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Markov chains
o Let (Xy) = (Xo, X1, Xo,...) be a sequence of random vars.

e (X;) is a Markov chain if for all ¢,
Xep1 L (X, Xp1) | Xy

that is, p(x¢11]z1.t) = p(@ep1|ae) for all x1.441.

@ In other words, “the future is conditionally independent of the
past given the present.”

@ This is equivalent to saying that the distribution respects the
following directed graph:
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Ergodic theorem for discrete Markov chains

@ For now, we assume (X;) is a discrete Markov chain, that is,
X; is a discrete random variable for all ¢.

@ The same intuitions apply in the continuous case, but the
math is considerably more subtle.

@ Let's see the theorem first, then define the terminology.
e Ergodic theorem: If (X;) is a time-homogeneous, irreducible,

discrete Markov chain with stationary distribution 7, then for
any bounded function h(z),

1 T
T > h(Xy) = EA(X)
t=1

as T' — oo, with probability 1, where X ~ 7. If, further, (X;)
is aperiodic, then for all x, xg,

P(X; =z | Xo=m9) — 7(z).
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Definitions (1/2)

o (X) is time-homogeneous if the distribution of X;1|X; is
the same for all ¢, that is, for all a, b, t,

]P)(Xt+1 =b | Xt = (1) == Tab
for some matrix 1" that doesn't depend on ¢.

@ T is called the transition matrix. Note that the rows of T' sum
to 1, that'is, Y, Tpp = 1 for all a.

e T is a stationary (or invariant) distribution for T' if for all b,
> w(a)Tup = 7(b).
a

This is often written more succinctly as 71" = 7, viewing 7 as
a row vector.
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Definitions (2/2)

o (X;) is irreducible if for all a,b, there is some t such that
P(X;=b| Xo=a)>0.
(In other words, we can get from point a to point b with
positive probability.)
e (X) is aperiodic if for all a,
ged({t :P(Xy=a| Xo=a)>0}) =1

where gcd = greatest common divisor. (In other words, the
times at which we can return to a are not periodic.)
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Some comments on the conditions

@ Suppose 7 is our target distribution, that is, we want to
generate samples from 7.

@ Metropolis—Hastings always yields a time-homogeneous
Markov chain with stationary distribution 7.

» In fact, it satisfies a stronger condition called detailed balance.

@ Thus, irreducibility is the main condition we need to check in
practice. Fortunately, irreducibility usually holds in practice.

» Note: If T,;, > 0 for all a, b, then the chain is irreducible.

@ Aperiodicity is nice to have but is not strictly necessary to
justify the use of sample averages. It usually holds anyways.

» Note: If T,, > 0 for some a, and the chain is irreducible, then
the chain is aperiodic.
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Stationarity

@ The term “stationary distribution” comes from this fact:
If Xo ~ 7 and (X;) is a time-homogeneous Markov chain with
stationary distribution 7, then (X;) is stationary, that is, for
all k, the distribution of (X¢,..., X;1) is the same for all t.

@ Under the ergodic theorem, X; converges in distribution to 7
(this is the 2nd part of the theorem, when aperiodicity holds).

@ Informally, when the distribution of X; is close to 7, we say
that the chain has “reached stationarity”.

@ In MCMC, the burn-in period is the amount of time before
the chain is sufficiently close to stationarity.
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Detailed balance

o We say that detailed balance holds if for all a, b,

7(a)Typ = 7(b)Thy.

o If detailed balance holds, then 7 is a stationary distribution for
T, since
(Whiteboard exercise)
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Detailed balance

@ We say that detailed balance holds if for all a, b,

m(a)Tap = 7(b)Tpa-

o If detailed balance holds, then 7 is a stationary distribution for

T, since
ZW(G)Tab = Z b)Tpe = ( ZTba = 7(
a a

@ Interpretation: At stationarity, the probability mass moving
from a to b equals the mass moving from b to a.
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Metropolis—Hastings algorithm

@ Nearly all MCMC algorithms are a special case of MH,
including Gibbs sampling.

@ Suppose the target distribution is 7(x). For each 2/, let
q(z|2") be a distribution over x (the proposal distribution).

e For all z,2’, define the acceptance ratio

/ . W(x)Q(x,’x)
) = @)

e MH algorithm: Initialize xg, and fort =1,...,T,
1. Sample x ~ g(z|xi—1).

2. Sample u ~ Uniform(0, 1).

3. If u < a(xi—1,x), then set x; = x, otherwise set x;y = x4_1.
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Metropolis—Hastings algorithm

@ Steps 2 and 3 can equivalently be written: With probability
min{1, a(z;—1,x)}, set z; = x, otherwise set x; = x;_1.

@ Thus, in short, we propose x ~ q(z|x;—1) and accept the
proposal with probability min{1, a(z;_1,x)}.

@ The MH algorithm defines a Markov chain with transition
matrix T', where

Tap = q(b|a) min {1, :W}

when a # b, and for all a,

Too =1 — ZTab.

b#a
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Metropolis—Hastings: Verifying detailed balance

@ Assume m(a) > 0 and ¢(bla) > 0 for all a,b.
@ We verify that detailed balance holds.
e First, if a = b then it is trivial: (Whiteboard exercise)

@ Meanwhile, if a # b, then

(Whiteboard exercise)
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Metropolis—Hastings: Verifying detailed balance
@ Assume m(a) > 0 and ¢(bla) > 0 for all a,b.

@ We verify that detailed balance holds.
e First, if a = b then it is trivial: 7(a)The = m(a)Tya-

@ Meanwhile, if a # b, then

- - m(b)g(alb)
7(a)Tap = m(a)q(bla) min {1’ (a)q(bla) }
= min {W(G)Q(b|a)’ ﬂ-(b)q(aw)}

= 7(b)Thq-
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Metropolis—Hastings: Intuition
@ Students are often mystified by the acceptance probability
: m(b)g(alb)
1, ———=% .
mm{ ’W(a)q(b\a)}

@ To understand it, consider an analogy:
» 7(a) = amount of money belonging to person a.

» ¢(bla) = fraction of a's money proposed to be transferred to b.

» 7(a)q(bla) = amount proposed to be transferred from a to b.

@ We want equal amounts to be transferred between each pair.
So, a modification factor is applied to the proposed amounts.

o If m(a)q(bla) > w(b)q(alb) then a would give too much to b.
» To make it equal, a gives only % times the proposed
amount, and keeps the rest.

» In the reverse direction, b gives her full proposed amount to a.

@ This modification factor is precisely the acceptance probability.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/QZXUx2wx3QxK7P7z8

(Three people per room, randomly assigned. 15 minutes.)
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https://forms.gle/QZXUx2wx3QxK7P7z8

Gibbs sampling is a special case of MH

o Let m(xz,y) be the target distribution. At iteration ¢ + 1, a
Gibbs update to x can be viewed as sampling from

q(,ylze, ye) = m(z|y) Wy = ).

@ Now, suppose we do MH with ¢ as the proposal distribution.

e With probability 1, ¥ = y; when sampling from ¢, so

() gz, y)

W) = o w)a@ vlwe, )
_ (@, y)m(wely)lye = y)
(e, y) (@ |y) Wy = yr)

af(we, yt), (,

_ (e y)m(aly)
(a1, y)m(ely)
=1.

@ Thus, we always accept, so MH reduces to Gibbs in this case.
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Combining MCMC moves

@ One of the many nice things about MCMC is that it is easy to
combine various moves when constructing a sampler.

@ For instance, we can combine various Gibbs updates or MH
moves with different proposal distributions.

@ Suppose the target distribution is 7. Roughly, a move is a way
of updating the variables using an MCMC step targeting .

e Formally, we define a move to be a transition matrix 1" such
that # 1" = 7, that is, 7 is the stationary distribution of T

@ Two useful ways of combining moves T, ..., T} are:

1. products of moves, and
2. mixtures of moves.
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Products of moves (Deterministic cycle of moves)

If 17, ..., T} all have stationary distribution 7, then the
product T' =T} - - - Ty has stationary distribution 7.

This is easy to check:

This is used in fixed-scan Gibbs, where we update the variables
by cycling through them in a deterministically chosen order.

This is also used in MH-within-Gibbs, where MH moves on
the full conditionals are used in place of some Gibbs updates.

Note: We do NOT explicitly compute 7! All we have to do is
apply a sequence of moves.
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Mixtures of moves (Random choice of move)

e If T1,..., T} all have stationary distribution 7, and
wi, Wa, . .., wE > 0 with Zle w; = 1, then the mixture
T= Zle w;T; has stationary distribution 7.

@ This is also easy to check:
k k k
7l = ZwﬂrTi = Zwiﬂ' = TrZwi =.
i=1 i=1 i=1

@ This is used in random-scan Gibbs, where we randomly choose
which variable to update at each step. Here, w; is the
probability of updating variable ¢ at a given step.

@ Note: We do NOT explicitly compute T'! All we have to do is
randomly choose a move, and apply that move.
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Careful! State-dependent moves are typically invalid
@ It is important to note that the random choice of move does

not depend on the current state.

@ In general, the choice of move at each iteration should not
depend on the current state of the Markov chain.

@ Using a state-dependent move can result in a failure to
converge to the correct stationary distribution.

@ Note: The fact that the proposal distribution in MH depends
on the current state does not violate this principle.

@ You need to be very, very careful if you want to try to use
state-dependent moves.
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MCMC rate of convergence

@ In basic Monte Carlo, we know V(+ ZtT:1 Xy) =V(Xy)/T
since the X;'s are i.i.d. In MCMC, the X;'s are no longer
i.i.d., so it is not as easy to assess the rate of convergence.

@ However, for any sequence of random variables, we have:

( ZXt> (Whiteboard exercise)
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MCMC rate of convergence

o In basic Monte Carlo, we know V(% Zthl X)) =V(Xy)/T
since the X;'s are i.i.d. In MCMC, the X;'s are no longer
i.i.d., so it is not as easy to assess the rate of convergence.

@ However, for any sequence of random variables, we have:

1 T 1 T T
V(T th) = 5 2> Cov(X,, Xy)
t=1

s=1 t=1
1 & 1 &
=72 2 V(X)) + 75 ) > Cov(X,, Xy).
t=1 s=1 t#s

o If the X;'s have the same distribution, then the first term
equals V(X};)/T, just like the basic Monte Carlo variance.

@ Thus, in MCMC, the approximation error will be small if the

Cov(Xs, X;) terms are small.
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Effective sample size

@ Assume (X;) is stationary. Then C(¢) := Cov(Xy, X¢14) does

not depend on ¢, and C(6) = C(—9).

e Define 02 := V(X;) = C(0) and p(d) := Corr(Xy, X¢45).

Then C(8) = 0p(d) and

=1 s=1 t—1
1 9 121
= TC’(O)—i—ﬁ (T —8)C(5)
6=1
o2 9521t o?
=Tt 5:1(1 —=6/T)p(d) = To
where
T
o )
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Effective sample size

e T is one way of defining an “effective sample size” (ESS).

e Since V(% ZtT:l Xi) = 02 /Tegs, the idea is that Tog is the
number of i.i.d. samples that basic Monte Carlo would require
to achieve the same approximation error.

e To compute Teg in practice, one would estimate p(d) ~ p(d)
using the samples themselves, and use

~ T
Teff = — 0
1+2355 (1= 6/T)p(6)

possibly truncating the sum since p(d) is harder to estimate
for larger ¢ values.

o If Tog is much smaller than T', then the MCMC sampler is
struggling.
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Effective sample size

@ The formula above is not actually the usual definition of
effective sample size, which is:

T/ﬁ“ = T .
1 +235, p(0)

@ In practice, the infinite sum is approximated by truncating it
at an appropriate value.

@ The interpretation is the same, but T, may be more stable
than T4 since it doesn’t depend as much on larger ¢ values,
for which p(9) is harder to estimate in a finite sample.

e It's also worth mentioning that 7:=1+23% 52, p(d) is called
the autocorrelation time.
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NegBin regression example: Background
Modern high-throughput sequencing yields large matrices of
counts.
@ Copy ratio estimation in cancer genomics
» whole-exome or whole-genome sequencing data

@ Copy number variation in genetics
» whole-exome or whole-genome sequencing data

@ Gene expression analysis in biology/medicine
» RNA-seq data for transcript abundance

log counts for a whole-exome seq data set of 191 samples x 171523 loci
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NegBin regression example: Background

Whole-exome seq data for a tumor sample

Normalized raw counts
e

GATK copy ratio estimates

i oL e e
WMMW%MI'{( WP .W.a Mp“
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NegBin regression example: Background

Nontrivial modeling required to deal with many sources of bias:

o GC bias

Mappability bias
P Repetitive sequences, Tandemly arrayed genes

Epigenetics
» Open chromatin, Promoters, Enhancers, etc.

Fragment length bias

Batch effects
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NegBin regression example: Background

GC_content

1 2 3 4 5 6 7 8 9 10 1 12 1314 15 16 17 18 19 202122 X
position

nnnnnnnn

35/49



NegBin regression example: Model

@ The technical variability in this data is naturally modeled as
Poisson, by the “law of small numbers"”.

» Each count is the sum of many Bernoullis with small
probability.

@ However, there also outliers. A Negative-Binomial model is
often used to improve robustness to outliers.

@ The Negative-Binomial is an overdispersed Poisson —
specifically, a Poisson with a Gamma prior integrated out for
each observation.
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NegBin regression example: Model

@ Suppose the count data are Yj; € {0,1,2,...} for loci
i=1,...,1 and samples j =1,...,J.

@ Let's consider the following model:
Yi; ~ NegBin(mean = p;;, dispersion = «;)
where
log(uij) =a; + bj +cix; + CQZE?.

@ Interpretation:
» a; = locus-specific effect
» b; = sample-specific effect
» 2, = locus covariate such as GC content
» ¢y, co = coefficients of linear and quadratic terms

@ Assume x; is standardized to mean zero, unit variance.

37/49



NegBin regression example: ldentifiability

@ This model is not identifiable since an additive constant can
be moved between a; and b;.

@ This non-identifiability can be removed by constraining, say,

Zi a; = 0.

@ However, posterior inference is complicated when constraints
are imposed.

@ Simple alternative: Run MCMC in the unconstrained
(non-identifiable) model, and when MCMC sampling is
complete, impose the identifiability constraints on the
posterior samples for interpretation purposes.
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NegBin regression example: Simulation

@ To illustrate, | simulated data from the model using I = 100
and J = 10, with true parameters generated as a; ~ N (0, 1),
bj ~N(5,1), c1 =0, ca = —1, and o; = 1 for all 4.

@ For simplicity, | assumed ./\/(0,52) priors on a;, b;, and ¢, and
fixed a; = 1.

@ To perform MCMC, | used an MH-within-Gibbs approach,
updating each univariate parameter a;, b;, ¢ individually.

e E.g., MH with proposal a; ~ N(ai,t_1,0.252) and target
distribution equal to the full conditional for a;.

o | ran MCMC for 100,000 sweeps, with a burn-in of 20,000.
(We'll look at diagnostics below to see if these were good
choices.)
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NegBin regression example: Traceplots

Traceplot of a[1]
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NegBin regression example: Traceplots

Traceplot of c[1]
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NegBin regression example: Estimated vs true

a - estimated vs true

posterior mean of a[i]

-3 -2 -1 0 1 2 3
true value of a[i]
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NegBin regression example: Estimated vs true

posterior mean of b[j]
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b - estimated vs true
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43 /49



NegBin regression

posterior mean of c[k]
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example: Estimated vs true

c - estimated vs true
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NegBin regression example: Acceptance rate

Acceptance rates
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NegBin regression example: Autocorrelation

correlation

correlation

Autocorrelation of a[1]
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NegBin regression example: Autocorrelation

Autocorrelation of a[1]
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/r7YzCQFMbP1yQupj7
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