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1 How random is the flip of a coin?

1.1 “It’s a toss-up”

• It is so generally assumed that a coin toss comes up heads half of the time, that it has
even become a standard metaphor for two events with equal probability.

• But think about it—is it really 50-50? Suppose we always flip a coin starting with
heads up. Could the outcome actually be biased toward either heads or tails?

• Assume the coin is physically symmetric. Since an “in-flight” coin is a relatively simple
physical system, the outcome should be essentially determined by the initial conditions
at the beginning of it’s trajectory. So, any randomness comes from the flipper, not the
flipping.

• Experiment: Flip a coin n = 10 times, starting with heads up each time. (flip, flip,
flip, . . . ) Do we know anything more now than when we started? We got some data,
so we should know more now. But probably we need more data! How much more?
How can we quantify our uncertainty about the answer?

• (And now comes the surprise: Diaconis et al. (2007) argue that, in fact, the outcome
is slightly biased due to precession, and will come up the same way it started about
51% of the time! This is based on physical, rather than statistical, evidence.)

1.2 Probability and Statistics are two sides of the same coin

• Let X1, . . . , Xn be the outcomes of n coin flips, and suppose they are i.i.d. (independent
and identically distributed), with the probability of heads equal to θ.

• This defines a probabilistic model, for which—if we knew θ—we could prove all kinds
of things about the distribution of X1:n = (X1, . . . , Xn). This is Probability.

• Statistics, meanwhile, goes the other direction—trying to obtain information about θ
from X1:n.

Probability: θ −→ X1:n

Statistics: θ ←− X1:n

• To see if the outcome is biased, based on the data X1, . . . , Xn, perhaps the first thing
that comes to mind is to simply look at the proportion of heads, and see if it’s close
to 1/2. But on reflection, there are some issues with this:

– How close is “close”?

– How would we quantify our uncertainty about the correct answer?

– If n is very small, say 2 or 3, there is a good chance that the flips will all come up
the same (all heads or all tails), in which case the proportion of heads would be
1 or 0. But from experience, we know θ is unlikely to be close to 1 or 0. Would
it be better to take such prior knowledge into account?
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P(this = Bayes | data) < 1 Richard Price Pierre-Simon Laplace

Figure 1: Founders of Bayesian statistics.

1.3 The Bayesian approach

• Thomas Bayes (1701?–1761) was an ordained minister who was also a talented mathe-
matician and a Fellow of the Royal Society. Bayes came up with an ingenious solution
to this problem, but died before publishing it. Fortunately, his friend Richard Price
carried his work further and published it in 1764. Apparently independently, Laplace
rediscovered essentially the same idea in 1774, and developed it much further. (See
Figure 1.)

• The idea is to assume a prior probability distribution for θ—that is, a distribution
representing the plausibility of each possible value of θ before the data is observed.
Then, to make inferences about θ, one simply considers the conditional distribution of
θ given the observed data. This is referred to as the posterior distribution, since it
represents the plausibility of each possible value of θ after seeing the data.

• Mathematically, this is expressed via Bayes’ theorem,

p(θ|x) =
p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ), (1.1)

where x is the observed data (for example, x = x1:n). In words, we say “the posterior
is proportional to the likelihood times the prior”. Bayes’ theorem is essentially just
the definition of conditional probability

P(B|A) =
P(A ∩B)

P(A)
=

P(A|B)P(B)

P(A)

extended to conditional densities. (From the modern perspective, Bayes’ theorem is
a trivial consequence of the definition of a conditional density—however, when Bayes
wrote his paper, the idea of a conditional probability density did not yet exist!)

• More generally, the Bayesian approach—in a nutshell—is to assume a prior distribution
on any unknowns, and then just follow the rules of probability to answer any questions
of interest. This provides a coherent framework for making inferences about unknown
parameters θ as well as any future data or missing data, and for making rational
decisions based on such inferences.
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Figure 2: Jacob Bernoulli (not in a bad mood, everyone is just annoying).

2 Beta-Bernoulli model

We now formally explore a Bayesian approach to the coin flipping problem.

2.1 Bernoulli distribution

• The Bernoulli distribution models binary outcomes, i.e., taking two possible values.
The convention is to use 0 and 1.

• It is named for Jacob Bernoulli (1655–1705), who is known for various inconsequential
trivialities such as developing the foundations of probability theory (including the law
of large numbers), combinatorics, differential equations, and the calculus of variations.
Oh, and he discovered the constant e.

• The Bernoulli distribution shows up everywhere, due to the ubiquity of binary outcomes
(for instance, in computer vision, neuroscience, demographics and polling, public health
and epidemiology, etc. etc. etc.).

• We write X ∼ Bernoulli(θ) to mean that

P(X = x | θ) =

{
θ if x = 1
1− θ if x = 0

and is 0 otherwise. In other words, the p.m.f. (probability mass function) is

p(x|θ) = P(X = x | θ) = θx(1− θ)1−x1(x ∈ {0, 1}).

• The mean (or expectation) is EX =
∑

x∈{0,1} xp(x|θ) = θ.

• Notation: P denotes “the probability of”, and E denotes the expectation. The indi-
cator function, 1(E), equals 1 when E is true and is 0 otherwise. The symbol ∈
means “belongs to the set”.
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Figure 3: Some Beta p.d.f.s.

• If X1, . . . , Xn
iid∼ Bernoulli(θ) then for x1, . . . , xn ∈ {0, 1},

p(x1:n|θ) = P(X1 = x1, . . . , Xn = xn | θ)

=
n∏

i=1

P(Xi = xi | θ)

=
n∏

i=1

p(xi|θ)

=
n∏

i=1

θxi(1− θ)1−xi

= θ
∑

xi(1− θ)n−
∑

xi . (2.1)

• Viewed as a function of θ, p(x1:n|θ) is called the likelihood function. It is sometimes
denoted L(θ;x1:n) to emphasize this. Viewed as a distribution on x1:n, we will refer
to this as the generator or generating distribution (sometimes it is referred to as
the “sampling distribution”, but this becomes ambiguous when one is also sampling
from the posterior).

2.2 Beta distribution

• Bayes used a uniform prior on θ, which is a special case of the beta distribution.

• Given a, b > 0, we write θ ∼ Beta(a, b) to mean θ has p.d.f. (probability density
function)

p(θ) = Beta(θ|a, b) =
1

B(a, b)
θa−1(1− θ)b−11(0 < θ < 1), (2.2)
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A posteriori

i.e., p(θ) ∝ θa−1(1 − θ)b−1 on the interval from 0 to 1. Here, B(a, b) is Euler’s beta
function.

• The mean is Eθ =
∫
θ p(θ)dθ = a/(a+ b).

Notation

• f(x) ∝ g(x) (“f is proportional to g”) means there is a constant c such that f(x) =
cg(x) for all x. For functions of multiple variables, say x and y, we write ∝

x
to indicate

proportionality with respect to x only. This simple device is surprisingly useful for
deriving posterior distributions.

• Usually, we use capital letters to denote random variables (e.g., X) and lowercase for
particular values (e.g., x). However, in the case of theta, we will use bold font to denote
the random variable θ, and unbold for particular values θ.

• We will usually use p for all p.d.f.s and p.m.f.s, following the usual convention that the
symbol used (e.g., the θ in the expression p(θ)) indicates which random variable we
are talking about.

2.3 The posterior

• Using Bayes’ theorem (Equation 1.1), and plugging in the likelihood (Equation 2.1)
and the prior (Equation 2.2), the posterior is

p(θ|x1:n) ∝ p(x1:n|θ)p(θ)

= θ
∑

xi(1− θ)n−
∑

xi
1

B(a, b)
θa−1(1− θ)b−11(0 < θ < 1)

∝ θa+
∑

xi−1(1− θ)b+n−
∑

xi−11(0 < θ < 1)

∝ Beta
(
θ | a+

∑
xi, b+ n−

∑
xi
)
. (2.3)
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Figure 4: Posterior densities. The dotted line shows the true value of theta.

• So, the posterior has the same form (a Beta distribution) as the prior! When this
happens, we say that the prior is conjugate (more on this later).

• Since the posterior has such a nice form, it is easy to work with—e.g., for comput-
ing certain integrals with respect to the posterior, sampling from the posterior, and
computing the posterior p.d.f. and its derivatives.

Example

• Suppose we choose a = 1 and b = 1, so that the prior is uniform. As a simulation

to see how the posterior behaves, let’s generate data X1, . . . , Xn
iid∼ Bernoulli(θ0) with

θ0 = 0.51.

• Figure 4 shows the posterior p.d.f. for increasing amounts of data. (Note that this will
be different each time the experiment is run, because the samples will be different.)
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3 The cast of characters

Here’s a list of the mathematical objects we will most frequently encounter. So far, we’ve
seen the likelihood, prior, and posterior. In the rest of this chapter, we will get acquainted
with the rest of them. Here, we denote the observed data by x, noting that this may consist
of many data points, e.g., x = x1:n = (x1, . . . , xn).

generator / likelihood p(x|θ)
prior p(θ)
posterior p(θ|x)
marginal likelihood p(x)
posterior predictive p(xn+1|x1:n)
loss function `(s, a)
posterior expected loss ρ(a, x)
risk / frequentist risk R(θ, δ)
integrated risk r(δ)

3.1 Marginal likelihood and posterior predictive

The marginal likelihood is

p(x) =

∫
p(x|θ)p(θ) dθ

i.e., it is the marginal p.d.f./p.m.f. of the observed data, obtained by integrating θ out of
the joint density p(x, θ) = p(x|θ)p(θ). When θ is a vector, this will be a multi-dimensional
integral.

When the data is a sequence x = (x1, . . . , xn), the posterior predictive distribution
is the distribution of Xn+1 given X1:n = x1:n. When X1, . . . , Xn, Xn+1 are independent given
θ = θ, the posterior predictive p.d.f./p.m.f. is given by

p(xn+1|x1:n) =

∫
p(xn+1, θ|x1:n) dθ

=

∫
p(xn+1|θ, x1:n)p(θ|x1:n) dθ

=

∫
p(xn+1|θ)p(θ|x1:n) dθ.

3.2 Example: Beta-Bernoulli

If θ ∼ Beta(a, b) and X1, . . . , Xn | θ = θ are i.i.d. Bernoulli(θ) (as in Section 2), then the
marginal likelihood is

p(x1:n) =

∫
p(x1:n|θ)p(θ) dθ

=

∫ 1

0

θ
∑

xi(1− θ)n−
∑

xi
1

B(a, b)
θa−1(1− θ)b−1dθ

=
B
(
a+

∑
xi, b+ n−

∑
xi
)

B(a, b)
,
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Blaise Pascal Abraham Wald

Figure 5: Historical figures in decision theory.

by the integral definition of the Beta function. Letting an = a+
∑
xi and bn = b+n−

∑
xi

for brevity, and using the fact (from Equation 2.3) that p(θ|x1:n) = Beta(θ|an, bn),

P(Xn+1 = 1 | x1:n) =

∫
P(Xn+1 = 1 | θ)p(θ|x1:n)dθ

=

∫
θ Beta(θ|an, bn) =

an
an + bn

,

hence, the posterior predictive p.m.f. is

p(xn+1|x1:n) =
axn+1
n b1−xn+1

n

an + bn
1(xn+1 ∈ {0, 1}).

4 Decision theory

In decision theory, we start with the end in mind—how are we actually going to use our
inferences and what consequences will this have? The basic goal is to minimize loss (or
equivalently, to maximize utility/gain). While there are multiple ways of making this precise,
here we consider the standard Bayesian approach, which is to minimize posterior expected
loss.

A famous early example of decision-theoretic reasoning is Pascal’s Wager, in which Blaise
Pascal (1623–1662) suggested the following argument for believing in God: If God exists then
one will reap either an infinite gain or infinite loss (eternity in heaven or hell), depending on
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whether one believes or not—meanwhile, if he does not exist, the gain or loss is finite. Thus,
he reasoned, no matter how small the probability that God exists, the rational decision is
to believe. Pascal’s loss function can be represented by the following matrix, in which 1
indicates existence, 0 indicates non-existence, and α, β are finite values:

Belief
0 1

Truth
0 α β
1 ∞ −∞

In statistics, loss functions were used in a limited way during the 1700s and 1800s (most
notably Laplace’s absolute error and Gauss’ quadratic error), but the real developments
would have to wait until the 1900s.

The father of statistical decision theory was Abraham Wald (1902–1950). Wald was born
in Austria-Hungary, and moved to the United States after the annexation of Austria into
Germany in 1938. In 1939, he published a groundbreaking paper establishing the founda-
tions of modern statistical decision theory. Wald also developed sequential analysis, made
significant contributions to econometrics and geometry, and provided an important statistical
analysis of aircraft vulnerability during World War II.

4.1 The basics of Bayesian decision theory

• The general setup is that there is some unknown state S (a.k.a. the state of nature), we
receive an observation x, we take an action a, and we incur a real-valued loss `(S, a).

S state (unknown)
x observation (known)
a action

`(s, a) loss

• In the Bayesian approach, S is a random variable, the distribution of x depends on
S, and the optimal decision is to choose an action a that minimizes the posterior
expected loss,

ρ(a, x) = E(`(S, a)|x).

In other words, ρ(a, x) =
∑

s `(s, a)p(s|x) if S is a discrete random variable, while if S
is continuous then the sum is replaced by an integral.

• A decision procedure δ is a systematic way of choosing actions a based on observa-
tions x. Typically, this is a deterministic function a = δ(x) (but sometimes introducing
some randomness into a can be useful).

• A Bayes procedure is a decision procedure that chooses an a minimizing the posterior
expected loss ρ(a, x), for each x.

• Note: Sometimes the loss is restricted to be nonnegative, to avoid certain pathologies.
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Example 1: Estimating θ, with quadratic loss

• Setup:

– State: S = θ

– Observation: x = x1:n

– Action: a = θ̂

– Loss: `(θ, θ̂) = (θ − θ̂)2 (quadratic loss, a.k.a. square loss)

• Using quadratic loss here works out nicely, since the optimal decision is simply to
estimate θ by the posterior mean—in other words, to choose

θ̂ = δ(x1:n) = E(θ|x1:n).

• To see why, note that `(θ, θ̂) = θ2 − 2θθ̂ + θ̂2, and thus

ρ(θ̂, x1:n) = E(`(θ, θ̂)|x1:n) = E(θ2|x1:n)− 2θ̂E(θ|x1:n) + θ̂2,

which is convex as a function of θ̂. Setting the derivative with respect to θ̂ equal to 0,
and solving, we find that the minimum occurs at θ̂ = E(θ|x1:n).

Example 2: Predicting the next outcome, Xn+1, with 0− 1 loss

• Assume Xn+1 is a discrete random variable.

• Setup:

– State: S = Xn+1

– Observation: x = x1:n

– Action: a = x̂n+1

– Loss: `(s, a) = 1(s 6= a) (this is called the 0− 1 loss)

• Using 0 − 1 loss here works out nicely, since it turns out that the optimal decision
is simply to predict the most probable value according to the posterior predictive
distribution, i.e.,

x̂n+1 = δ(x1:n) = arg max
xn+1

p(xn+1|x1:n).

4.2 Real-world decision problems

Medical decision-making

At what age should you get early screening for cancer (such as prostate or breast cancer)?
There have been recent recommendations to delay screening until later ages due to a high
number of false positives, which lead to unnecessary biopsies and considerable physical dis-
comfort and mental distress, in addition to medical costs.
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Public health policy

The CDC estimates that 5–20% of the US population gets influenza annually, and thousands
die. Each year, in order to produce the right kinds of flu shots in sufficient quantities,
researchers and vaccine manufacturers have to predict the prevalence of different strains of
the virus at least 6 months in advance of flu season.

Government regulations

Per watt produced, there are approximately 4000 times more deaths due to coal power
generation than due to nuclear power—not counting the environmental costs. Nonetheless,
regulation of nuclear power is very stringent, perhaps due to a misperception of the risk.

Personal financial decisions

Should you buy life insurance? To make this decision, you would need to think about your
probability of dying early and the financial impact it would have on your family, weighed
against the cost of the policy.

A word of caution

Use good judgment! A formal decision analysis is almost always oversimplified, and it’s
a bad idea to adhere strictly to such a procedure. Decision-theoretic analysis can help to
understand and explore a decision problem, but after all the analysis, decisions should be
made based on your best judgment.

4.3 Example: Resource allocation for disease prevention/treatment

• Suppose public health officials in a small city need to decide how much resources to
devote toward prevention and treatment of a certain disease, but the fraction θ of
infected individuals in the city is unknown.

• Suppose they allocate enough resources to accomodate a fraction c of the population.
If c is too large, there will be wasted resources, while if it is too small, preventable cases
may occur and some individuals may go untreated. After deliberation, they tentatively
adopt the following loss function:

`(θ, c) =

{
|θ − c| if c ≥ θ
10|θ − c| if c < θ.

• By considering data from other similar cities, they determine a prior p(θ). For sim-
plicity, suppose θ ∼ Beta(a, b) (i.e., p(θ) = Beta(θ|a, b)), with a = 0.05 and b = 1.

• They conduct a survey assessing the disease status of n = 30 individuals, x1, . . . , xn.

This is modeled as X1, . . . , Xn
iid∼ Bernoulli(θ), which is reasonable if the individuals are

uniformly sampled and the population is large. Suppose all but one are disease-free,
i.e.,

∑n
i=1 xi = 1.
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Figure 6: Posterior expected loss for the disease prevalence example.

The Bayes procedure

• The Bayes procedure is to minimize the posterior expected loss

ρ(c, x) = E(`(θ, c)|x) =

∫
`(θ, c)p(θ|x)dθ

where x = x1:n. We know p(θ|x) from Equation 2.3, so we can numerically compute
this integral for each c.

• Figure 6 shows ρ(c, x) for our example. To visualize why it looks like this, think about
the shape of `(θ, c) as a function of c, for some fixed θ—then imagine how it changes
as θ goes from 0 to 1, and think about taking a weighted average of these functions,
with weights determined by p(θ|x).

• The minimum occurs at c ≈ 0.08, so under the assumptions above, this is the optimal
amount of resources to allocate. Note that this makes more sense than naively choosing
c = x̄ = 1/30 ≈ 0.03, which does not account for uncertainty in θ and the large loss
that would result from possible under-resourcing.

4.4 Frequentist risk and Integrated risk

• Consider a decision problem in which S = θ.

• The risk (or frequentist risk) associated with a decision procedure δ is

R(θ, δ) = E
(
`(θ, δ(X)) | θ = θ

)
,

where X has distribution p(x|θ). In other words,

R(θ, δ) =

∫
`(θ, δ(x)) p(x|θ) dx

if X is continuous, while the integral is replaced with a sum if X is discrete.
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Loss
L = `(θ, δ(X))

Post. exp. loss Frequentist risk

E(L | X = x) E(L | θ = θ)

Integrated risk

E(L)

Figure 7: Visualizing the relationships between different decision-theoretic objects.

• The integrated risk associated with δ is

r(δ) = E(`(θ, δ(X)) =

∫
R(θ, δ) p(θ) dθ.

• The diagram in Figure 7 (denoting L = `(θ, δ(X)) for brevity) helps to visualize the
relationships between all of these concepts.

4.4.1 Example: Resource allocation, revisited

• The frequentist risk provides a useful way to compare decision procedures in a prior-free
way.

• In addition to the Bayes procedure above, consider two other possibilities: choosing
c = x̄ (sample mean) or c = 0.1 (constant).

• Figure 8 shows each procedure as a function of
∑
xi, the observed number of diseased

cases. For the prior we have chosen, the Bayes procedure always picks c to be a little
bigger than x̄.

• Figure 9 shows the risk R(θ, δ) as a function of θ for each procedure. Smaller risk is
better. (Recall that for each θ, the risk is the expected loss, averaging over all possible
data sets. The observed data doesn’t factor into it at all.)

• The constant procedure is fantastic when θ is near 0.1, but gets very bad very quickly
for larger θ. The Bayes procedure is better than the sample mean for nearly all θ’s.
These curves reflect the usual situation—some procedures will work better for certain
θ’s and some will work better for others.

• A decision procedure is called admissible if there is no other procedure that is at
least as good for all θ and strictly better for some. That is, δ is admissible if there is
no δ′ such that

R(θ, δ′) ≤ R(θ, δ)

for all θ and R(θ, δ′) < R(θ, δ) for at least one θ.
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Figure 8: Resources allocated c, as a function of the number of diseased individuals observed,∑
xi, for the three different procedures.

Figure 9: Risk functions for the three different procedures.

• Bayes procedures are admissible under very general conditions.

• Admissibility is nice to have, but it doesn’t mean a procedure is necessarily good.
Silly procedures can still be admissible—e.g., in this example, the constant procedure
c = 0.1 is admissible too!

5 Exercises

Gamma-Exponential model

We write X ∼ Exp(θ) to indicate that X has the Exponential distribution, that is, its p.d.f.
is

p(x|θ) = Exp(x|θ) = θ exp(−θx)1(x > 0).

The Exponential distribution has some special properties that make it a good model for
certain applications. It has been used to model the time between events (such as neuron
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spikes, website hits, neutrinos captured in a detector), extreme values such as maximum daily
rainfall over a period of one year, or the amount of time until a product fails (lightbulbs are
a standard example).

Suppose you have data x1, . . . , xn which you are modeling as i.i.d. observations from an
Exponential distribution, and suppose that your prior is θ ∼ Gamma(a, b), that is,

p(θ) = Gamma(θ|a, b) =
ba

Γ(a)
θa−1 exp(−bθ)1(θ > 0).

1. Derive the formula for the posterior density, p(θ|x1:n). Give the form of the posterior in
terms of one of the distributions we’ve considered so far (Bernoulli, Beta, Exponential,
or Gamma).

2. Now, suppose you are measuring the number of seconds between lightning strikes
during a storm, your prior is Gamma(0.1, 1.0), and your data is

(x1, . . . , x8) = (20.9, 69.7, 3.6, 21.8, 21.4, 0.4, 6.7, 10.0).

Using the programming language of your choice, plot the prior and posterior p.d.f.s.
(Be sure to make your plots on a scale that allows you to clearly see the important
features.)

3. Give a specific example of an application where an Exponential model would be rea-
sonable. Give an example where an Exponential model would NOT be appropriate,
and explain why.

Decision theory

4. Show that if ` is 0 − 1 loss and S is a discrete random variable, then the action a
that minimizes the posterior expected loss ρ(a, x1:n) = E(`(S, a)|x1:n) is the a that
maximizes P(S = a | x1:n).

5. Consider the Beta-Bernoulli model. Intuitively, how would you predict xn+1 based on
observations x1, . . . , xn? Using your result from Exercise 4, what is the Bayes procedure
for making this prediction when ` is 0− 1 loss?

6. Are there settings of the “hyperparameters” a, b for which the Bayes procedure agrees
with your intuitive procedure? Qualitatively (not quantitatively), how do a and b
influence the Bayes procedure?

7. What is the posterior mean E(θ|x1:n), in terms of a, b, and x1, . . . , xn? Express this
as a convex combination of the sample mean x̄ = 1

n

∑
xi and the prior mean (that is,

write it as tx̄+ (1− t)E(θ) for some t ∈ [0, 1]).

8. Now, consider the loss function and the prior from the example in Section 4.3. Using the
programming language of your choice, reproduce the plot in Figure 6. Do the integrals
numerically using a Riemann sum approximation, such as

∫ 1

0
f(x)dx ≈ 1

N

∑N
i=1 f((i−

1
2
)/N) for a suitably large N .

9. Come up with a scenario in which S is discrete but the 0 − 1 loss would NOT be
appropriate, and give an example of the loss function that would be more suitable.
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