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Introduction

In many real-world applications, we have to deal with complex
distributions on complicated high-dimensional spaces.

On rare occasions, it is possible to sample exactly from the
distribution of interest, but typically exact sampling is not
feasible.

Further, high-dimensional distributions are hard to visualize,
making it difficult to even guess where the regions of high
probability are located.

As a result, it may be challenging to even design a reasonable
proposal distribution to use with importance sampling.
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Introduction
Markov chain Monte Carlo (MCMC) is a sampling technique
that works remarkably well in many situations like this.

MCMC constructs a sequence of correlated samples
X1, X2, . . . that meander through the region of high
probability by making a sequence of incremental movements.

Even though the samples are not independent, it turns out
that when constructed properly,

Eh(X) ≈ 1

N

N∑
i=1

h(Xi)

as in the case of simple Monte Carlo approximation.

By a powerful result called the ergodic theorem, these
approximations are guaranteed to converge to the true value.
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Introduction
Advantages of MCMC:
I applicable even when we can’t directly draw samples.
I works for complicated distributions in high-dimensional spaces.
I relatively easy to implement.
I fairly reliable.

Disadvantages of MCMC:
I slower than simple Monte Carlo or importance sampling, i.e.,

more samples are often needed to attain the same accuracy.
I can be very difficult to assess accuracy and convergence.

Since it is easy to use, MCMC is often used out of
convenience, even when better methods exist.

MCMC opens up a world of possibilities, allowing us to work
with far more interesting and realistic models than we could
without it.
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Introduction

The two main ways of constructing MCMC algorithms are:

1. Gibbs sampling, and
2. the Metropolis–Hastings algorithm.

We’ll start with Gibbs sampling (Geman & Geman, 1984)
since it is easiest to understand.

Later, we will also consider more advanced MCMC algorithms.

We’ll illustrate with some examples involving Gibbs sampling:
I Normal with semi-conjugate priors,
I Censored data / missing data,
I Hyperpriors and hierarchical models.
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Gibbs sampling with two variables

Suppose p(x, y) is difficult to sample from directly.

Suppose, though, that we can easily sample from the
conditional distributions p(x|y) and p(y|x).

Gibbs sampling : Initialize x and y and iteratively repeat

1. update x by sampling from x|y, and
2. update y by sampling from y|x.

Each iteration through all variables (x and y, in this case) is
referred to as a sweep or scan.

When updating a variable, we always use the most recent
value of the other variables.
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Gibbs sampling with two variables
This algorithm generates a sequence of pairs of r.v.s

(X0, Y0), (X1, Y1), (X2, Y2), (X3, Y3), . . .

that is a Markov chain: the distribution of (Xi, Yi) given all of
the previous values depends only on (Xi−1, Yi−1).

Under quite general conditions, the ergodic theorem
guarantees that for any h(x, y) such that E|h(X,Y )| <∞,

1

N

N∑
i=1

h(Xi, Yi) −→ Eh(X,Y )

as N →∞, with probability 1, where (X,Y ) ∼ p(x, y).

This justifies the use of 1
N

∑N
i=1 h(Xi, Yi) as an approximation

to Eh(X,Y ), like a simple Monte Carlo approximation, even
though (X1, Y1), (X2, Y2), . . . are not i.i.d.
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Burn-in period
If the starting point (x0, y0) is far from the region of high
probability under p(x, y), it may take a while for the chain to
get to a good place.

During this burn-in period, the distribution of the samples
(Xi, Yi) does not approximate p(x, y).

Thus, it is recommended to run the chain for a while before
starting to compute sample averages.

In other words, discard (X1, Y1), . . . , (XB, YB) and only use
(XB+1, YB+1), . . . for inference. For example,

1

N −B

N∑
i=B+1

h(Xi, Yi).

How to choose B? Traceplots and running averages (see
below) are useful for assessing the burn-in.

A poor choice of starting point will require a longer burn-in.
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Mixing

Roughly speaking, the performance of an MCMC
algorithm—that is, how quickly the sample averages
1
N

∑N
i=1 h(Xi, Yi) converge—is referred to as the mixing rate.

An algorithm with good performance is said to “have good
mixing” or to “mix well”.

There are various empirical diagnostics for assessing burn-in
and mixing, but none are foolproof.

Sometimes, a chain may appear to be mixing well, but if you
ran it longer you would see that it was actually doing poorly.
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Toy example

Suppose we need to sample from

p(x, y) ∝ e−xyI(x, y ∈ (0, c))

where c > 0, and (0, c) is the open interval between 0 and c.
I This example is due to Casella & George, 1992.

Gibbs sampling: Iteratively sample from p(x|y) and p(y|x).

Let’s look at p(x|y):

p(x|y) ∝
x

???.

(Whiteboard activity)
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Toy example

Suppose we need to sample from

p(x, y) ∝ e−xyI(x, y ∈ (0, c))

where c > 0, and (0, c) is the open interval between 0 and c.
I This example is due to Casella & George, 1992.

Gibbs sampling: Iteratively sample from p(x|y) and p(y|x).

Let’s look at p(x|y):

p(x|y) ∝
x
p(x, y) ∝

x
e−xy I(0 < x < c) ∝

x
Exp(x|y)I(x < c).

So, p(x|y) is a truncated Exp(y) distribution, TExp(y, (0, c)).

By symmetry, p(y|x) = TExp(x, (0, c)).

14 / 41



Toy example

Denote S = (0, c) for brevity.

Gibbs sampler algorithm:

0. Initialize x0, y0 ∈ S.

1. Sample x1 ∼ TExp(y0, S), then sample y1 ∼ TExp(x1, S).

2. Sample x2 ∼ TExp(y1, S), then sample y2 ∼ TExp(x2, S).
...

N . Sample xN ∼ TExp(yN−1, S), then sample
yN ∼ TExp(xN , S).
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Toy example

Demonstration with c = 2 and initial point (x0, y0) = (1, 1).

(Left plot) First 5 Gibbs sampling iterations/sweeps/scans.

(Right plot) Scatterplot of 104 Gibbs sampling iterations.
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Toy example

How to sample from a truncated exponential distribution?

Here’s an easy way based on the inverse c.d.f. method.

The c.d.f. and inverse c.d.f. of Exp(θ) are:

F (x|θ) = 1− e−θx

F−1(u|θ) = −(1/θ) log(1− u)

for x > 0 and u ∈ (0, 1).

Let U ∼ Uniform(0, F (c|θ)) and let Z = F−1(U |θ).

Then Z ∼ TExp(θ, (0, c)).
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/nmFvWuSZJW3P9nfX9

(Three people per room, randomly assigned. 15 minutes.)
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Example: Normal with semi-conjugate prior
Consider an i.i.d. multivariate normal model

X1, . . . , Xn
iid∼ N (µ,Λ−1).

Assume conditionally conjugate (a.k.a., semi-conjugate) priors:

µ ∼ N (m,L−1) Λ ∼Wishart(S−1, ν)

independently.

A Gibbs sampler for µ,Λ | x1:n is to iteratively:
1. update µ by sampling from µ | Λ, x1:n, and
2. update Λ by sampling from Λ | µ, x1:n.

From before, we know that

µ|Λ, x1:n ∼ N (mn, L
−1
n )

Λ|µ, x1:n ∼Wishart(S−1
n , νn)

with mn, Ln, Sn, and νn as in the slides on Gaussian models.
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Gibbs sampling with multiple variables

More generally, Gibbs sampling is done by updating each
variable in turn, given everything else.

In each update, we always use the most recent values of all
other variables.

The conditional distribution of a variable given everything else
is referred to as the full conditional.

θ| · · · denotes the full conditional of a variable θ.

The order in which variables are updated is usually fixed
(“fixed scan”) but more general schemes are also possible,
e.g., random scan.
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Example: Censored data

Often, some data is missing or partially obscured.

Gibbs sampling provides a natural Bayesian method for
dealing with missing data:
I Treat missing variables just like an unknown parameter, and

update them in each Gibbs iteration.
I As a side benefit, this also allows us to infer the missing data.

Censoring is one way in which data can be partially obscured.
I Censoring occurs when we know a data point lies in a

particular interval, but we don’t get to observe it exactly.

I For instance, in medical research, some patients may be lost to
follow-up during the study.

I Another example: Measurements may exceed the lower/upper
limits of the instrument being used.
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Censoring example: Data

Suppose researchers are studying the length of life (survival)
following a new medical intervention.

In a study of 12 patients, the survival times (in years) are

3.4, 2.9, 1.2+, 1.4, 3.2, 1.8, 4.6, 1.7+, 2.0+, 1.4+, 2.8, 0.6+

where x+ indicates that the patient was alive after x years,
but the researchers lost contact with the patient at that point.

Usually, there would be a control group too, but let’s focus on
one group to keep things simple.
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Censoring example: Model
Consider the following model:

θ ∼ Gamma(a, b)

Z1, . . . , Zn|θ
iid∼ Gamma(r, θ)

Xi =

{
Zi if Zi ≤ ci
∗ if Zi > ci.

where a, b, and r are known, and ∗ is a special value to
indicate that censoring has occurred. The interpretation is:
I θ is the parameter of interest—the rate parameter for the

survival distribution.
I Zi is the survival time for patient i, however, this is not

directly observed.
I ci is the censoring time for patient i, which is fixed, but known

only if censoring occurs.
I Xi is the observation—if the survival time is less than ci then

we get to observe it (Xi = Zi), otherwise all we know is that
the survival time is greater than ci (Xi = ∗).
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Censoring example: The posterior is complicated
Unfortunately, the posterior p(θ|x1:n) ∝ p(x1:n|θ)p(θ) does
not reduce to a simple form that we can easily work with.

The reason is that the p(x1:n|θ) involves the distribution of
the observations xi given θ, integrating out the zi’s.

In the case of censored observations xi = ∗, we have

p(xi|θ) = P(Xi = ∗ | θ) = P(Zi > c | θ),

which involves the incomplete gamma function.

Also, p(z1:n|x1:n) (the posterior on the zi’s, with θ integrated
out) looks a bit nasty as well.

Thus, it is not obvious how to sample directly (i.i.d.) from
this posterior.
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Censoring example: Gibbs sampler

Meanwhile, the Gibbs sampling approach is a cinch.

We cycle through the full conditional distributions,

θ | z1:n, x1:n
z1 | θ, z−1, x1:n

z2 | θ, z−2, x1:n
...

zn | θ, z−n, x1:n

sampling from each in turn. (Recall: z−j = all z’s except zj .)

The full conditionals are easy to calculate. First, consider θ:

p(θ| · · · ) ∝ p(x1:n, z1:n, θ) ∝
θ

Gamma
(
θ
∣∣ a+nr, b+

∑n
i=1 zi

)
.
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Censoring example: Gibbs sampler

Now, consider zi| · · ·
I If xi 6= ∗ then zi is forced to be equal to xi.
I Otherwise,

p(zi| · · · ) ∝ p(x1:n, z1:n, θ)
∝
zi
p(xi|zi)p(zi|θ)

= I(zi > ci) Gamma(zi | r, θ)
∝
zi

TGamma(zi | r, θ, (ci,∞))

where TGamma is the truncated Gamma distribution.

We can sample from TGamma(r, θ, (c,∞)) with the same
technique we used for the truncated exponential:
I Let F (x|r, θ) denote the Gamma(r, θ) c.d.f.
I Let U ∼ Uniform(F (c|r, θ), 1), and let V = F−1(U |r, θ).
I Then V ∼ TGamma(r, θ, (c,∞)).
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Censoring example: Results

For the hyperparameters, let’s assume a = b = 1 and r = 2.

To illustrate, let’s run the sampler for N = 103 iterations.

For the starting values, let’s set θ = 1 and zi = ci+ 1 for those
i’s that were censored. (I chose these pretty much arbitrarily.)

Some diagnostic plots are useful to visualize the MCMC run:
I Traceplots
I Running averages
I Histograms
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Censoring example: Traceplots

Traceplots of θ and z3

A traceplot simply shows the sequence of samples, for
instance, θi versus i.

Traceplots are a simple but very useful way to visualize how
the sampler is behaving.

The traceplots above look good — the sampler doesn’t
appear to be getting stuck anywhere.
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Censoring example: Running averages

Running averages 1
k

∑k
i=1 θi for k = 1, . . . , N

Running averages are another useful heuristic for assessing
MCMC convergence.

Running averages can be expected to drift and wander a bit
and then settle down as k increases.

I Drifting in one direction often indicates that the sampler has
not yet “burned in”.

I Wandering back and forth around the same spot indicates that
the sampler has not yet “mixed” sufficiently.
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Censoring example: Histograms

Histogram of θ|x1:n Histogram of z9|x1:n

We are primarily interested in the posterior on θ, since it
represents the rate parameter for the survival distribution.

By making a histogram of the samples θ1, . . . , θN , we can
estimate the posterior density p(θ|x1:n).

The vertical lines are the lower (`) and upper (u) endpoints of
a 90% credible interval—that is, an interval containing 90%
of the posterior probability.
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Individual activity: Critical thinking

True or false? Diagnostic plots can indicate lack of
convergence of the sampler.

True or false? Diagnostic plots can indicate convergence of
the sampler.
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Caution! MCMC diagnostics can be misleading

Even when heuristics like traceplots and running averages
suggest that all is well, things may be going horribly wrong.

For instance, posteriors are often highly multimodal, and the
sampler may get stuck in one mode for many iterations.

General rule: MCMC diagnostics can tell you when things are
bad, but they cannot tell you when things are good.
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Example: Hyperpriors and hierarchical models

Gibbs sampling is especially useful for models involving
multiple levels.

We often want to put priors on the hyperparameters, that is,
the parameters of the prior. This is called a hyperprior.

More generally, hierarchical models involve hierarchical
relationships among the data and latent variables/parameters.

The full conditionals in a hierarchical model are often
relatively simple, making Gibbs sampling very convenient.
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Normal example with hyperprior
As a simple example, consider the Normal example with a
semi-conjugate prior from earlier.

Let’s add a Gamma(r, s) prior on λ0, so the model is now:

λ0 ∼ Gamma(r, s)

µ|λ0 ∼ N (µ0, λ
−1
0 )

λ ∼ Gamma(a, b)

X1, . . . , Xn|λ0, µ, λ
iid∼ N (µ, λ−1).

This is actually equivalent to putting a t-distribution prior on
µ, but since the t-distribution is not a conjugate prior, we
cannot sample directly from µ|λ, x1:n.

We can easily sample from µ|λ0, λ, x1:n, though, and this is
what we need for Gibbs sampling.
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Normal example with hyperprior: Gibbs sampler
Sample from each full conditional, in turn:
I (λ0| · · · ) Since λ0 is conditionally independent of everything

else given µ, this is the same as the full conditional for the
precision in a Normal model with one datapoint (namely, µ):

λ0|µ, λ, x1:n ∼ Gamma
(
r + 1/2, s+ 1

2 (µ− µ0)2
)
.

I (µ| · · · ) Since we are conditioning on λ0, this is just the same
as the full conditional for µ before, without a hyperprior:

µ|λ0, λ, x1:n ∼ N (M,L−1)

where L = λ0 + nλ and M = (λ0µ0 + λ
∑
xi)/(λ0 + nλ).

I (λ| · · · ) Since we are conditioning on µ and λ0, this is also just
the same as before:

λ|λ0, µ, x1:n ∼ Gamma(A,B)

where A = a+ n/2 and B = nσ̂2 + n(x̄− µ)2.
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Normal example with hyperprior
We could just as easily add semi-conjugate priors on µ0 and b.

I Specifically, a Normal prior on µ0 and a Gamma prior on b.

We could then easily augment the Gibbs sampling algorithm
to update them as well.

In this simple example, the hyperpriors just make the prior less
informative.

However, in many applications, hierarchical models are used
to share statistical strength across groups.

Even with highly complex hierarchical models, the Gibbs
sampling approach allows one to perform Bayesian inference
in a remarkably straightforward way.
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/iZoWzjAzPDeYPrLn7
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