survival distribution.
- By making a histogram of the samples $\theta_1, \ldots, \theta_N$, we can estimate the posterior density $p(\theta|x_{1:n})$.
- The vertical lines are the lower (ℓ) and upper (u) endpoints of a 90% *credible interval*—that is, an interval containing 90% of the posterior probability.

Individual activity: Critical thinking

- True or false? Diagnostic plots can indicate lack of convergence of the sampler.
- True or false? Diagnostic plots can indicate convergence of the sampler.

Caution! MCMC diagnostics can be misleading

- Even when heuristics like traceplots and running averages suggest that all is well, things may be going horribly wrong.
- For instance, posteriors are often highly multimodal, and the sampler may get stuck in one mode for many iterations.
- General rule: MCMC diagnostics can tell you when things are bad, but they cannot tell you when things are good.

Outline

Introduction

Gibbs sampling Basics of Gibbs sampling Toy example

Example: Normal with semi-conjugate prior

Example: Censored data

Example: Hyperpriors and hierarchical models

Example: Hyperpriors and hierarchical models

- Gibbs sampling is especially useful for models involving multiple levels.
- We often want to put priors on the hyperparameters, that is, the parameters of the prior. This is called a *hyperprior*.
- More generally, *hierarchical models* involve hierarchical relationships among the data and latent variables/parameters.
- The full conditionals in a hierarchical model are often relatively simple, making Gibbs sampling very convenient.

Normal example with hyperprior

- As a simple example, consider the Normal example with a semi-conjugate prior from earlier.
- Let's add a Gamma(r, s) prior on λ_0 , so the model is now:

$$\begin{split} \boldsymbol{\lambda}_{0} &\sim \operatorname{Gamma}(r, s) \\ \boldsymbol{\mu} | \lambda_{0} \ \sim \ \mathcal{N}(\mu_{0}, \lambda_{0}^{-1}) \\ \boldsymbol{\lambda} &\sim \operatorname{Gamma}(a, b) \\ X_{1}, \dots, X_{n} | \lambda_{0}, \mu, \lambda \stackrel{\text{iid}}{\sim} \ \mathcal{N}(\mu, \lambda^{-1}) \end{split}$$

- This is actually equivalent to putting a *t*-distribution prior on μ , but since the *t*-distribution is not a conjugate prior, we cannot sample directly from $\mu | \lambda, x_{1:n}$.
- We can easily sample from $\mu|\lambda_0, \lambda, x_{1:n}$, though, and this is what we need for Gibbs sampling.

Normal example with hyperprior: Gibbs sampler

- Sample from each full conditional, in turn:
 - (λ₀|···) Since λ₀ is conditionally independent of everything else given μ, this is the same as the full conditional for the precision in a Normal model with one datapoint (namely, μ):

$$\lambda_0 | \mu, \lambda, x_{1:n} \sim \text{Gamma}\left(r + 1/2, s + \frac{1}{2}(\mu - \mu_0)^2\right).$$

(μ|···) Since we are conditioning on λ₀, this is just the same as the full conditional for μ before, without a hyperprior:

$$\boldsymbol{\mu}|\lambda_0,\lambda,x_{1:n} \sim \mathcal{N}(M,L^{-1})$$

where $L = \lambda_0 + n\lambda$ and $M = (\lambda_0 \mu_0 + \lambda \sum x_i)/(\lambda_0 + n\lambda)$.

(λ|···) Since we are conditioning on μ and λ₀, this is also just the same as before:

$${\pmb\lambda}|\lambda_0,\mu,x_{1:n}\,\sim\,{\rm Gamma}(A,B)$$
 where $A=a+n/2$ and $B=n\hat\sigma^2+n(\bar x-\mu)^2.$

Normal example with hyperprior

- We could just as easily add semi-conjugate priors on μ_0 and b.
 - Specifically, a Normal prior on μ_0 and a Gamma prior on b.
- We could then easily augment the Gibbs sampling algorithm to update them as well.
- In this simple example, the hyperpriors just make the prior less informative.
- However, in many applications, hierarchical models are used to share statistical strength across groups.
- Even with highly complex hierarchical models, the Gibbs sampling approach allows one to perform Bayesian inference in a remarkably straightforward way.

References and supplements

- S. Geman, and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
- G. Casella, and E.I. George (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174.

Individual activity: Exit ticket

Answer these questions individually: https://forms.gle/iZoWzjAzPDeYPrLn7