## Markov chain Monte Carlo

# Bayesian Methodology in Biostatistics (BST 249) 

Jeffrey W. Miller

Department of Biostatistics<br>Harvard T.H. Chan School of Public Health

## Outline

Markov chains

Metropolis-Hastings

Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

## Outline

Markov chains

## Metropolis-Hastings

## Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

## Markov chains

- Let $\left(X_{t}\right)=\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ be a sequence of random vars.
- $\left(X_{t}\right)$ is a Markov chain if for all $t$,

$$
X_{t+1} \Perp\left(X_{1}, \ldots, X_{t-1}\right) \mid X_{t}
$$

that is, $p\left(x_{t+1} \mid x_{1: t}\right)=p\left(x_{t+1} \mid x_{t}\right)$ for all $x_{1: t+1}$.

- In other words, "the future is conditionally independent of the past given the present."
- This is equivalent to saying that the distribution respects the following directed graph:



## Ergodic theorem for discrete Markov chains

- For now, we assume $\left(X_{t}\right)$ is a discrete Markov chain, that is, $X_{t}$ is a discrete random variable for all $t$.
- The same intuitions apply in the continuous case, but the math is considerably more subtle.
- Let's see the theorem first, then define the terminology.
- Ergodic theorem: If $\left(X_{t}\right)$ is a time-homogeneous, irreducible, discrete Markov chain with stationary distribution $\pi$, then for any bounded function $h(x)$,

$$
\frac{1}{T} \sum_{t=1}^{T} h\left(X_{t}\right) \rightarrow \operatorname{E} h(X)
$$

as $T \rightarrow \infty$, with probability 1 , where $X \sim \pi$. If, further, $\left(X_{t}\right)$ is aperiodic, then for all $x, x_{0}$,

$$
\mathbb{P}\left(X_{t}=x \mid X_{0}=x_{0}\right) \rightarrow \pi(x)
$$

## Definitions (1/2)

- $\left(X_{t}\right)$ is time-homogeneous if the distribution of $X_{t+1} \mid X_{t}$ is the same for all $t$, that is, for all $a, b, t$,

$$
\mathbb{P}\left(X_{t+1}=b \mid X_{t}=a\right)=T_{a b}
$$

for some matrix $T$ that doesn't depend on $t$.

- $T$ is called the transition matrix. Note that the rows of $T$ sum to 1 , that is, $\sum_{b} T_{a b}=1$ for all $a$.
- $\pi$ is a stationary (or invariant) distribution for $T$ if for all $b$,

$$
\sum_{a} \pi(a) T_{a b}=\pi(b)
$$

This is often written more succinctly as $\pi T=\pi$, viewing $\pi$ as a row vector.

## Definitions (2/2)

- $\left(X_{t}\right)$ is irreducible if for all $a, b$, there is some $t$ such that

$$
\mathbb{P}\left(X_{t}=b \mid X_{0}=a\right)>0
$$

(In other words, we can get from point $a$ to point $b$ with positive probability.)

- $\left(X_{t}\right)$ is aperiodic if for all $a$,

$$
\operatorname{gcd}\left(\left\{t: \mathbb{P}\left(X_{t}=a \mid X_{0}=a\right)>0\right\}\right)=1
$$

where gcd = greatest common divisor. (In other words, the times at which we can return to $a$ are not periodic.)

## Some comments on the conditions

- Suppose $\pi$ is our target distribution, that is, we want to generate samples from $\pi$.
- Metropolis-Hastings always yields a time-homogeneous Markov chain with stationary distribution $\pi$.
- In fact, it satisfies a stronger condition called detailed balance.
- Thus, irreducibility is the main condition we need to check in practice. Fortunately, irreducibility usually holds in practice.
- Note: If $T_{a b}>0$ for all $a, b$, then the chain is irreducible.
- Aperiodicity is nice to have but is not strictly necessary to justify the use of sample averages. It usually holds anyways.
- Note: If $T_{a a}>0$ for some $a$, and the chain is irreducible, then the chain is aperiodic.


## Stationarity

- The term "stationary distribution" comes from this fact: If $X_{0} \sim \pi$ and $\left(X_{t}\right)$ is a time-homogeneous Markov chain with stationary distribution $\pi$, then $\left(X_{t}\right)$ is stationary, that is, for all $k$, the distribution of $\left(X_{t}, \ldots, X_{t+k}\right)$ is the same for all $t$.
- Under the ergodic theorem, $X_{t}$ converges in distribution to $\pi$ (this is the 2nd part of the theorem, when aperiodicity holds).
- Informally, when the distribution of $X_{t}$ is close to $\pi$, we say that the chain has "reached stationarity".
- In MCMC, the burn-in period is the amount of time before the chain is sufficiently close to stationarity.


## Detailed balance

- We say that detailed balance holds if for all $a, b$,

$$
\pi(a) T_{a b}=\pi(b) T_{b a}
$$

- If detailed balance holds, then $\pi$ is a stationary distribution for $T$, since
(Whiteboard exercise)


## Detailed balance

- We say that detailed balance holds if for all $a, b$,

$$
\pi(a) T_{a b}=\pi(b) T_{b a}
$$

- If detailed balance holds, then $\pi$ is a stationary distribution for $T$, since

$$
\sum_{a} \pi(a) T_{a b}=\sum_{a} \pi(b) T_{b a}=\pi(b) \sum_{a} T_{b a}=\pi(b)
$$

- Interpretation: At stationarity, the probability mass moving from $a$ to $b$ equals the mass moving from $b$ to $a$.


## Outline

Markov chains

Metropolis-Hastings

Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

## Metropolis-Hastings algorithm

- Nearly all MCMC algorithms are a special case of MH, including Gibbs sampling.
- Suppose the target distribution is $\pi(x)$. For each $x^{\prime}$, let $q\left(x \mid x^{\prime}\right)$ be a distribution over $x$ (the proposal distribution).
- For all $x, x^{\prime}$, define the acceptance ratio

$$
\alpha\left(x^{\prime}, x\right)=\frac{\pi(x) q\left(x^{\prime} \mid x\right)}{\pi\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}
$$

- MH algorithm: Initialize $x_{0}$, and for $t=1, \ldots, T$,

1. Sample $x \sim q\left(x \mid x_{t-1}\right)$.
2. Sample $u \sim \operatorname{Uniform}(0,1)$.
3. If $u<\alpha\left(x_{t-1}, x\right)$, then set $x_{t}=x$, otherwise set $x_{t}=x_{t-1}$.

## Metropolis-Hastings algorithm

- Steps 2 and 3 can equivalently be written: With probability $\min \left\{1, \alpha\left(x_{t-1}, x\right)\right\}$, set $x_{t}=x$, otherwise set $x_{t}=x_{t-1}$.
- Thus, in short, we propose $x \sim q\left(x \mid x_{t-1}\right)$ and accept the proposal with probability $\min \left\{1, \alpha\left(x_{t-1}, x\right)\right\}$.
- The MH algorithm defines a Markov chain with transition matrix $T$, where

$$
T_{a b}=q(b \mid a) \min \left\{1, \frac{\pi(b) q(a \mid b)}{\pi(a) q(b \mid a)}\right\}
$$

when $a \neq b$, and for all $a$,

$$
T_{a a}=1-\sum_{b \neq a} T_{a b}
$$

## Metropolis-Hastings: Verifying detailed balance

- Assume $\pi(a)>0$ and $q(b \mid a)>0$ for all $a, b$.
- We verify that detailed balance holds.
- First, if $a=b$ then it is trivial: (Whiteboard exercise)
- Meanwhile, if $a \neq b$, then
(Whiteboard exercise)


## Metropolis-Hastings: Verifying detailed balance

- Assume $\pi(a)>0$ and $q(b \mid a)>0$ for all $a, b$.
- We verify that detailed balance holds.
- First, if $a=b$ then it is trivial: $\pi(a) T_{a a}=\pi(a) T_{a a}$.
- Meanwhile, if $a \neq b$, then

$$
\begin{aligned}
\pi(a) T_{a b} & =\pi(a) q(b \mid a) \min \left\{1, \frac{\pi(b) q(a \mid b)}{\pi(a) q(b \mid a)}\right\} \\
& =\min \{\pi(a) q(b \mid a), \pi(b) q(a \mid b)\} \\
& =\pi(b) q(a \mid b) \min \left\{\frac{\pi(a) q(b \mid a)}{\pi(b) q(a \mid b)}, 1\right\} \\
& =\pi(b) T_{b a}
\end{aligned}
$$

## Metropolis-Hastings: Intuition

- Students are often mystified by the acceptance probability

$$
\min \left\{1, \frac{\pi(b) q(a \mid b)}{\pi(a) q(b \mid a)}\right\}
$$

- To understand it, consider an analogy:
- $\pi(a)=$ amount of money belonging to person $a$.
- $q(b \mid a)=$ fraction of $a$ 's money proposed to be transferred to $b$.
- $\pi(a) q(b \mid a)=$ amount proposed to be transferred from $a$ to $b$.
- We want equal amounts to be transferred between each pair. So, a modification factor is applied to the proposed amounts.
- If $\pi(a) q(b \mid a)>\pi(b) q(a \mid b)$ then $a$ would give too much to $b$.
- To make it equal, $a$ gives only $\frac{\pi(b) q(a \mid b)}{\pi(a) q(b \mid a)}$ times the proposed amount, and keeps the rest.
- In the reverse direction, $b$ gives her full proposed amount to $a$.
- This modification factor is precisely the acceptance probability.


## Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions: https://forms.gle/QZXUx2wx3QxK7P7z8
(Three people per room, randomly assigned. 15 minutes.)

## Gibbs sampling is a special case of MH

- Let $\pi(x, y)$ be the target distribution. At iteration $t+1$, a Gibbs update to $x$ can be viewed as sampling from

$$
q\left(x, y \mid x_{t}, y_{t}\right):=\pi\left(x \mid y_{t}\right) \mathrm{I}\left(y=y_{t}\right)
$$

- Now, suppose we do MH with $q$ as the proposal distribution.
- With probability $1, y=y_{t}$ when sampling from $q$, so

$$
\begin{aligned}
\alpha\left(\left(x_{t}, y_{t}\right),(x, y)\right) & =\frac{\pi(x, y) q\left(x_{t}, y_{t} \mid x, y\right)}{\pi\left(x_{t}, y_{t}\right) q\left(x, y \mid x_{t}, y_{t}\right)} \\
& =\frac{\pi(x, y) \pi\left(x_{t} \mid y\right) \mathrm{I}\left(y_{t}=y\right)}{\pi\left(x_{t}, y_{t}\right) \pi\left(x \mid y_{t}\right) \mathrm{I}\left(y=y_{t}\right)} \\
& =\frac{\pi(x, y) \pi\left(x_{t} \mid y\right)}{\pi\left(x_{t}, y\right) \pi(x \mid y)} \\
& =1
\end{aligned}
$$

- Thus, we always accept, so MH reduces to Gibbs in this case.


## Outline

Markov chains

Metropolis-Hastings

Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

## Combining MCMC moves

- One of the many nice things about MCMC is that it is easy to combine various moves when constructing a sampler.
- For instance, we can combine various Gibbs updates or MH moves with different proposal distributions.
- Suppose the target distribution is $\pi$. Roughly, a move is a way of updating the variables using an MCMC step targeting $\pi$.
- Formally, we define a move to be a transition matrix $T$ such that $\pi T=\pi$, that is, $\pi$ is the stationary distribution of $T$.
- Two useful ways of combining moves $T_{1}, \ldots, T_{k}$ are:

1. products of moves, and
2. mixtures of moves.

## Products of moves (Deterministic cycle of moves)

- If $T_{1}, \ldots, T_{k}$ all have stationary distribution $\pi$, then the product $T=T_{1} \cdots T_{k}$ has stationary distribution $\pi$.
- This is easy to check:

$$
\pi T_{1} T_{2} \cdots T_{k}=\pi T_{2} \cdots T_{k}=\cdots=\pi T_{k}=\pi
$$

- This is used in fixed-scan Gibbs, where we update the variables by cycling through them in a deterministically chosen order.
- This is also used in MH-within-Gibbs, where MH moves on the full conditionals are used in place of some Gibbs updates.
- Note: We do NOT explicitly compute T! All we have to do is apply a sequence of moves.


## Mixtures of moves (Random choice of move)

- If $T_{1}, \ldots, T_{k}$ all have stationary distribution $\pi$, and $w_{1}, w_{2}, \ldots, w_{k} \geq 0$ with $\sum_{i=1}^{k} w_{i}=1$, then the mixture $T=\sum_{i=1}^{k} w_{i} T_{i}$ has stationary distribution $\pi$.
- This is also easy to check:

$$
\pi T=\sum_{i=1}^{k} w_{i} \pi T_{i}=\sum_{i=1}^{k} w_{i} \pi=\pi \sum_{i=1}^{k} w_{i}=\pi
$$

- This is used in random-scan Gibbs, where we randomly choose which variable to update at each step. Here, $w_{i}$ is the probability of updating variable $i$ at a given step.
- Note: We do NOT explicitly compute T! All we have to do is randomly choose a move, and apply that move.


## Careful! State-dependent moves are typically invalid

- It is important to note that the random choice of move does not depend on the current state.
- In general, the choice of move at each iteration should not depend on the current state of the Markov chain.
- Using a state-dependent move can result in a failure to converge to the correct stationary distribution.
- Note: The fact that the proposal distribution in MH depends on the current state does not violate this principle.
- You need to be very, very careful if you want to try to use state-dependent moves.


## Outline

Markov chains

Metropolis-Hastings

Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

## MCMC rate of convergence

- In basic Monte Carlo, we know $\mathbb{V}\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}\right)=\mathbb{V}\left(X_{t}\right) / T$ since the $X_{t}$ 's are i.i.d. In MCMC, the $X_{t}$ 's are no longer i.i.d., so it is not as easy to assess the rate of convergence.
- However, for any sequence of random variables, we have:

$$
\mathbb{V}\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}\right)=(\text { Whiteboard exercise })
$$

## MCMC rate of convergence

- In basic Monte Carlo, we know $\mathbb{V}\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}\right)=\mathbb{V}\left(X_{t}\right) / T$ since the $X_{t}$ 's are i.i.d. In MCMC, the $X_{t}$ 's are no longer i.i.d., so it is not as easy to assess the rate of convergence.
- However, for any sequence of random variables, we have:

$$
\begin{aligned}
\mathbb{V}\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}\right) & =\frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t=1}^{T} \operatorname{Cov}\left(X_{s}, X_{t}\right) \\
& =\frac{1}{T^{2}} \sum_{t=1}^{T} \mathbb{V}\left(X_{t}\right)+\frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t \neq s} \operatorname{Cov}\left(X_{s}, X_{t}\right)
\end{aligned}
$$

- If the $X_{t}$ 's have the same distribution, then the first term equals $\mathbb{V}\left(X_{t}\right) / T$, just like the basic Monte Carlo variance.
- Thus, in MCMC, the approximation error will be small if the $\operatorname{Cov}\left(X_{s}, X_{t}\right)$ terms are small.


## Effective sample size

- Assume $\left(X_{t}\right)$ is stationary. Then $C(\delta):=\operatorname{Cov}\left(X_{t}, X_{t+\delta}\right)$ does not depend on $t$, and $C(\delta)=C(-\delta)$.
- Define $\sigma^{2}:=\mathbb{V}\left(X_{t}\right)=C(0)$ and $\rho(\delta):=\operatorname{Corr}\left(X_{t}, X_{t+\delta}\right)$. Then $C(\delta)=\sigma^{2} \rho(\delta)$ and

$$
\begin{aligned}
\mathbb{V}\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}\right) & =\frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t=1}^{T} C(s-t) \\
& =\frac{1}{T} C(0)+\frac{2}{T^{2}} \sum_{\delta=1}^{T-1}(T-\delta) C(\delta) \\
& =\frac{\sigma^{2}}{T}+\frac{2 \sigma^{2}}{T} \sum_{\delta=1}^{T-1}(1-\delta / T) \rho(\delta)=\frac{\sigma^{2}}{T_{\mathrm{eff}}}
\end{aligned}
$$

where

$$
T_{\mathrm{eff}}:=\frac{T}{1+2 \sum_{\delta=1}^{T-1}(1-\delta / T) \rho(\delta)}
$$

## Effective sample size

- $T_{\text {eff }}$ is one way of defining an "effective sample size" (ESS).
- Since $\mathbb{V}\left(\frac{1}{T} \sum_{t=1}^{T} X_{t}\right)=\sigma^{2} / T_{\text {eff }}$, the idea is that $T_{\text {eff }}$ is the number of i.i.d. samples that basic Monte Carlo would require to achieve the same approximation error.
- To compute $T_{\text {eff }}$ in practice, one would estimate $\rho(\delta) \approx \widehat{\rho}(\delta)$ using the samples themselves, and use

$$
\widehat{T}_{\mathrm{eff}}:=\frac{T}{1+2 \sum_{\delta=1}^{T-1}(1-\delta / T) \widehat{\rho}(\delta)},
$$

possibly truncating the sum since $\rho(\delta)$ is harder to estimate for larger $\delta$ values.

- If $T_{\text {eff }}$ is much smaller than $T$, then the MCMC sampler is struggling.


## Effective sample size

- The formula above is not actually the usual definition of effective sample size, which is:

$$
T_{\mathrm{eff}}^{\prime}:=\frac{T}{1+2 \sum_{\delta=1}^{\infty} \rho(\delta)}
$$

- In practice, the infinite sum is approximated by truncating it at an appropriate value.
- The interpretation is the same, but $T_{\text {eff }}$ may be more stable than $T_{\text {eff }}^{\prime}$ since it doesn't depend as much on larger $\delta$ values, for which $\rho(\delta)$ is harder to estimate in a finite sample.
- It's also worth mentioning that $\tau:=1+2 \sum_{\delta=1}^{\infty} \rho(\delta)$ is called the autocorrelation time.


## Outline

## Markov chains

## Metropolis-Hastings

Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

## NegBin regression example: Background

Modern high-throughput sequencing yields large matrices of counts.

- Copy ratio estimation in cancer genomics
- whole-exome or whole-genome sequencing data
- Copy number variation in genetics
- whole-exome or whole-genome sequencing data
- Gene expression analysis in biology/medicine
- RNA-seq data for transcript abundance



## NegBin regression example: Background

Whole-exome seq data for a tumor sample


## NegBin regression example: Background

Nontrivial modeling required to deal with many sources of bias:

- GC bias
- Mappability bias
- Repetitive sequences, Tandemly arrayed genes
- Epigenetics
- Open chromatin, Promoters, Enhancers, etc.
- Fragment length bias
- Batch effects


## NegBin regression example: Background






## NegBin regression example: Model

- The technical variability in this data is naturally modeled as Poisson, by the "law of small numbers".
- Each count is the sum of many Bernoullis with small probability.
- However, there also outliers. A Negative-Binomial model is often used to improve robustness to outliers.
- The Negative-Binomial is an overdispersed Poisson specifically, a Poisson with a Gamma prior integrated out for each observation.


## NegBin regression example: Model

- Suppose the count data are $Y_{i j} \in\{0,1,2, \ldots\}$ for loci $i=1, \ldots, I$ and samples $j=1, \ldots, J$.
- Let's consider the following model:

$$
Y_{i j} \sim \operatorname{NegBin}\left(\text { mean }=\mu_{i j}, \text { dispersion }=\alpha_{i}\right)
$$

where

$$
\log \left(\mu_{i j}\right)=a_{i}+b_{j}+c_{1} x_{i}+c_{2} x_{i}^{2}
$$

- Interpretation:
- $a_{i}=$ locus-specific effect
- $b_{j}=$ sample-specific effect
- $x_{i}=$ locus covariate such as GC content
- $c_{1}, c_{2}=$ coefficients of linear and quadratic terms
- Assume $x_{i}$ is standardized to mean zero, unit variance.


## NegBin regression example: Identifiability

- This model is not identifiable since an additive constant can be moved between $a_{i}$ and $b_{j}$.
- This non-identifiability can be removed by constraining, say, $\sum_{i} a_{i}=0$.
- However, posterior inference is complicated when constraints are imposed.
- Simple alternative: Run MCMC in the unconstrained (non-identifiable) model, and when MCMC sampling is complete, impose the identifiability constraints on the posterior samples for interpretation purposes.


## NegBin regression example: Simulation

- To illustrate, I simulated data from the model using $I=100$ and $J=10$, with true parameters generated as $a_{i} \sim \mathcal{N}(0,1)$, $b_{j} \sim \mathcal{N}(5,1), c_{1}=0, c_{2}=-1$, and $\alpha_{i}=1$ for all $i$.
- For simplicity, I assumed $\mathcal{N}\left(0,5^{2}\right)$ priors on $a_{i}, b_{j}$, and $c_{k}$, and fixed $\alpha_{i}=1$.
- To perform MCMC, I used an MH-within-Gibbs approach, updating each univariate parameter $a_{i}, b_{j}, c_{k}$ individually.
- E.g., MH with proposal $a_{i} \sim \mathcal{N}\left(a_{i, t-1}, 0.25^{2}\right)$ and target distribution equal to the full conditional for $a_{i}$.
- I ran MCMC for 100,000 sweeps, with a burn-in of 20,000. (We'll look at diagnostics below to see if these were good choices.)


## NegBin regression example: Traceplots



Traceplot of b[1]


## NegBin regression example: Traceplots



Traceplot of c[2]


## NegBin regression example: Estimated vs true

a - estimated vs true


## NegBin regression example: Estimated vs true

b-estimated vs true


## NegBin regression example: Estimated vs true

c - estimated vs true


## NegBin regression example: Acceptance rate



## NegBin regression example: Autocorrelation




## NegBin regression example: Autocorrelation



Autocorrelation of $b[1]$


## References and supplements

- R.E. Kass, B.P. Carlin, A. Gelman, and R.M. Neal (1998). Markov Chain Monte Carlo in Practice: A Roundtable Discussion. The American Statistician, 52(2), pp. 93-100.
- A.E. Gelfand and A.F. Smith (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409.


## Individual activity: Exit ticket

Answer these questions individually: https://forms.gle/r7YzCQFMbP1yQupj7

