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Introduction

Datasets are often heterogeneous, in the sense that datapoints
tend to fall into groups.

If the group labels are observed, then they can easily be
handled — for instance, by treating them as covariates in
regression.

Meanwhile, if the group labels are unobserved, then we can
treat them as latent variables and infer them.

Introducing latent variables leads to mixture distributions.
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Introduction: Terminology
A latent variable is an unobserved random variable in the
model.

From the frequentist perspective, latent variables are random
and parameters are fixed.

From the Bayesian perspective, “latent variable” and
“parameter” mean essentially the same thing, except:

I “Parameter” is sometimes used to refer only to continuous
latent variables, but this is not a hard-and-fast rule.

I Latent variables can be discrete or continuous.

The term “mixture model” usually refers to a mixture in
which each datapoint has a discrete latent variable that
governs the parameters of the distribution.
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Introduction
Gaussian mixture models are a popular choice, due to their
flexibility and computational tractability.
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Introduction
Mixture models can be used for various purposes:
I Clustering
I Density estimation
I Priors on distributions
I Flexible structured models

Mixture models are used in many applications:
I Gene expression profiling (Yeung et al., 2001)

I Population structure (Pritchard et al., 2000)

I Computer vision (Stauffer and Grimson, 1999)

I Speaker recognition (Reynolds et al., 2000)

I Phylogenetics (Pagel and Meade, 2004)

I Flow cytometry (Lee and McLachlan, 2014)
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Clustering

Clustering can be used for a wide variety of tasks:

Finding hidden structure

e.g., discovering new cancer subtypes

Summarizing complex data

e.g., grouping documents on related topics

Feature construction for supervised learning

e.g., distance to cluster centers

Removing unwanted variation

e.g., population structure in genotype data

Imputing group labels

e.g., gating cell types in flow cytometry
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K-means clustering

K-means is a clustering algorithm that is closely related to
Gaussian mixture models.

K-means is one of the oldest and most commonly used
clustering algorithms.

K-means is fast and often works pretty well.

Basic idea: Initialize by randomly dividing into K groups.
Then repeat the following steps until convergence:

1. Set µk = sample mean of points in group k,
2. Reassign each point to the group k with the nearest µk.
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K-means clustering: Demo

(Demo in R)
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K-means clustering: Algorithm

K-means algorithm

Input: Data x1, . . . , xn ∈ Rd, and an integer K > 0.

Output: Cluster assignments z1, . . . , zn ∈ {1, . . . ,K}.

Randomly initialize z1, . . . , zn ∈ {1, . . . ,K}.
Repeat until no change in the z’s is observed:

1. For k = 1, . . . ,K: define Ak = {i : zi = k} and compute

µk ←
1

|Ak|
∑
i∈Ak

xi.

2. For i = 1, . . . , n: update zi ← argmink ‖xi − µk‖.
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K-means clustering: Pros and Cons

Pros

Simple and easy.

Scales up to large d and large n.

Converges quickly (i.e., requires few iterations).

Cons

Sometimes converges to a suboptimal local mode.

Only makes sense for quantitative data points in Rd.

Implicitly assumes clusters are radially symmetric and have
similar variance.

We have to choose the number of clusters, K.

Various generalizations can be used to address these
disadvantages.
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K-means clustering: Mixture model interpretation
Consider the following model:

Xi ∼ N (µzi , I)

indep. for i = 1, . . . , n, where µk ∈ Rd and zi ∈ {1, . . . ,K}.

One way to interpret K-means is that it seeks maximum
likelihood estimates of µ = (µ1, . . . , µK) and z = (z1, . . . , zn).

Finding the global MLE of µ and z is hard. The likelihood is a
complicated function with many local maxima.

But it is easy to maximize over µ, holding z fixed — just set
µk equal to the sample average of the xi’s such that zi = k.

Likewise, it is easy to maximize over z, holding µ fixed — just
set zi = k where µk is the nearest µ to xi.
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K-means clustering: Mixture model interpretation
Thus, K-means alternates between these two maximizations:

1. Maximize the likelihood over µ, holding z fixed.
2. Maximize the likelihood over z, holding µ fixed.

This kind of optimization algorithm is sometimes called
“coordinate ascent”.
I Optimize one variable at a time, holding the others fixed.
I This is analogous to Gibbs sampling, in which we sample each

variable given the others, rather than maximizing.

K-means is guaranteed to increase the likelihood at each
iteration — or more precisely, the likelihood never decreases.
I This is true for any coordinate ascent algorithm.

However, K-means can get stuck in a local maximum.
I This is usually dealt with by re-running the algorithm many

times with different random initializations.
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Gaussian mixture model
Let’s make the z’s latent variables by placing priors on them:

Z1, . . . , Zn
iid∼ Categorical(π),

that is, P(Zi = k) = πk, where π1, . . . , πK ≥ 0,
∑K

k=1 πk = 1.

Now, let’s generalize to allow component-specific covariances:

Xi|z ∼ N (µzi , Czi)

independently for i = 1, . . . , n, where µk ∈ Rd and Ck ∈ Rd×d
is symmetric positive definite for k = 1, . . . ,K.

Equivalently, by marginalizing out the z’s,

Xi ∼
K∑
k=1

πkN (µk, Ck)

indep. for i = 1, . . . , n. This is a Gaussian mixture model.
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Gaussian mixtures: Maximum likelihood
Maximum likelihood estimation of π, µ, and C is hard.

Expectation–maximization is the most common approach.

EM for mixtures is similar to K-means, but with weights w
rather than binary assignments.

EM for Gaussian mixtures: Randomly initialize π, µ, and C,
then iteratively repeat the following steps:

1. E-step:

wik ←
πkN (xi | µk, Ck)∑K
j=1 πj N (xi | µj , Cj)

nk ←
n∑

i=1

wik

2. M-step:
πk ← nk/n

µk ←
1

nk

n∑
i=1

wikxi

Ck ←
1

nk

n∑
i=1

wik(xi − µk)(xi − µk)
T
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Gaussian mixtures: Issues with maximum likelihood

Issue 1: The likelihood has lots of local maxima, and EM
tends to get stuck.

Issue 2: Often, the MLE doesn’t even exist.

The reason is that the likelihood goes to infinity if we set, say,
µ1 = x1 and take C1 → 0.

Issue 2 can be mitigated by putting a lower bound on the
scale of each component, but this is kind of hacky.

Both issues are resolved by using a Bayesian mixture model
and MCMC.
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Bayesian Gaussian mixture model (GMM)
Consider the following model:

Zi|π, µ,C ∼ Categorical(π)

Xi|z, π, µ, C ∼ N (µzi , Czi)

independently for i = 1, . . . , n.

For brevity, we write π = (π1, . . . , πK), µ = (µ1, . . . , µK), and
C = (C1, . . . , CK).

We will assume the following priors, independently:

(π1, . . . , πK) ∼ Dirichlet(α1, . . . , αK)

µ1, . . . , µK
iid∼ N (m0,Σ0)

C1, . . . , CK
iid∼ InverseWishart(S0, ν0).

It turns out that these are all semi-conjugate priors.
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Aside: Dirichlet distribution

(Image credit: Sue Liu, “Dirichlet distribution: Motivating LDA”)

(https://towardsdatascience.com/dirichlet-distribution-a82ab942a879)

22 / 53

https://towardsdatascience.com/dirichlet-distribution-a82ab942a879


Aside: Dirichlet distribution
The Dirichlet distribution is a conjugate prior on the
probability vector π in a Categorical(π) distribution.

It can be thought of as a multivariate version of the Beta
distribution, since if π ∼ Dirichlet(α1, . . . , αK), then
πk ∼ Beta(αk,

∑
j 6=k αj).

Given α1, . . . , αK > 0, the Dirichlet p.d.f. is

Dirichlet(π | α1, . . . , αK) =
1

B(α1, . . . , αK)

K∏
k=1

παk−1
k

for probability vectors π = (π1, . . . , πK), where

B(α1, . . . , αK) =
Γ(α1) · · ·Γ(αK)

Γ(α1 + · · ·+ αK)
.
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Bayesian GMM: Gibbs sampler (1/3)

Full conditional for zi:

p(zi| · · · ) ∝
zi

(Whiteboard activity)
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Bayesian GMM: Gibbs sampler (1/3)

Full conditional for zi:

p(zi| · · · ) ∝
zi
p(x, z, π, µ, C)

∝
zi
p(xi|z, π, µ, C)p(zi|π, µ,C)

= N (xi|µzi , Czi)πzi
∝
zi

Categorical(zi|wi)

where wi = (wi1, . . . , wiK) and wik = πkN (xi|µk,Ck)∑K
j=1 πj N (xi|µj ,Cj)

.

Note that the weights wik are identical to the EM weights.
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Bayesian GMM: Gibbs sampler (2/3)

Full conditional for π:

p(π| · · · ) ∝
π

(Whiteboard activity)
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Bayesian GMM: Gibbs sampler (2/3)

Full conditional for π:

p(π| · · · ) ∝
π
p(x, z, π, µ, C)

∝
π
p(z|π, µ,C)p(π)

∝
π

( n∏
i=1

πzi

)( K∏
k=1

παk−1
k

)
=

K∏
k=1

πnk+αk−1
k

∝
π

Dirichlet(π | α1 + n1, . . . , αK + nK)

where nk =
∑n

i=1 I(zi = k).

Here, nk is defined differently than in EM.
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Bayesian GMM: Gibbs sampler (3/3)
Full conditional for µk:

p(µk| · · · ) ∝
µk
p(µk)

∏
i : zi=k

p(xi|z, π, µ, C)

∝
µk
N (µk | m0,Σ0)

∏
i : zi=k

N (xi | µk, Ck)

∝
µk
N (µk | m,Σ)

where Σ−1 = Σ−10 + nkC
−1
k and

m = Σ
(
Σ−10 m0 + C−1k

∑
i : zi=k

xi
)
.

Full conditional for Ck:

p(Ck| · · · ) = InverseWishart(Ck | S, ν)

where ν = ν0 +nk and S = S0 +
∑

i : zi=k
(xi−µk)(xi−µk)T.
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Using Stan with mixture models

Stan can only work with continuous parameters, not discrete.

Thus, Stan cannot sample the latent variables z1, . . . , zn.

Stan’s designers recommend using the likelihood with the z’s
summed out:

p(x1, . . . , xn|π, µ,C) =

n∏
i=1

K∑
k=1

πkN (xi|µk, Ck).

I’ve never tried this in Stan, but I’m skeptical of this approach
based on my own experience trying this.
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Bayesian mixtures of other distributions

Instead of Gaussians, we can plug in other distributions for the
mixture components.
I Exponential families with conjugate priors are computationally

convenient for Gibbs sampling.

On high-dimensional data, it is useful to constrain the
covariance matrices Ck since they are hard to estimate.
I For example, Ck = σ2

kI or Ck = diag(σ2
k1, . . . , σ

2
kd).

I The Inverse-Gamma is a conjugate prior on the σ2’s.

Meanwhile, if a bit more flexibility than Gaussians is desired,
the multivariate skew-normal distributions are sometimes
useful.
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Height example

Let’s revisit the example involving the heights of 695 Dutch
women and 562 Dutch men.

Suppose we have the list of heights, but we don’t know which
datapoints are from women and which are from men.

Can we still infer the parameters of the female and male
distributions separately, e.g., the mean height for each sex?
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Height example: Model
Perhaps surprisingly, the answer is yes.
I For a finite mixture of Gaussians, it turns out that the

parameters are identifiable up to permutation of components.

In this example, the component assignment variable Zi
indicates whether individual i is female or male.

For now, to keep things as simple as possible,
1. assume both components have the same precision, λ, and
2. assume λ is fixed and known.

The two-component Gaussian mixture model is

µ0, µ1
iid∼ N (m, `−1)

π ∼ Beta(a, b)

Z1, . . . , Zn|µ, π
iid∼ Bernoulli(π)

Xi|z, µ, π ∼ N (µzi , λ
−1) independently for i = 1, . . . , n.
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Height example: Hyperparameter settings

Let’s use the following settings:

I λ = 1/σ2 where σ = 8 cm (≈ 3.1 inches)
(σ = stddev of the subject heights within each component)

I a = 1, b = 1 for Beta prior parameters
(equivalent to prior “sample size” of 1 for each component)

I m = 175 cm (≈ 5’ 9”)
(mean of the prior on the component means)

I ` = 1/s2 where s = 15 cm (≈ 6 inches)
(s = stddev of the prior on the component means)
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Height example: Gibbs sampler settings

Let’s initialize the sampler at:

I π = 1/2
(equal probability for each component)

I z1, . . . , zn sampled i.i.d. from Bernoulli(1/2)
(initial assignment to components chosen uniformly at random)

I µ0 = µ1 = m
(component means initialized to the mean of their prior)

Let’s do a short run of N = 103 iterations just for illustration.
I It probably needs to be run for longer to mix properly.
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Height example: Results from one Gibbs sampler run

Traceplots of the component means µ0 and µ1

Traceplot of the mixture weight π

(π = prior probability that a subject comes from component 1)
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Height example: Results from one Gibbs sampler run

Histograms of the heights of subjects assigned to each component

according to z1, . . . , zn in a typical sample
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Height example: Results from one Gibbs sampler run
From the traceplots of µ0 and µ1, we see that one component
quickly settles to have a mean of around 168–170 cm and the
other to a mean of around 182–186 cm.

Even though we’re not using the true labels, it is interesting
to note that this is fairly close to the sample averages: 168.0
cm (5 feet 6.1 inches) for females, and 181.4 cm (5 feet 11.4
inches) for males.

The traceplot of π indicates that the sampler is exploring
values of around 0.2 to 0.4—that is, the proportion of people
coming from group 1 is around 0.2 to 0.4.

Meanwhile, the true empirical proportion of males is
562/(695 + 562) ≈ 0.45. So the posterior seems slightly off.
This could be due to not having enough data, and/or due to
the fact that we are assuming a shared, fixed value of λ.
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Height example: Results from another run . . . uh oh!

Traceplots of the component means µ0 and µ1

Traceplot of the mixture weight π

(π = prior probability that a subject comes from component 1)
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Height example: A potentially serious issue

Why are females assigned to component 0 and males assigned
to component 1? Why not the other way around?

The model is symmetric with respect to the two components,
and thus the posterior is also symmetric.

If we run the sampler multiple times, it will randomly settle in
one of these two modes.
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Height example: A potentially serious issue

If the sampler were behaving properly, it would move back
and forth between these two modes, but it doesn’t—it gets
stuck in one and stays there.

This is a very common problem with mixture models.
Fortunately, however, the results are still valid if we interpret
them correctly.

Specifically, our inferences will be valid as long as we only
consider quantities that are invariant with respect to
permutations of the components.
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Label switching problem
The mixture likelihood is invariant to permutations of the
component assignment labels.
I E.g., in the height example, female/male could be 0/1 or 1/0.

Thus, if the prior is invariant, the posterior is invariant as well.

This symmetry means that there are typically K! regions of
parameter space with high posterior probability.

Since this is a nonidentifiability of the model, it doesn’t really
matter which permutation of labels we use.

However, there is a subtle issue. Suppose MCMC is mixing
well enough that it moves between multiple permutations.
I How would you estimate, say, the posterior mean of the female

heights?
I Consider the MCMC samples of µ0. What will the sample

average converge to? What about µ1?
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Label switching problem

The label switching problem is that MCMC sample averages
of permutation-dependent quantities are usually meaningless,
if the MCMC chain is mixing between multiple permutations.

The most obvious “solution” is to impose constraints to
ensure identifiability, however, this doesn’t always solve the
problem.

The reason is that the constraint boundaries may chop up
some of the K! “modes” into two or more parts.
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Label switching problem: Galaxy example

Galaxy dataset example

(Jasra et al., 2005)
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Label switching problem: Galaxy example

Identifiability constraints don’t solve the problem

(Jasra et al., 2005)
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Label switching problem: Possible solutions
Look at individual samples, e.g., in scatterplots.

Only take averages of label-invariant quantities.
I For example, average I(zi = zj) to estimate the similarity

matrix Sij = P(Zi = Zj |x).

Use label-invariant loss functions to compute posterior
summaries (Celeux et al., 2000).

Relabel each MCMC sample to minimize a loss function that
encourages similar points to be together (Stephens, 2000).

Mean partition: Choose a partition of the datapoints that
minimizes distance to the MCMC samples of partitions
(Huelsenbeck and Andolfatto, 2007).

If some labels are available, use them as anchors (Kunkel and
Peruggia, 2018).
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Don’t overinterpret the clusters

In many applications, a mixture model is used for practical
purposes, rather than because the data are actually thought
to arise from a mixture.
I For example, when clustering images or documents.
I In such cases, one should be careful not to overinterpret the

inferred components.

Meanwhile, sometimes the data definitely come from a
mixture, but the assumed model is almost certainly wrong.
I For example, extracellular recordings of multiple neurons.
I Again, it is dangerous to overinterpret the inferred

components.

Interpretation of mixture component parameters should only
be done with a healthy dose of skepticism.
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Choosing the number of components, K
Choosing K can be tricky.

Cross-validation is one option, however, it can be
computationally expensive.

The marginal likelihood is not easy to compute, but Pritchard
et al. (2000) define an approximate marginal likelihood that is
reliable and useful.

A natural Bayesian approach is to put a prior on K. This
works well and is similar to infinite mixture models (Miller and
Harrison, 2018).

A computationally convenient option is to use an “overfitted
mixture” in which a large K is used, and the prior on π is
chosen to make unneeded components shrink to zero weight.
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Group activity: Check your understanding

Go to breakout rooms and work together to answer these questions:
https://forms.gle/WBzKPGP2XoGtwJcD9

(Three people per room, randomly assigned. 15 minutes.)
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