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Abstract. Mutational processes, such as the molecular effects of carcinogenic agents or
defective DNA repair mechanisms, are known to produce different mutation types with char-
acteristic frequency profiles, referred to as mutational signatures. Non-negative matrix fac-
torization (NMF) has successfully been used to discover many mutational signatures, yielding
novel insights into cancer etiology and targeted therapies. However, the NMF model is only
a rough approximation to reality, and even small departures from this assumed model can
have large negative effects on the accuracy and reliability of the results. We propose a new
approach to mutational signatures analysis that improves robustness to misspecification by
using a power posterior for a fully Bayesian NMF model, while employing a sparsity-inducing
prior to automatically infer the number of active signatures. In extensive simulation studies,
we find that our proposed approach recovers more true signatures with greater accuracy than
current leading methods. On whole-genome sequencing data for six cancer types from the
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, we find that our method
is able to accurately recover more signatures than the current state-of-the-art.

1. Introduction

Carcinogenic processes such as UV radiation, smoking, defective DNA repair mechanisms,
and naturally occuring biochemical reactions generate characteristic patterns of somatic mu-
tations known as mutational signatures (Helleday et al., 2014; Koh et al., 2021; Nik-Zainal
et al., 2012b). While these processes cannot be observed directly in patients, the cumu-
lative effect of multiple processes on an individual tumor can be quantified using genome
sequencing, and their distinct mutational signatures can be inferred using statistical mod-
eling. Non-negative matrix factorization (NMF) models have proven effective in estimating
mutational signatures as well as the mutational load due to each signature in each tumor
sample (Alexandrov et al., 2013b; Nik-Zainal et al., 2012a). Mutational signatures analysis
has contributed to novel insights in a variety of areas of cancer research (Alexandrov et al.,
2013a, 2015, 2020; Li et al., 2020; Nik-Zainal et al., 2012b) and has emerging translations to
clinical outcomes (Chakravarty and Solit, 2021).

Existing methods for mutational signatures analysis are fundamentally limited by the fact
that they assume—either explicitly or implicitly—a particular probabilistic model for how
mutations arise. However, any assumed model will only be a rough approximation to re-
ality. Unfortunately, using an incorrect model—known as model misspecification—can lead
to spurious inferences (Miller and Dunson, 2018). In particular, a key challenge in muta-
tional signature discovery is determining the number of active signatures (Alexandrov et al.,
2013a,b; Kim et al., 2016; Rosales et al., 2017), and standard statistical methods for this
type of model selection problem tend to be extremely sensitive to misspecification (Cai et al.,
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2021; Miller and Dunson, 2018). For instance, methods based on automatic relevance de-
termination (ARD) (Kim et al., 2016; Tan and Févotte, 2013) and Bayesian spike-and-slab
models (Legramanti et al., 2020) tend to overestimate the number of signatures when there is
mild overdispersion (Zito and Miller, 2024). Of course, robustness to outliers can be obtained
using overdispersed models such as negative binomial (Lyu et al., 2020), but this does not
handle any other types of misspecification. Perhaps due to this sensitivity, the current leading
methods rely heavily on ad hoc techniques such as manual filtering (Alexandrov et al., 2020)
or neural networks (Nebgen et al., 2021) for determining the number of signatures.

In this paper, we show that leading methods for mutational signatures analysis are not
robust to model misspecification, and we introduce a novel method that exhibits better per-
formance under misspecification. Specifically, we investigate the degree to which misspec-
ification causes existing methods to (1) fail to find important processes or (2) infer spuri-
ous processes that do not actually exist. Our findings indicate a lack of robustness in two
widely used methods: SigProfilerExtractor (Alexandrov et al., 2013b, 2020; Islam et al., 2022)
and SignatureAnalyzer (Alexandrov et al., 2020; Kim et al., 2016; Tan and Févotte, 2013);
see Figure 1 for examples. To address these limitations, we propose a new method called
BayesPowerNMF. By leveraging a power posterior (Miller and Dunson, 2018) and a sparsity-
inducing prior (Zito and Miller, 2024), BayesPowerNMF provides nonparametric robustness
to model misspecification and automated, principled selection of the number of latent pro-
cesses. Through simulation studies and a comparison to existing methods on whole-genome
data for six cancer types (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Con-
sortium, 2020), we show that our BayesPowerNMF method finds more true processes and
fewer spurious processes than competitors; see Figure 1 for two illustrations.

The article is organized as follows. In Section 2, we introduce our proposed methodology.
We present simulation results comparing our method to leading existing methods in Section 3.
Then, in Section 4, we compare the methods in an application to whole-genome data from
the Pan-Cancer Analysis of Whole Genomes Consortium (PCAWG). We conclude with a
discussion, including limitations and possible directions for future work, in Section 5.

2. Methodology

In this section, we describe the standard Poisson NMF model, our sparsity-inducing prior,
the power posterior, our technique for choosing the power, and the overall workflow of our
BayesPowerNMF method. NMF is based on the assumption that the data matrix X =
(Xnm) ∈ RN×M

+ can be approximated by a low-rank factorization of the form

X ≈ LR,

where the (unknown) matrices L = (Lnk) ∈ RN×K
+ and R = (Rkm) ∈ RK×M

+ have non-
negative entries (Fu et al., 2019; Lee and Seung, 2000). Here, R+ = [0,∞) and we use bold
font to indicate matrices. Since arbitrary multiplicative constants can be moved between
L and R without affecting the product LR, we constrain the rows of R to sum to 1, that
is,
∑M

m=1Rkm = 1 for all k = 1, . . . ,K. Low-rank factorizations such as this often provide
valuable insights into the latent structure giving rise to the data.

In mutational signatures analysis, the rows of X correspond to samples n = 1, . . . , N , the
columns of X correspond to a pre-defined set of M non-overlapping mutation types, and each
entry Xnm ∈ {0, 1, 2, . . .} represents the number of times that mutation type m is observed
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Figure 1. (A) Examples from simulated misspecified liver cancer data. For
two ground truth signatures used to generate the data (SBS16 and SBS1 from
COSMIC v2, shown in the top row), we show the best-matching signatures in-
ferred by two leading methods (SigProfilerExtractor and SignatureAnalyzer)
and our proposed method (BayesPowerNMF). The cosine errors between the
inferred and true signatures are in parentheses. When the model is misspec-
ified, SigProfilerExtractor tends to miss more signatures (such as SBS1 in
this case) and SignatureAnalyzer tends to have significantly higher cosine er-
rors compared to BayesPowerNMF. (B) Examples from real melanoma data.
Same as in (A), but comparing with the closest match to SBS7d and SBS2
from COSMIC v3. For BayesPowerNMF, the bolded section of each bar in-
dicates a 95% credible interval, quantifying the uncertainty in each signature.
Meanwhile, SigProfilerExtractor and SignatureAnalyzer only provide point es-
timates that may be misleading in cases such as SBS7d for which there is high
uncertainty.
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in sample n. The idea of the NMF model is that mutations arise due to multiple unknown
mutational processes, and each such process generates mutations according to a distinct profile
of frequencies. The kth row of R, say Rk = (Rk1, . . . , RkM ), represents the frequencies with
which mutation types m = 1, . . . ,M occur under the kth mutational process, and Rk is
referred to as the mutational signature of this process. Thus, K represents the number of
mutational processes represented in the model, (that is, the number of latent factors). The
loading Lnk represents the activity of process k in sample n.

2.1. Model and sparsity-inducing prior. Our methodology starts with the Poisson NMF
model

Xnm ∼ Poisson

( K∑
k=1

LnkRkm

)
, n = 1, . . . , N, m = 1, . . . ,M,

independently; or in more compact matrix notation,

X ∼ Poisson(LR). (1)

This model is standard in mutational signatures analysis, and it can be justified from first
principles (Zito and Miller, 2024). The parameters of the model are (L,R) and the likelihood
is

Poisson(X |LR) =

N∏
n=1

M∏
m=1

Poisson
(
Xnm

∣∣ ∑K
k=1 LnkRkm

)
.

For the prior on R, we use independent M -dimensional Dirichlet priors on the rows,

Rk ∼ DirichletM (α0, . . . , α0), k = 1, . . . ,K,

where α0 > 0. For the prior on L, since the number of active mutational processes is not
known a priori, we employ a sparsity-inducing prior introduced by Zito and Miller (2024).
Specifically, we place independent gamma priors on the loadings,

Lnk ∼ Gamma(a, a/µk) n = 1, . . . , N, k = 1, . . . ,K,

where a > 0 is the shape and a/µk is the rate, so that E(Lnk) = µk and hence µk is the
mean prior loading for the kth mutational process. Finally, we give µk an inverse gamma
hyperprior,

µk ∼ InverseGamma(a0, b0), k = 1, . . . ,K,

independently, where a0 = N0a + 1, b0 = ε(a0 − 1), and ε > 0 is a small nonzero constant.
With these choices, the prior mean of µk becomes E(µk) = ε and its full conditional mean is

E(µk |L,R,X, µ1, . . . , µk−1, µk+1, . . . , µK) =
N0

N0 +N
ε+

N

N0 +N

(
1

N

N∑
n=1

Lnk

)
.

This choice of hyperprior has a compressive property that induces column-wise sparsity in the
loadings matrix under the posterior distribution. More precisely, given the data X, it shrinks
the µk value for inactive processes down to µk ≈ ε, while having a moderate shrinkage effect
on the µk value for active processes. Consequently, the loadings Lnk for inactive processes
shrink to small values ≈ ε, while the loadings for active processes are only slightly affected
by the hyperprior (Zito and Miller, 2024).
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In our experiments, we set α0 = 0.5, a = 0.5, ε = 0.001, and N0 = 10. Choosing α0 = 0.5
and a = 0.5 makes the priors on R and L weakly informative. Specifically, the prior on Rk

is the Jeffreys prior for a multinomial likelihood and the conditional prior variance of Lnk is
Var(Lnk | µk) = 2µ2

k. The value of ε does not matter much as long as it is significantly smaller
than the smallest true loadings. The choice of N0 = 10 was found to work well empirically,
providing sparsity without shrinking the µk values too strongly.

2.2. Power posterior. The standard Poisson NMF model works well on data generated
from the model itself, but its performance suffers when the model is not exactly correct, as
we demonstrate in Section 3. To address this issue, we employ the power posterior technique
for improving robustness to misspecification (Miller and Dunson, 2018). Letting π0(θ) denote
the prior density on θ = (L,R, µ), the standard Bayesian posterior is

π(θ |X) =
p(X | θ)π0(θ)

Z(X)
,

where p(X | θ) = Poisson(X |LR) and Z(X) =
∫
p(X | θ)π0(θ) dθ. For ξ ∈ [0, 1], the power

posterior is defined as

πξ(θ |X) =
p(X | θ)ξ π0(θ)

Zξ(X)
,

where Zξ(X) =
∫
p(X | θ)ξ π0(θ) dθ is the normalization constant. In particular, when ξ = 0

or ξ = 1, we recover the prior or the standard posterior, respectively; that is, π0(θ |X) = π0(θ)
and π1(θ |X) = π(θ |X). As shown by Miller and Dunson (2018), using a power posterior
with 0 < ξ < 1 provides nonparametric robustness for misspecified latent variable models
– particularly when the latent dimensionality is unknown, such as in mutational signatures
analysis. Furthermore, Medina et al. (2022) showed that—compared to using the standard
posterior—using the power posterior of a misspecified model is closer to the standard posterior
of a more flexible well-specified model, in terms of Kullback–Leibler divergence.

To perform inference, we use the Stan probabilistic programming system (Carpenter et al.,
2017) to draw Markov chain Monte Carlo (MCMC) samples from the power posterior of the
NMF model. Specifically, we define the log target density to be

log πξ(θ |X) = const + log π0(θ) + ξ
N∑

n=1

M∑
m=1

logPoisson
(
Xnm

∣∣ ∑K
k=1 LnkRkm

)
.

Using Stan makes it a simple matter of multiplying the log-likelihood part of this function
by ξ in order to target the power posterior rather than the standard posterior. For the
MCMC sampler settings, we use four chains, each with 10,000 samples after a burn-in of
10,000 iterations. We choose the best of these four chains, defined as the one with the largest
approximate marginal likelihood, using the approximation of Pritchard et al. (2000).

2.3. Choosing the power. The power ξ should be selected to reflect the severity of the
model misspecification (Medina et al., 2022; Miller and Dunson, 2018). When there is no
misspecification—that is, when the data are generated by the assumed model—we would
ideally take ξ = 1, which corresponds to the standard Bayesian posterior. When there is
misspecification, smaller values of ξ are preferable. However, it can be difficult to choose ξ in
a data-driven way.
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We propose the following simulation-driven approach to choosing ξ. First, select a set
of pilot signatures (for example, we use a relevant subset of the COSMIC v2 signatures1;
Alexandrov et al., 2015; Nik-Zainal et al., 2016) and estimate loadings to fit the input data
using these pilot signatures. Next, generate pilot data from several plausible data generating
processes (DGPs) based on the pilot signatures and corresponding estimated loadings. Then,
fit each pilot data set using a range of ξ values, and select a value of ξ that performs well
across all of the pilot data sets.

By exploring simulated data from DGPs that are not equal to the assumed model, but are
anchored at parameters fit to the input data, we are able to select a ξ that yields robustness to
plausible perturbations within an appropriate data-driven neighborhood of the model. This
yields robustness to any DGPs that would require a similar power ξ, not just to the specific
forms of DGP used to generate pilot data. Thus, it is not critical to get the DGPs exactly
right – just to make them sufficiently rich and plausible.

2.4. Simulation data generating processes. Given a matrix of pilot signatures R⋆ =
(R⋆

km) ∈ RK×M
+ and corresponding matrix of loadings L⋆ = (L⋆

nk) ∈ RN×K
+ , we generate pilot

data sets using the following four DGPs based on R⋆ and L⋆:

(1) The well-specified DGP generates data from the assumed Poisson NMF model, as in
Equation (1):

X ∼ Poisson(L⋆R⋆).

(2) The α-contaminated DGP generates data from the Poisson NMF model, but with an

additional “contamination signature” R̃n: for α ∈ (0, 1),

R̃n ∼ DirichletM (1, . . . , 1), n = 1, . . . , N,

X ∼ Poisson
(
(1− α)L⋆R⋆ + α(L⋆ 1K×M )⊙ R̃

)
, (2)

where 1K×M denotes the K×M matrix of ones, ⊙ denotes entry-wise multiplication,
and R̃ is the matrix with rows R̃1, . . . , R̃N . The contamination signature R̃n is dif-
ferent for each sample, to reflect the possibility of tumor-specific variability arising
from microenvironment effects or rare mutational processes. Equation (2) gives R̃n a

loading of α
∑K

k=1 L
⋆
nk, and the existing loadings L⋆

nk are downweighted by a factor of
1− α to keep the total loading invariant.

(3) The γ-perturbed DGP generates each sample using slightly perturbed versions of each
signature, with the perturbations being sample-specific: given γ > 0 and β1, . . . , βK >
0,

R
(n)
k ∼ DirichletM (βkR

⋆
k1, . . . , βkR

⋆
kM ), n = 1, . . . , N, k = 1, . . . ,K,

Xn ∼ Poisson(L⋆
nR

(n)), n = 1, . . . , N,

where L⋆
n is the nth row of L⋆, R(n) is the matrix with rows R

(n)
1 , . . . , R

(n)
K , and Xn is

the nth row of X. The constants βk control the size of perturbations, and are set such

that the expected cosine error between R
(n)
k and R⋆

k is approximately γ, where the
cosine error is defined as 1−RT

kR
⋆
ℓ/(∥Rk∥∥R⋆

ℓ∥); see Appendix B for details. This DGP
reflects the possibility that each mutational process might behave slightly differently

1https://cancer.sanger.ac.uk/signatures/signatures_v2/

https://cancer.sanger.ac.uk/signatures/signatures_v2/
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across tumors, for instance due to the tumor microenvironment, different failure modes
of the same DNA repair mechanism, or smoking different brands of cigarette.

(4) The κ-overdispersed DGP generates data with higher variance than the well-specified
data, to reflect the fact that there is often additional variability due to sample- and
mutation-type specific effects that may be biological or technical: given κ > 1,

X ∼ NegativeBinomial(L⋆R⋆, κ),

where NegativeBinomial(µ, κ) denotes the negative binomial distribution with mean µ
and variance κµ.

In our experiments, we use α = 0.02, γ = 0.0025, and κ = 2 for the settings of these DGPs.
These settings are chosen to reflect plausible levels of biological and technical perturbations
from the Poisson model. Specifically, α = 0.02 equates to 2% of observed mutations origi-
nated from some source of contamination and γ = 0.0025 is a threshold where the simulated
signatures are almost always still recognizable as coming from the original reference signature
(99% of simulated signatures have cosine error < 0.1). We set κ = 2 to reflect the empirical
overdispersion seen in loadings through exploratory analysis of real count data.

2.5. Overall workflow. To summarize, the overall workflow of our proposed method, BayesPow-
erNMF, consists of the following five stages (which are depicted in Figure 2):

(1) Define pilot signatures and loadings. To tailor the pilot data sets to the input data
set, we define the pilot signatures R⋆ and loadings L⋆ as follows. Using non-negative
least squares (Lawson and Hanson, 1987), we estimate loadings for the 30 COSMIC
v2 reference signatures (Alexandrov et al., 2015; Nik-Zainal et al., 2016) for each
individual in the cohort. We then drop any reference signatures that, based on the
estimated loadings, do not contribute at least 2% of the total mutation count in the
cohort or at least 10% of the mutation count of any individual, so that each remaining
signature is well represented. The remaining loadings are not re-fit, to maintain the
accuracy of the loadings.

(2) Generate pilot data sets. For each of four DGPs, generate a pilot data set(s) based
on parameters L⋆ and R⋆, which results in J total simulated data sets X1, . . . ,XJ .
As described in Section 2.4, we use J = 4: the well-specified DGP plus the three
misspecified DGPs with parameters α = 0.02, γ = 0.0025, and κ = 2.

(3) Estimate parameters for a range of ξ values. For each power ξ in a range of candidate
values, for each pilot data set, we estimate L and R using the mean of the power
posterior (Section 2.2) and match the estimated signatures Rk to the pilot signatures
R⋆

k. Matching Rk to R⋆
k is done using the Hungarian algorithm for optimal bipartite

matching (Kuhn, 1955) with cosine error as the assignment cost.
(4) Choose ξ to maximize accuracy across pilot data sets. We choose the largest power ξ

that accurately recovers L⋆ and R⋆ according to the following metrics (see Figure S4):
(i) recovering as many true signatures as possible with cosine error < 0.3, and (ii) not
inferring any spurious signatures that fail to match any true signature.

(5) Apply power posterior to the input data. Using the selected power ξ, we apply the
power posterior to the original input data X to estimate L and R. This yields the
final estimates of L and R produced by the workflow.
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Figure 2. BayesPowerNMF workflow for robust mutational signature discov-
ery. (1) Pilot signatures from a reference (such as COSMIC) are used to
estimate loadings to fit the input data. (2) These signatures and loadings are
used to simulate pilot data sets from DGPs representing plausible perturba-
tions of the model. (3) The power posterior for the Bayesian NMF model is
applied to each combination of candidate power ξi and simulated data set Xj .
(4) We identify the power that best recovers the pilot signatures and loadings
across all of the pilot data sets. (5) Using the selected power, we apply the
power posterior for the Bayesian NMF model to the original input data.

3. Simulations

In this section, we compare performance on synthetic data simulating six cancer types,
using the four data generating processes described in Section 2.4. We compare three NMF
methods for inferring mutational signatures: (1) SigProfilerExtractor, a version of the algo-
rithm used to define the COSMIC signatures (Alexandrov et al., 2013b; Islam et al., 2022),
(2) SignatureAnalyzer, based on a Bayesian point estimation algorithm (Tan and Févotte,
2013) used in several previous publications (Haradhvala et al., 2018; Kasar et al., 2015; Kim
et al., 2016), and (3) BayesPowerNMF, our proposed method.

3.1. Simulated data. We generate synthetic data sets in the well-specified case for six cancer
types (lung adenocarcinoma, stomach, melanoma, ovary, breast, and liver) and in the three
misspecified cases (α-contaminated, γ-perturbed, and κ-overdispersed) for three cancer types
(lung adenocarcinoma, ovary, and liver). These simulated data sets are generated as in stages 1
and 2 of the BayesPowerNMF workflow in Section 2.5, with the input data set being a mutation
count matrix for the corresponding cancer type from the PCAWG project (Alexandrov et al.,
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2020). In addition, we consider randomly subsampled data sets of sizes 20, 30, 50, 80, 120, 170,
and 230 from the simulated well-specified liver data set of 326 samples. Thus, altogether,
starting from 6 real data sets (one for each cancer type), we generate 15 complete synthetic
data sets (6 well-specified and 3 × 3 misspecified) plus 104 data sets subsampled from the
complete well-specified liver data set (32 of size N = 20, 20 of size N = 30, 12 of size
N = 50, and 10 each of the remaining sizes). Using each of these synthetic data sets as
input, we then apply each of the three competing methods listed above: SigProfilerExtractor,
SignatureAnalyzer, and BayesPowerNMF (following our workflow in Section 2.5).

3.2. Performance evaluations. We evaluate performance by measuring how well the ground-
truth signatures and loadings are recovered in terms of several metrics. Here, ground truth
is known since the data is simulated. First, we compute the optimal matching (in terms of
cosine error) between estimated and true signatures. We then quantify how accurately each
signature is recovered by computing the cosine error between each pair of matched signatures.
We compute the precision and recall for recovering the true signatures by setting a threshold
on cosine error and considering a true signature to be correctly recovered if the cosine error of
its matching estimated signature is within this threshold. Precision is defined as (# correctly
recovered) / (# estimated signatures) and recall is (# correctly recovered) / (# true signa-
tures). Plots of precision and recall are then generated by varying the threshold. Additionally,
we use bubble plots to display all of the matched pairs of signatures, along with their cosine
errors and loadings, for each method and each data set. This provides a convenient visual
summary of the results in a single plot.

3.3. Simulation results.

3.3.1. Overall precision and recall. Figure 3 shows the precision and recall for each of the three
methods, over a range of cosine error thresholds from 0 to 0.2. These curves are averaged
over all of the well-specified data sets (left side) and misspecified data sets (right side). Our
BayesPowerNMF method provides the highest precision and recall at nearly every threshold.
In particular, BayesPowerNMF has much higher recall in the misspecified settings. Sig-
ProfilerExtractor performs only somewhat worse than BayesPowerNMF in the well-specified
settings, but its recall suffers under misspecification.

The signatures missed by SigProfilerExtractor tend to be ones with smaller true loading;
see Figure S2. One reason for this may be because SigProfilerExtractor employs a consensus
bootstrap approach that requires agreement across the estimates based on different bootstrap
data sets. To compare the performance for each signature individually, we plot the cosine
error from the ground truth for SigProfilerExtractor versus BayesPowerNMF in Figure S3;
this illustrates that BayesPowerNMF tends to exhibit better performance on a signature-by-
signature basis.

We find that SignatureAnalyzer exhibits worse performance across all scenarios, both in
terms of precision and recall. The reason for this is that SignatureAnalyzer estimates many
signatures, but the estimated signatures have a high cosine error relative to the matching true
signatures. Although SignatureAnalyzer is based on a Bayesian model, it employs maximum
a posteriori estimation rather than posterior uncertainty quantification, and does not benefit
from the robustness properties of the power posterior.
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Figure 3. (Top) Precision curves for each method as a function of cosine er-
ror threshold, averaged across the simulated well-specified data sets (left) and
misspecified data sets (right). (Bottom) Same for the recall curves. BayesPow-
erNMF has the highest precision and recall overall. SigProfilerExtractor per-
forms nearly as well as BayesPowerNMF in the well-specified settings, but its
recall is lower under misspecification. SignatureAnalyzer exhibits low precision
and recall in these simulations.

3.3.2. Lung adenocarcinoma results. To understand what each method is doing at a more
granular level, Figure 4 shows the cosine error and loading for each signature. The true
COSMIC signatures are listed on the left, and each column summarizes the results from a
given method on a given data set. The size of each bubble represents the loading given by
that method to the estimated signature that was matched to the true signature listed on the
left. The shade of the bubble represents the cosine error between the estimated signature and
the matching true signature. The left-most column (labelled GT) shows the ground truth
loadings used to generate the simulated data, and we order the rows (signatures) according
to these ground truth loadings. Therefore, a method is performing well on a given data set
if (i) it has bubbles for the same signatures as GT, (ii) the sizes of the bubbles are similar
to GT, and (iii) the shade of the bubble is white or light gray. Methods with bubbles above
the red line estimated a spurious signature that does not match to any of the true signatures
used to generate the data.

For the simulated lung adenocarcinoma data sets, which have N = 38 samples, Figure 4
shows that BayesPowerNMF tends to recover more true signatures with lower cosine error than
the other methods. SigProfilerExtractor performs second best, but misses some signatures
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Figure 4. Comparison of results on simulated lung adenocarcinoma data sets,
via a bubble plot showing the loading and cosine error of the estimated sig-
natures. Rows represent the true COSMIC v2 signatures, ordered by the
ground truth (GT) loading. Each column shows the results for a given method
(blue = BayesPowerNMF, red = SigProfilerExtractor, yellow = SignatureAn-
alyzer) on a given data set (WS = well-specified, C = α-contaminated, OD =
κ-overdispersed, P = γ-perturbed). Presence of a bubble means an estimated
signature matched that true signature. Bubble size = estimated loading, bub-
ble shade = cosine error between estimated and true, and a bubble above the
red line represents an estimated signature that did not match any true signa-
ture used to generate the data. Overall, BayesPowerNMF consistently finds
the most signatures and has the lowest cosine errors.

(in particular, Signatures 8 and 28, indicated by green arrows) and tends to have slightly
higher cosine error. Note that Signature 8 was not recovered by SigProfilerExtractor in any
of the cases, even though this signature has a large true loading (second largest out of all
the signatures). SignatureAnalyzer does recover many signatures that match to the true
signatures, but they have very high cosine error, even for signatures with high true loading
such as Signature 4. On the γ-perturbed data, SignatureAnalyzer also produces a spurious
signature that matches to COSMIC Signature 12, which was not used to generate the data.
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(a)
Signature 17 recovery comparison

Ground Truth

BayesPowerNMF (0.03)

SigProfilerExtractor (0.06)

SignatureAnalyzer (0.22)

(b)

Ground Truth

BayesPowerNMF (0.00)

SigProfilerExtractor (0.00)

SignatureAnalyzer
(0.20)

Signature 4 recovery comparison

Figure 5. Comparison of estimated signatures on simulated lung adenocar-
cinoma data sets. (A) True Signature 17 and matching estimated signatures
(along with their cosine error, in parentheses) for each method on the WS
data. For BayesPowerNMF, the bolded section of each bar for represents 95%
credible interval and the thin white line in the middle represents the posterior
mean. (B) Same panel A but for Signature 4.

Figure 5a shows true Signature 17 and the matching estimated signatures for each method
on the well-specified (WS) data (corresponding to the purple box in Figure 4). This is an
example of a signature with relatively small true mean loading and, in comparison with Sig-
nature 4, it also has many more near-zero values in the signature itself. BayesPowerNMF
recovers the signature with the lowest cosine error (0.03), followed by SigProfilerExtractor
(0.06), and then SignatureAnalyzer (0.22). BayesPowerNMF also provides uncertainty quan-
tification in the signature vector, indicated in the plot by the darker region at the top of each
bar, which represents a 95% credible interval.

Similarly, Figure 5b shows true Signature 4 and the matching estimated signatures on the
WS data (corresponding to the magenta box in Figure 4). This is an example of a signature
with large true mean loading (the largest in this simulated data). All three methods estimate
a signature that matches to Signature 4, with estimated loading similar to the true loading.
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Figure 6. Results for subsampled liver cancer data sets of increasing size.
(A) Precision and recall of matched signatures, as a function of the cosine
error threshold for defining a correct match. BayesPowerNMF almost always
strictly dominates SigProfilerExtractor in recall at all sample sizes, and has
comparable or better precision for cosine error thresholds values of practical
utility (< 0.1). (B) Number of signatures estimated (with whiskers repre-
senting 95% confidence intervals) at each sample size. (C) Difference between
number of signatures estimated by BayesPowerNMF and SigProfilerExtractor
for each subsampled data set. BayesPowerNMF recovers more signatures than
SigProfilerExtractor at all sample sizes. The true number of signatures is 21.

Furthermore, BayesPowerNMF and SigProfilerExtractor both recover the true signature with
very low cosine error (< 0.005). However, SignatureAnalyzer’s matching signature has a high
cosine error (0.2). For BayesPowerNMF, the 95% credible regions (bolded regions of the bars)
tend to indicate less uncertainty in the estimates for Signature 4 compared to 17, especially
in the mutation types with smaller rates; this makes sense since Signature 4 has higher true
mean loading and thus there is more information about it in the data.

3.3.3. Subsampled liver cancer data sets of varying size. Next, we evaluate the effects of sam-
ple size and sampling variability by considering the subsampled data sets of varying size taken
from the complete simulated well-specified liver cancer data set of N = 326 samples. The full
cohort of N = 326 samples was generated using 21 ground truth signatures. From this, we
repeatedly subsampled data sets of various sizes and ran each method on each subsampled
data set. Figure 6 summarizes the results for BayesPowerNMF and SigProfilerExtractor on
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these data; SignatureAnalyzer is excluded from this analyses due to its overall poor perfor-
mance. Figure 6a plots the precision and recall curves as a function of cosine error threshold,
like in Figure 3. As before, we see that BayesPowerNMF outperforms SigProfilerExtractor,
particularly in terms of recall. SigProfilerExtractor does exhibit slightly higher precision at
higher cosine error thresholds, but this comes at the expense of much lower recall. Figure 6b
shows the number of signatures inferred by each method as a function of the size of the data
set. This shows that BayesPowerNMF requires a much smaller sample size to recover the
same number of signatures as SigProfilerExtractor. For instance, BayesPowerNMF recovers
an average of 9 signatures on a data set of size N = 30, whereas SigProfilerExtractor requires
N = 230 to recover this many signatures on average. Thus, BayesPowerNMF accurately
recovers the same number of signatures with a fraction of the sample size.

To examine the effects of sampling variability, Figure 6c shows the difference in the num-
ber of signatures inferred by BayesPowerNMF and SigProfilerExtractor for each individual
subsampled data set. On every individual data set, BayesPowerNMF always recovers at least
2 more signatures than SigProfilerExtractor, and sometimes as many as 7 or 8 more.

3.4. Summary of simulation results. Our simulation results demonstrate that BayesPow-
erNMF has improved performance compared to leading methods—enabling the discovery of
a greater number of meaningful signatures—while also being robust to plausible model mis-
specification. One downside of BayesPowerNMF is that the additional robustness obtained
in misspecified settings comes at a cost of reduced performance in well-specified settings
compared to using the standard Bayesian posterior; see Figure S1. Overall, we find that
BayesPowerNMF has the following specific advantages.

Higher precision. Compared to SigProfilerExtractor and SignatureAnalyzer, BayesPow-
erNMF tends to have higher precision. This holds across different DGPs (Figures 3 and S3a)
and across sample sizes (Figure 6a), especially for smaller cosine error cutoffs that would
produce recognizable signature matches (for instance, 0.05 or 0.1).

Higher recall. BayesPowerNMF consistently outperforms the competitors in terms of re-
call, particularly in misspecified cases (Figures 3 and 6a and Table S1). In the misspecified
cases, SigProfilerExtractor tends to be too conservative, inferring too few signatures (Figure 3
and Table S2). SignatureAnalyzer sometimes infers more signatures, but many of the esti-
mated signatures either have very large cosine error (> 0.2) or do not even get matched to
one of the true signatures used to generate the data.

Uncertainty quantification. As a fully Bayesian method, BayesPowerNMF quantifies un-
certainty in the signatures as well as the loadings via posterior samples produced by MCMC
(Figures 5a and 5b). We find that the model’s reported uncertainty in the signatures is
correlated with the actual recovery error (Figure S3b), indicating that the uncertainty quan-
tification is meaningful. In contrast, SigProfilerExtractor or SignatureAnalyzer do not provide
uncertainty quantification in either the signatures or the loadings.

Few spurious signatures. We consider an estimated signature to be “spurious” if it is
matched to a COSMIC signature that was not used to generate the simulated data set.
Out of the 15 complete simulated data sets we consider, BayesPowerNMF infers a spurious
signature in just one data set (see Tables S1 and S2). SignatureAnalyzer inferred spurious
signatures in several synthetic data sets, even in the well-specified case (see Table S1).
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4. Application

We compare the results of BayesPowerNMF and SigProfilerExtractor on whole-genome
sequencing (WGS) data from the PCAWG project (The ICGC/TCGA Pan-Cancer Analysis
of Whole Genomes Consortium, 2020). SignatureAnalyzer is excluded from this comparison
due to its overall poor performance. We consider the PCAWG WGS data for the same six
cancer types as in the simulation study: lung adenocarcinoma (N = 38), stomach (N = 75),
melanoma (N = 107), ovary (N = 113), combined breast cancers (N = 214), and liver
(N = 326). While any set of mutation types could be used to define the input count data
matrices, we consider the 96 types of single-base substitutions (SBSs) since these are the
most commonly used set for mutational signatures analyses. We run BayesPowerNMF and
SigProfilerExtractor on the N × 96 count data matrix for each cancer type separately.

To evaluate performance, we use the COSMIC v3 signatures2 as a proxy for the true
signatures. (Note, however, that we still use COSMIC v2 in the BayesPowerNMF workflo
when defining pilot signatures for calibration.) The COSMIC signature database is a curated
reference set of mutational signatures that is commonly used in cancer genomics studies.
The current versions of the COSMIC signatures are based on 2,780 cancer genomes from the
PCAWG project—along with a number of other available cancer genomes—spanning a wide
range of cancer types (Alexandrov et al., 2020; The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium, 2020). The COSMIC v3 signatures were defined by running a
previous iteration of SigProfilerExtractor on each cancer type separately, and combining the
results to construct a set of consensus signatures. Thus, one would expect SigProfilerExtractor
to perform very well in these comparisons, since it was instrumental in defining our proxy for
ground truth.

Since the actual ground truth is unknown on real data, we quantify method accuracy using
using three proxies for quality. First, we compare the number of signatures inferred by each
method on each cancer type. For a given amount of data, it is desirable to infer more signatures
since this indicates improved recall. However, it is also important that the inferred signatures
correspond to true signatures and are accurately estimated, in other words, it is important to
have high precision. Thus, second, we compute the error with which the COSMIC signatures
are reconstructed. More precisely, we assign the inferred signatures to the best-matching
COSMIC v3 signatures using the Hungarian algorithm, and compute the cosine error between
each matched pair. It is desirable to have smaller error, since this indicates greater accuracy in
recovering the current best understanding of ground truth. Third, we compare the estimated
loadings for each method to the loadings presented by the PCAWG consortium, which they
obtained by running non-negative least squares (NNLS) using the complete set of COSMIC
signatures, rather than using NMF. We refer to these as the “COSMIC+NNLS” loadings.

4.1. Application results. Figure 7 summarizes the results; see the description of Figure 4
and its caption for the interpretation of this plot.

Number of signatures inferred. In four of the six cancer types, BayesPowerNMF estimates
more signatures than SigProfilerExtractor (Figure 7 and Table S3). Furthermore, in one of
the two cancer types where SigProfilerExtractor infers more signatures (melanoma), some
of the estimated signatures appear to be near duplicates rather than authentically different
signatures (Figure S5). In many cases, BayesPowerNMF recovers almost as many signatures

2https://cancer.sanger.ac.uk/signatures/downloads/

https://cancer.sanger.ac.uk/signatures/downloads/
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Figure 7. Mean loading and cosine error between each estimated signature
and its matching COSMIC v3 signature. Results are shown for each method
applied to the PCAWG data for each of six cancer types. See the description
of Figure 4 for explanation of the plot. COSMIC+NNLS uses non-negative
least squares to estimate loadings for the COSMIC v3 signatures.

as COSMIC+NNLS (Figure 7 and Table S3), even though BayesPowerNMF is only using
a small subset of data from one cancer type whereas COSMIC+NNLS is effectively using
≈ 3,000 samples.

Reconstruction error. Both methods perform roughly equally well in terms of the accu-
racy with which they reconstruct COSMIC signatures. Indeed, the difference between the
average cosine errors for BayesPowerNMF and SigProfilerExtractor (0.146 and 0.133, respec-
tively) is not statistically significant (p = 0.9265, Mann–Whitney rank test). This is despite
the fact that (1) SigProfilerExtractor is at an advantage since the COSMIC signatures were
constructed using its algorithm and (2) BayesPowerNMF recovers a greater proportion of
signatures (Table S3).

Loadings. In most cases, the loadings estimated by BayesPowerNMF and SigProfilerEx-
tractor are of similar magnitude to one another and to the COSMIC+NNLS loadings, at least
for the signatures that they have in common (Figure 7). However, on the melanoma data,
SigProfilerExtractor gives large loadings to two apparently spurious signatures that have high
cosine error with their nearest COSMIC v3 matches (SBS30 and SBS11).
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Overall, the real data results lead to similar conclusions as the simulation study results.
These findings indicate that our proposed method provides improved accuracy and robust-
ness to model misspecification compared to the state-of-the-art, both on synthetic examples
and real biological data. It is notable that SigProfilerExtractor appears to perform more
poorly on the real PCAWG data than on our simulated misspecified counts data, compared
to BayesPowerNMF. This suggests that the modes of misspecification in real mutation counts
data are more complex than is captured in each of our DGPs for misspecified counts, but this
is accounted for in BayesPowerNMF due to the flexibility of the power posterior.

Finally, we note that the BayesPowerNMF workflow uses COSMIC v2 for the pilot signa-
tures even on this PCAWG data, where we ultimately compare to COSMIC v3. BayesPow-
erNMF still successfully infers v3 signatures on this data, including ones with no corresponding
signature in v2 (specifically, SBS31 and above in Figure 7). This suggests that the precise
choice of pilot signatures does not strongly affect the final results from BayesPowerNMF.

5. Discussion

Our results elucidate specific shortcomings of two of the standard methods for mutational
signature discovery, SigProfilerExtractor and SignatureAnalyzer, and highlight the benefits
of carrying out thorough simulation studies to better understand the failure modes of any
given method before proceeding to analysis of real data. SigProfilerExtractor uses a consen-
sus bootstrap approach, which may explain why it tends to miss more signatures with small
loadings (Figure S2). Specifically, since each bootstrap sample uses only ≈ 63% of the data
on average, it makes sense that SigProfilerExtractor would have lower power to discover mu-
tational processes, particularly when they have smaller loading (Figure S2). BayesPowerNMF
does not have this issue since it uses all of the available data. This suggests that the Sig-
ProfilerExtractor results might be improved by using a version of bootstrap with continuous
weights, such as the Bayesian bootstrap, rather than multinomial bootstrap.

Furthermore, while SigProfilerExtractor is generally more conservative in the sense that it
recovers fewer signatures than BayesPowerNMF, it can still overfit the data in cancer types
with high mutational burden (such as melanoma, see Figure S5) or many samples (such as
liver). This makes sense, since these are the cases in which we would expect the negative effects
of misspecification to be most pronounced (Miller and Dunson, 2018). BayesPowerNMF avoids
this issue by employing a power posterior to improve robustness to misspecification.

Similarly, a disadvantage of SignatureAnalyzer is that it relies heavily on the correctness
of the Poisson NMF model (Zito and Miller, 2024). While SigProfiler’s use of bootstrap-
ping can somewhat mitigate the effects of misspecification (Huggins and Miller, 2023, 2024)
and BayesPowerNMF’s use of the power posterior provides robustness, SignatureAnalyzer
has no mechanism to compensate for model misspecification. As a result, it appears that
SignatureAnalyzer is particularly negatively affected by misspecification. Furthermore, Sig-
natureAnalyzer uses an estimation algorithm based on several heuristic approximations to the
objective function (Tan and Févotte, 2013). The use of these heuristics may explain why Sig-
natureAnalyzer was not able to accurately recover the true signatures even on the simulated
well-specified data sets, a setting in which we would expect a model-based method to perform
well. In contrast, BayesPowerNMF does not suffer from this issue, since it does not employ
any approximations other than MCMC sampling. Consequently, BayesPowerNMF exhibits
good performance on the well-specified data, as expected.
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The main disadvantage of BayesPowerNMF is that, with currently available inference tech-
niques, it becomes computationally prohibitive for larger data sets. Improving the scalability
of BayesPowerNMF is an important direction for future work. A related disadvantage is the
somewhat complicated workflow for selecting the power ξ to be used in the power posterior.
It would be preferable to have a simpler method of determining an appropriate power for a
given set of plausible data generating processes.

Overall, BayesPowerNMF yields superior performance by (i) using all the available data and
employing a full Bayesian model to extract as much information as possible from the data,
while (ii) using a power posterior to obtain robustness to model misspecification without
assuming a particular form of misspecification. More generally, our methodology can be used
to perform non-negative matrix factorization for other applications as well, since it is not
limited to mutational signatures analysis. It would be interesting to explore other applications
of the method in future work.

Acknowledgments

C.X. was supported by NIH Training Grant T32GM135117 and NSF Graduate Research
Fellowship DGE-2140743. J.W.M. and S.L.C were supported in part by the National Cancer
Institute of the National Institutes of Health under award number R01CA240299. J.H.H. was
supported by the National Institute of General Medical Sciences of the National Institutes
of Health under award number R01GM144963 as part of the Joint NSF/NIGMS Mathemat-
ical Biology Program. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

References

L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, S. A. J. R. Aparicio, S. Behjati, A. V. Biankin,
G. R. Bignell, N. Bolli, A. Borg, A.-L. Børresen-Dale, S. Boyault, B. Burkhardt, A. P. But-
ler, C. Caldas, H. R. Davies, C. Desmedt, R. Eils, J. E. Eyfjörd, J. A. Foekens, M. Greaves,
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A. M. Sieuwerts, Å. Borg, G. Thomas, A. V. Salomon, A. L. Richardson, A.-L. Børresen-
Dale, P. A. Futreal, M. R. Stratton, P. J. Campbell, and Breast Cancer Working Group of
the International Cancer Genome Consortium. The life history of 21 breast cancers. Cell,
149:994–1007, May 2012b. ISSN 1097-4172. doi: 10.1016/j.cell.2012.04.023.

S. Nik-Zainal, H. Davies, J. Staaf, M. Ramakrishna, D. Glodzik, X. Zou, I. Martincorena,
L. B. Alexandrov, S. Martin, D. C. Wedge, P. Van Loo, Y. S. Ju, M. Smid, A. B. Brinkman,
S. Morganella, M. R. Aure, O. C. Lingjærde, A. Langerød, M. Ringnér, S.-M. Ahn, S. Boy-
ault, J. E. Brock, A. Broeks, A. Butler, C. Desmedt, L. Dirix, S. Dronov, A. Fatima,
J. A. Foekens, M. Gerstung, G. K. J. Hooijer, S. J. Jang, D. R. Jones, H.-Y. Kim, T. A.
King, S. Krishnamurthy, H. J. Lee, J.-Y. Lee, Y. Li, S. McLaren, A. Menzies, V. Musto-
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Appendix A. Additional empirical results

Lung (13) Stomach (21) Skin (14) Ovary (12) Breast (12) Liver (21)

SPE 7 11 6 7 10 9
SA 5 +4 5 +8 +1 6 +4 +4 5 +2 3 +5 +2 8 +6
BPN 9 10 +1 5 +1 7 7 15
BPNξ=1 9 +2 14 +1 13 10 12 +3 16 +1

Table S1. Mutational signature discovery results for simulated data, com-
paring SigProfilerExtractor, SignatureAnalyzer, and BayesPowerNMF on well-
specified data for six cancer types. The number of COSMIC v2 signatures used
to generate the data is in parentheses after each cancer type. In each entry
of the form X +Y +Z in the table, X = the number of estimated signatures
that were matched to a ground truth signature with a cosine error of < 0.2,
Y = the number of estimated signatures that were matched to a ground truth
signature with a cosine error of ≥ 0.2, and Z = the number of estimated sig-
natures that were matched to a COSMIC v2 signature that was not used to
generate the data. Bold indicates the best performing method in each case.
(SPE = SigProfilerExtractor; SA = SignatureAnalyzer; BPN = BayesPow-
erNMF; BPNξ=1 = BayesPowerNMF with power of 1, which corresponds to
the standard posterior.)

Lung (13) Ovary (12) Liver (21)

SPE SA BPN SPE SA BPN SPE SA BPN

well-specified 7 5 +4 9 7 5 +2 7 9 8 +6 15
α-contaminated 7 5 +4 9 5 +1 5 +2 5 9 7 +5 15
γ-perturbed 7 3 +7 +1 10 5 +1 5 +2 8 9 10 +5 17
κ-overdispersed 7 4 +5 9 5 5 +2 9 +1 9 8 +7 15

Table S2. Same as Table S1 but for both the well-specified and misspecified
settings, for three cancer types.
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Figure S1. Same as Figure 3 but also showing the precision and recall for
the standard Bayesian posterior (blue dashed lines) for the same NMF model.
This corresponds to BayesPowerNMF with a power of ξ = 1. When the model
is correct (that is, in the well-specified case), the standard posterior exhibits
higher recall than the power posterior, while maintaining comparable precision.
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Figure S2. Histograms of ground-truth loadings for pilot signatures discov-
ered and missed by BayesPowerNMF, SigProfilerExtractor, and SignatureAna-
lyzer across all simulated data sets. SigProfilerExtractor systematically misses
many more signatures with small mean loading in the pilot data set.

Lung Stomach Skin Ovary Breast Liver

BPN 10 +1 9 +1 +5 5 +1 8 +1 +3 6 +2 12 +4 +9
SPE 7 +1 7 +3 +4 5 +1 +4 6 +1 +1 8 +2 7 +4 +3
COSMIC 12 15 12 11 12 21

Table S3. Number of signatures inferred by each method on the PCAWG
data for six cancer types, treating COSMIC+NNLS as ground truth.
(SPE = SigProfilerExtractor; BPN = BayesPowerNMF; COSMIC = COS-
MIC+NNLS.)



24 C. XUE, J. W. MILLER, S. L. CARTER, AND J. H. HUGGINS

(a)

10 3 10 2 10 1 100

BayesPowerNMF recovery error (cosine)

10 3

10 2

10 1

100

Si
gP

ro
fil

er
Ex

tra
ct

or
re

co
ve

ry
 e

rro
r (

co
sin

e)

Recovery Error in BayesPowerNMF
vs SigProfilerExtractor

(b)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Mean Uncertainty in Posterior Samples (cosine)

0.0

0.1

0.2

0.3

0.4

Re
co

ve
ry

 E
rro

r (
co

sin
e)

R2 = 0.505

Uncertainty vs Recovery Error in BayesPowerNMF

Figure S3. (A) Recovery error for SigProfilerExtractor versus BayesPow-
erNMF. For each of the 15 complete synthetic data sets (see Section 3), for
each ground truth signature, we plot the cosine error between the true signature
and the signatures estimated by SigProfilerExtractor (y-axis) and BayesPow-
erNMF (x-axis); a cosine error of 1 indicates that no matching signature was
inferred by that method. SigProfilerExtractor misses many of the signatures
recovered by BayesPowerNMF (see dots along the top), and has higher co-
sine error for most of the signatures recovered by both methods (see dots
above the diagonal). (B) In simulations with BayesPowerNMF, the poste-
rior uncertainty in each signature is correlated with the cosine error between
the estimated signature and the ground truth signature. This indicates that
the uncertainty quantification is providing meaningful information about the
actual error. Here, uncertainty is defined as the mean cosine error between
posterior samples and the posterior mean, for each signature.
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Figure S4. Bubble plots used to select the power ξ in stage 4 of the
BayesPowerNMF workflow. Each panel corresponds to one simulated data
set. See the description of Figure 4 for the interpretion of this type of plot.
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Figure S5. The top 5 out of 10 signatures inferred by SigProfilerExtractor
from melanoma mutation counts from the PCAWG project (left) and their
best match reference signatures from COSMIC v3 (right). There appears to be
potential duplication between (a) SigProfSig-1, SigProfSig-2, and SigProfSig-5,
and (b) SigProfSig-3 and SigProfSig-4, in the sense that these may be slightly
perturbed versions of the same “true” signature.
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Appendix B. Details on γ-perturbed data-generation process

Näıvely, one might try to simulate perturbed signatures by sampling from Dirichlet(βR⋆
k)

using the same concentration parameter β > 0 for all pilot signatures R⋆
k. However, in terms of

cosine error, this leads to very different magnitudes of perturbation depending on the sparsity
or flatness of R⋆

k; see Figure S6.
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Figure S6. (Top) Distribution of cosine errors between R⋆
k and 10,000 sam-

ples from Dirichlet(βR⋆
k), where β = 500 and R⋆

k is Signature 2 (left) or Sig-
nature 3 (right) from COSMIC v2. (Bottom) Mutation frequency profile for
Signature 2 (left) and Signature 3 (right).

We quantify the “flatness” of a signature R⋆
k via

flatness(R⋆
k) =

1

96
∥∥R⋆

k

∥∥2 .
Larger values indicate a flatter signature and smaller values indicate a spikier signature. This
expression is specifically inspired by the form of the cosine error formula, and takes values in
[0, 1]. Through simulations using each R⋆

k in the set of COSMIC v2 signatures, we observe that
for a range of concentration parameters β ranging from 500 to 10,000, the mean cosine error
for Dirichlet(βR⋆

k) has a very strong positive linear correlation with flatness(R⋆
k) (Figure S7a).

Further, the slopes of the best-fit line obtained with ordinary least squares (OLS) are strongly
linearly correlated with β on a log-log scale (Figure S7b).

Based on these observations, we use OLS to fit the empirical relationship between flatness(R⋆
k),

the desired mean cosine error γ ∈ (0, 1), and the concentration parameter β, specifically,

β(R⋆
k) = exp

(
3.6641− log

(
96γ∥R⋆

k∥2
)

0.9820

)
.
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Figure S7. (A) Strong linear relationship between flatness(R⋆
k) and the mean

cosine error between a sample from Dirichlet(βR⋆
k) and R⋆

k itself for several
different values of β. (B) Strong linear relationship between the slope of the
lines in Figure S7a and the concentration parameter β on a log scale.

This relationship allows us to choose a signature-specific concentration parameter to simulate
new signatures, while controlling the resulting mean cosine errors across all signatures. We
use the function β(R⋆

k) to set the values of βk for the γ-perturbed DGP in Section 2.4.


	1. Introduction
	2. Methodology
	2.1. Model and sparsity-inducing prior
	2.2. Power posterior
	2.3. Choosing the power
	2.4. Simulation data generating processes
	2.5. Overall workflow

	3. Simulations
	3.1. Simulated data.
	3.2. Performance evaluations.
	3.3. Simulation results.
	3.4. Summary of simulation results.

	4. Application
	4.1. Application results.

	5. Discussion
	Acknowledgments
	References
	Appendix A. Additional empirical results
	Appendix B. Details on -perturbed data-generation process

