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Markov chains

Let (Xt) = (X0, X1, X2, . . .) be a sequence of random vars.

(Xt) is a Markov chain if for all t,

Xt+1 ⊥⊥ (X1, . . . , Xt−1) | Xt

that is, p(xt+1|x1:t) = p(xt+1|xt) for all x1:t+1.

In other words, “the future is conditionally independent of the
past given the present.”

This is equivalent to saying that the distribution respects the
following directed graph:

X0 X1 X2 X3 · · ·
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Ergodic theorem for discrete Markov chains
For now, we assume (Xt) is a discrete Markov chain, that is,
Xt is a discrete random variable for all t.

The same intuitions apply in the continuous case, but the
math is considerably more subtle.

Let’s see the theorem first, then define the terminology.

Ergodic theorem: If (Xt) is a time-homogeneous, irreducible,
discrete Markov chain with stationary distribution π, then for
any bounded function h(x),

1

T

T∑
t=1

h(Xt)→ Eh(X)

as T →∞, with probability 1, where X ∼ π. If, further, (Xt)
is aperiodic, then for all x, x0,

P(Xt = x | X0 = x0)→ π(x).
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Definitions (1/2)

(Xt) is time-homogeneous if the distribution of Xt+1|Xt is
the same for all t, that is, for all a, b, t,

P(Xt+1 = b | Xt = a) = Tab

for some matrix T that doesn’t depend on t.

T is called the transition matrix. Note that the rows of T sum
to 1, that is,

∑
b Tab = 1 for all a.

π is a stationary (or invariant) distribution for T if for all b,∑
a

π(a)Tab = π(b).

This is often written more succinctly as πT = π, viewing π as
a row vector.
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Definitions (2/2)

(Xt) is irreducible if for all a, b, there is some t such that

P(Xt = b | X0 = a) > 0.

(In other words, we can get from point a to point b with
positive probability.)

(Xt) is aperiodic if for all a,

gcd
(
{t : P(Xt = a | X0 = a) > 0}

)
= 1

where gcd = greatest common divisor. (In other words, the
times at which we can return to a are not periodic.)
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Some comments on the conditions

Suppose π is our target distribution, that is, we want to
generate samples from π.

Metropolis–Hastings always yields a time-homogeneous
Markov chain with stationary distribution π.
I In fact, it satisfies a stronger condition called detailed balance.

Thus, irreducibility is the main condition we need to check in
practice. Fortunately, irreducibility usually holds in practice.
I Note: If Tab > 0 for all a, b, then the chain is irreducible.

Aperiodicity is nice to have but is not strictly necessary to
justify the use of sample averages. It usually holds anyways.
I Note: If Taa > 0 for some a, and the chain is irreducible, then

the chain is aperiodic.
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Stationarity

The term “stationary distribution” comes from this fact:

If X0 ∼ π and (Xt) is a time-homogeneous Markov chain with
stationary distribution π, then (Xt) is stationary, that is, for
all k, the distribution of (Xt, . . . , Xt+k) is the same for all t.

Under the ergodic theorem, Xt converges in distribution to π
(this is the 2nd part of the theorem, when aperiodicity holds).

Informally, when the distribution of Xt is close to π, we say
that the chain has “reached stationarity”.

In MCMC, the burn-in period is the amount of time before
the chain is sufficiently close to stationarity.
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Detailed balance

We say that detailed balance holds if for all a, b,

π(a)Tab = π(b)Tba.

If detailed balance holds, then π is a stationary distribution for
T , since

(Whiteboard exercise)
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Detailed balance

We say that detailed balance holds if for all a, b,

π(a)Tab = π(b)Tba.

If detailed balance holds, then π is a stationary distribution for
T , since∑

a

π(a)Tab =
∑
a

π(b)Tba = π(b)
∑
a

Tba = π(b).

Interpretation: At stationarity, the probability mass moving
from a to b equals the mass moving from b to a.
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Metropolis–Hastings algorithm
Nearly all MCMC algorithms are a special case of MH,
including Gibbs sampling.

Suppose the target distribution is π(x). For each x′, let
q(x|x′) be a distribution over x (the proposal distribution).

For all x, x′, define the acceptance ratio

α(x′, x) =
π(x)q(x′|x)
π(x′)q(x|x′)

.

MH algorithm: Initialize x0, and for t = 1, . . . , T ,
1. Sample x ∼ q(x|xt−1).

2. Sample u ∼ Uniform(0, 1).

3. If u < α(xt−1, x), then set xt = x, otherwise set xt = xt−1.
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Metropolis–Hastings algorithm

Steps 2 and 3 can equivalently be written: With probability
min{1, α(xt−1, x)}, set xt = x, otherwise set xt = xt−1.

Thus, in short, we propose x ∼ q(x|xt−1) and accept the
proposal with probability min{1, α(xt−1, x)}.

The MH algorithm defines a Markov chain with transition
matrix T , where

Tab = q(b|a)min
{
1,
π(b)q(a|b)
π(a)q(b|a)

}
when a 6= b, and for all a,

Taa = 1−
∑
b 6=a

Tab.
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Metropolis–Hastings: Verifying detailed balance

Assume π(a) > 0 and q(b|a) > 0 for all a, b.

We verify that detailed balance holds.

First, if a = b then it is trivial: (Whiteboard exercise)

Meanwhile, if a 6= b, then

(Whiteboard exercise)
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Metropolis–Hastings: Verifying detailed balance

Assume π(a) > 0 and q(b|a) > 0 for all a, b.

We verify that detailed balance holds.

First, if a = b then it is trivial: π(a)Taa = π(a)Taa.

Meanwhile, if a 6= b, then

π(a)Tab = π(a)q(b|a)min
{
1,
π(b)q(a|b)
π(a)q(b|a)

}
= min

{
π(a)q(b|a), π(b)q(a|b)

}
= π(b)q(a|b)min

{π(a)q(b|a)
π(b)q(a|b)

, 1
}

= π(b)Tba.
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Metropolis–Hastings: Intuition
Students are often mystified by the acceptance probability

min
{
1,
π(b)q(a|b)
π(a)q(b|a)

}
.

To understand it, consider an analogy:
I π(a) = amount of money belonging to person a.
I q(b|a) = fraction of a’s money proposed to be transferred to b.
I π(a)q(b|a) = amount proposed to be transferred from a to b.

We want equal amounts to be transferred between each pair.
So, a modification factor is applied to the proposed amounts.

If π(a)q(b|a) > π(b)q(a|b) then a would give too much to b.
I To make it equal, a gives only π(b)q(a|b)

π(a)q(b|a) times the proposed

amount, and keeps the rest.
I In the reverse direction, b gives her full proposed amount to a.

This modification factor is precisely the acceptance probability.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/QZXUx2wx3QxK7P7z8

(Three people per room, randomly assigned. 15 minutes.)
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Gibbs sampling is a special case of MH
Let π(x, y) be the target distribution. At iteration t+ 1, a
Gibbs update to x can be viewed as sampling from

q(x, y|xt, yt) := π(x|yt) I(y = yt).

Now, suppose we do MH with q as the proposal distribution.

With probability 1, y = yt when sampling from q, so

α((xt, yt), (x, y)) =
π(x, y)q(xt, yt|x, y)
π(xt, yt)q(x, y|xt, yt)

=
π(x, y)π(xt|y)I(yt = y)

π(xt, yt)π(x|yt)I(y = yt)

=
π(x, y)π(xt|y)
π(xt, y)π(x|y)

= 1.

Thus, we always accept, so MH reduces to Gibbs in this case.
19 / 49



Outline

Markov chains

Metropolis–Hastings

Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

20 / 49



Combining MCMC moves

One of the many nice things about MCMC is that it is easy to
combine various moves when constructing a sampler.

For instance, we can combine various Gibbs updates or MH
moves with different proposal distributions.

Suppose the target distribution is π. Roughly, a move is a way
of updating the variables using an MCMC step targeting π.

Formally, we define a move to be a transition matrix T such
that πT = π, that is, π is the stationary distribution of T .

Two useful ways of combining moves T1, . . . , Tk are:

1. products of moves, and
2. mixtures of moves.
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Products of moves (Deterministic cycle of moves)
If T1, . . . , Tk all have stationary distribution π, then the
product T = T1 · · ·Tk has stationary distribution π.

This is easy to check:

πT1T2 · · ·Tk = πT2 · · ·Tk = · · · = πTk = π.

This is used in fixed-scan Gibbs, where we update the variables
by cycling through them in a deterministically chosen order.

This is also used in MH-within-Gibbs, where MH moves on
the full conditionals are used in place of some Gibbs updates.

Note: We do NOT explicitly compute T ! All we have to do is
apply a sequence of moves.
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Mixtures of moves (Random choice of move)

If T1, . . . , Tk all have stationary distribution π, and
w1, w2, . . . , wk ≥ 0 with

∑k
i=1wi = 1, then the mixture

T =
∑k

i=1wiTi has stationary distribution π.

This is also easy to check:

πT =

k∑
i=1

wiπTi =

k∑
i=1

wiπ = π

k∑
i=1

wi = π.

This is used in random-scan Gibbs, where we randomly choose
which variable to update at each step. Here, wi is the
probability of updating variable i at a given step.

Note: We do NOT explicitly compute T ! All we have to do is
randomly choose a move, and apply that move.
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Careful! State-dependent moves are typically invalid

It is important to note that the random choice of move does
not depend on the current state.

In general, the choice of move at each iteration should not
depend on the current state of the Markov chain.

Using a state-dependent move can result in a failure to
converge to the correct stationary distribution.

Note: The fact that the proposal distribution in MH depends
on the current state does not violate this principle.

You need to be very, very careful if you want to try to use
state-dependent moves.
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MCMC rate of convergence

In basic Monte Carlo, we know V
(

1
T

∑T
t=1Xt

)
= V(Xt)/T

since the Xt’s are i.i.d. In MCMC, the Xt’s are no longer
i.i.d., so it is not as easy to assess the rate of convergence.

However, for any sequence of random variables, we have:

V
( 1
T

T∑
t=1

Xt

)
= (Whiteboard exercise)
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MCMC rate of convergence
In basic Monte Carlo, we know V

(
1
T

∑T
t=1Xt

)
= V(Xt)/T

since the Xt’s are i.i.d. In MCMC, the Xt’s are no longer
i.i.d., so it is not as easy to assess the rate of convergence.

However, for any sequence of random variables, we have:

V
( 1
T

T∑
t=1

Xt

)
=

1

T 2

T∑
s=1

T∑
t=1

Cov(Xs, Xt)

=
1

T 2

T∑
t=1

V(Xt) +
1

T 2

T∑
s=1

∑
t6=s

Cov(Xs, Xt).

If the Xt’s have the same distribution, then the first term
equals V(Xt)/T , just like the basic Monte Carlo variance.

Thus, in MCMC, the approximation error will be small if the
Cov(Xs, Xt) terms are small.
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Effective sample size
Assume (Xt) is stationary. Then C(δ) := Cov(Xt, Xt+δ) does
not depend on t, and C(δ) = C(−δ).

Define σ2 := V(Xt) = C(0) and ρ(δ) := Corr(Xt, Xt+δ).
Then C(δ) = σ2ρ(δ) and

V
( 1
T

T∑
t=1

Xt

)
=

1

T 2

T∑
s=1

T∑
t=1

C(s− t)

=
1

T
C(0) +

2

T 2

T−1∑
δ=1

(T − δ)C(δ)

=
σ2

T
+

2σ2

T

T−1∑
δ=1

(1− δ/T )ρ(δ) = σ2

Teff

where

Teff :=
T

1 + 2
∑T−1

δ=1 (1− δ/T )ρ(δ)
.
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Effective sample size
Teff is one way of defining an “effective sample size” (ESS).

Since V
(

1
T

∑T
t=1Xt

)
= σ2/Teff , the idea is that Teff is the

number of i.i.d. samples that basic Monte Carlo would require
to achieve the same approximation error.

To compute Teff in practice, one would estimate ρ(δ) ≈ ρ̂(δ)
using the samples themselves, and use

T̂eff :=
T

1 + 2
∑T−1

δ=1 (1− δ/T )ρ̂(δ)
,

possibly truncating the sum since ρ(δ) is harder to estimate
for larger δ values.

If Teff is much smaller than T , then the MCMC sampler is
struggling.
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Effective sample size

The formula above is not actually the usual definition of
effective sample size, which is:

T ′eff :=
T

1 + 2
∑∞

δ=1 ρ(δ)
.

In practice, the infinite sum is approximated by truncating it
at an appropriate value.

The interpretation is the same, but Teff may be more stable
than T ′eff since it doesn’t depend as much on larger δ values,
for which ρ(δ) is harder to estimate in a finite sample.

It’s also worth mentioning that τ := 1 + 2
∑∞

δ=1 ρ(δ) is called
the autocorrelation time.

30 / 49



Outline

Markov chains

Metropolis–Hastings

Combining MCMC moves

MCMC rate of convergence

Negative-Binomial regression example

31 / 49



NegBin regression example: Background
Modern high-throughput sequencing yields large matrices of
counts.

Copy ratio estimation in cancer genomics
I whole-exome or whole-genome sequencing data

Copy number variation in genetics
I whole-exome or whole-genome sequencing data

Gene expression analysis in biology/medicine
I RNA-seq data for transcript abundance

log counts for a whole-exome seq data set of 191 samples × 171523 loci
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NegBin regression example: Background

Whole-exome seq data for a tumor sample
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NegBin regression example: Background

Nontrivial modeling required to deal with many sources of bias:

GC bias

Mappability bias
I Repetitive sequences, Tandemly arrayed genes

Epigenetics
I Open chromatin, Promoters, Enhancers, etc.

Fragment length bias

Batch effects
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NegBin regression example: Background

35 / 49



NegBin regression example: Model

The technical variability in this data is naturally modeled as
Poisson, by the “law of small numbers”.
I Each count is the sum of many Bernoullis with small

probability.

However, there also outliers. A Negative-Binomial model is
often used to improve robustness to outliers.

The Negative-Binomial is an overdispersed Poisson —
specifically, a Poisson with a Gamma prior integrated out for
each observation.
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NegBin regression example: Model

Suppose the count data are Yij ∈ {0, 1, 2, . . .} for loci
i = 1, . . . , I and samples j = 1, . . . , J .

Let’s consider the following model:

Yij ∼ NegBin(mean = µij , dispersion = αi)

where
log(µij) = ai + bj + c1xi + c2x

2
i .

Interpretation:
I ai = locus-specific effect
I bj = sample-specific effect
I xi = locus covariate such as GC content
I c1, c2 = coefficients of linear and quadratic terms

Assume xi is standardized to mean zero, unit variance.

37 / 49



NegBin regression example: Identifiability

This model is not identifiable since an additive constant can
be moved between ai and bj .

This non-identifiability can be removed by constraining, say,∑
i ai = 0.

However, posterior inference is complicated when constraints
are imposed.

Simple alternative: Run MCMC in the unconstrained
(non-identifiable) model, and when MCMC sampling is
complete, impose the identifiability constraints on the
posterior samples for interpretation purposes.
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NegBin regression example: Simulation
To illustrate, I simulated data from the model using I = 100
and J = 10, with true parameters generated as ai ∼ N (0, 1),
bj ∼ N (5, 1), c1 = 0, c2 = −1, and αi = 1 for all i.

For simplicity, I assumed N (0, 52) priors on ai, bj , and ck, and
fixed αi = 1.

To perform MCMC, I used an MH-within-Gibbs approach,
updating each univariate parameter ai, bj , ck individually.

E.g., MH with proposal ai ∼ N (ai,t−1, 0.25
2) and target

distribution equal to the full conditional for ai.

I ran MCMC for 100,000 sweeps, with a burn-in of 20,000.
(We’ll look at diagnostics below to see if these were good
choices.)
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NegBin regression example: Traceplots
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NegBin regression example: Traceplots
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NegBin regression example: Estimated vs true
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NegBin regression example: Estimated vs true
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NegBin regression example: Estimated vs true
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NegBin regression example: Acceptance rate
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NegBin regression example: Autocorrelation
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NegBin regression example: Autocorrelation
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Individual activity: Exit ticket

Answer these questions individually:
https://forms.gle/r7YzCQFMbP1yQupj7

49 / 49

https://forms.gle/r7YzCQFMbP1yQupj7

	Outline
	Markov chains
	Metropolis–Hastings
	Combining MCMC moves
	MCMC rate of convergence
	Negative-Binomial regression example

