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Abstract

The standard approach to Bayesian inference is based on the assumption that the
distribution of the data belongs to the chosen model class. However, even a small
violation of this assumption can have a large impact on the outcome of a Bayesian
procedure. We introduce a novel approach to Bayesian inference that improves ro-
bustness to small departures from the model: rather than conditioning on the event
that the observed data are generated by the model, one conditions on the event that
the model generates data close to the observed data, in a distributional sense. When
closeness is defined in terms of relative entropy, the resulting “coarsened” posterior
can be approximated by simply tempering the likelihood—that is, by raising the like-
lihood to a fractional power—thus, inference can usually be implemented via standard
algorithms, and one can even obtain analytical solutions when using conjugate priors.
Some theoretical properties are derived, and we illustrate the approach with real and
simulated data using mixture models and autoregressive models of unknown order.
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1 Introduction

In most applications, statistical models are idealizations that are known to provide only an

approximation to the distribution of the observed data. One might hope that departures

from the model, if sufficiently small, would not significantly impact inferences. Often this

does seem to be the case, but sometimes inferences are sensitive to small perturbations

away from the assumed model, especially if the sample size is large. This article focuses on

the problem of defining alternatives to the usual likelihood function that are designed to

be robust to a small amount of mismatch between the assumed model and the distribution

of the observed data. Although the concepts are general, we concentrate on Bayesian

approaches, using our modified likelihoods in place of the usual likelihood. We are focused

on robustness to the form of the likelihood, in contrast to most previous work on robust

Bayes which focuses on robustness to the choice of prior.

Instead of using the standard posterior obtained by conditioning on the event that

the observed data are generated by the model—which is incorrect when there is a

perturbation—our approach is to condition on the event that the empirical distribution

of the observed data is close to the empirical distribution of data generated by the model,

with respect to some discrepancy between probability measures. We refer to this as a coars-

ened posterior, or c-posterior, for short. This corresponds to using a modified likelihood.

One can control the type of robustness exhibited by a c-posterior via the choice of

discrepancy. For instance, robustness to outliers can be obtained by using a discrepancy

that is not strongly affected by moving a small amount of probability mass to an outlying

region (e.g., 1st Wasserstein distance). Alternatively, robustness to slight changes in the

shape of the distribution—which is our primary interest in this paper—can be obtained by

using a discrepancy that is tolerant of such changes, such as relative entropy.

It works out particularly well to use relative entropy (i.e., Kullback–Leibler divergence),

since in this case the c-posterior can be approximated by the “power posterior” obtained

by simply raising the likelihood to a certain fractional power. Consequently, one can usu-
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ally do approximate inference using standard algorithms with no additional computational

burden—in fact, the mixing time of Markov chain Monte Carlo (MCMC) samplers will

typically be improved, since the likelihood is tempered. Further, when using exponential

families and conjugate priors, one can even obtain analytical expressions for quantities such

as a robustified marginal likelihood.

The main novel contributions of the paper are: (1) introducing the idea of the c-

posterior, (2) providing a calibration method for choosing an appropriate amount of coars-

ening, (3) empirically demonstrating how the c-posterior can easily be used to perform

robust inference in a variety of examples, using real and simulated data, (4) establishing

the asymptotic form of the c-posterior when certain limits are taken, (5) proving that the

c-posterior exhibits robustness to small perturbations from the assumed model (that is, ro-

bustness to the form of the likelihood), and (6) proving that the power posterior is a good

approximation to the relative entropy c-posterior when n is either large or small relative

to the amount of coarsening.

The paper is organized as follows. Section 2 introduces the coarsening approach and

considers the case of relative entropy coarsening in detail. Section 3 uses a toy Bernoulli

example to illustrate coarsening in the simplest possible setting, as well as to assess the ac-

curacy of the power posterior approximation. Section 4 introduces a technique for choosing

an appropriate amount of coarsening in a data-driven way. In Section 5, we demonstrate

coarsening for mixture models and clustering, to obtain robustness to the form of the com-

ponent distributions. We apply this to perform robust clustering of cells in flow cytometry

datasets containing tens of thousands of multivariate data points. In Section 6, we demon-

strate coarsening on autoregressive models of unknown order, performing inference for the

model complexity in a way that is robust to perturbations. Section 7 discusses several

frequently asked questions, and the supplementary material contains theoretical results,

previous work, further discussion, and additional details.
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Figure 1: Notional schematic diagram of the idea behind the c-posterior. The ambient space is

the set of probability distributions on X , and the curve represents the subset of distributions in

the parametrized family {Pθ : θ ∈ Θ}. The idealized distribution PθI is a point in this subset, and

the empirical distribution P̂X1:n of the idealized data converges to PθI as n → ∞. Although P̂X1:n

is not observed, it is known to be within an r-neighborhood of the empirical distribution P̂x1:n of

the observed data, which, in turn, converges to the observed data distribution, Po. The basic idea

of the c-posterior approach is to condition on the event that P̂X1:n is within this neighborhood.

2 Method

For now, we assume an i.i.d. setting, but the approach generalizes to time series and

regression (see Section 6 and Supplement S6). Suppose we have a model {Pθ : θ ∈ Θ}

along with a prior Π on Θ, and suppose there is a point θI ∈ Θ representing the parameters

of the idealized distribution of the data. The interpretation is that θI is the true state

of nature about which one is interested in making inferences. Suppose there are some

unobserved idealized data X1, . . . , Xn ∈ X that are i.i.d. from PθI , and the observed data

x1, . . . , xn ∈ X are a perturbed version of X1, . . . , Xn in the sense that d(P̂X1:n , P̂x1:n) < r

for some discrepancy d(·, ·) and some r > 0, where P̂x1:n = 1
n

∑n
i=1 δxi

denotes the empirical

distribution of x1:n = (x1, . . . , xn). Suppose x1, . . . , xn behave like i.i.d. samples from some

Po, which we view as a perturbation of PθI . For intuition, consider the diagram in Figure 1.

If there was no perturbation, then we would simply use the standard posterior—that is,

we would condition on the event that X1:n = x1:n—however, when there is a perturbation,

using the standard posterior is incorrect. If there is a known, easy-to-model process by
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which x1:n is generated from X1:n, then we would simply augment the model to include this

process—however, this process is often unknown or highly complex.

An alternative is to condition on the event that d(P̂X1:n , P̂x1:n) < r. In other words,

rather than the standard posterior π(θ | X1:n = x1:n), consider π
(
θ | d(P̂X1:n , P̂x1:n) < r

)
.

Since usually one will not have sufficient a priori knowledge to choose r, it makes sense to

put a prior on it, say R ∼ H, independently of θ and X1:n. Generalizing further, take a

sequence of functions dn such that dn(X1:n, x1:n) ≥ 0 is some measure of the discrepancy

between X1:n and x1:n.

Definition 2.1. We refer to π
(
θ | dn(X1:n, x1:n) < R

)
as a c-posterior.

To clarify the notation: if the prior Π has density π (with respect to some measure), then

the c-posterior has density π(θ | Z = 1) ∝ π(θ)P(Z = 1 | θ) where Z = 1(dn(X1:n, x1:n) <

R). In these expressions, x1:n is considered to be fixed, while X1:n and R are random

variables; thus, the c-posterior is a function of x1:n, but not X1:n and R since they are

integrated out. (We use 1(·) to denote the indicator function: 1(E) = 1 if E is true, and

1(E) = 0 otherwise.) One can write the c-posterior as

π
(
θ | dn(X1:n, x1:n) < R

)
∝ π(θ)P

(
dn(X1:n, x1:n) < R | θ

)
= π(θ)

∫
Xn

G(dn(x
′
1:n, x1:n))P

n
θ (dx

′
1:n) (2.1)

where G(r) = P(R > r) and ∝ indicates proportionality with respect to θ. The in-

tuitive interpretation is that, to use a rough analogy, this integral is like a convolution

of P n
θ (the distribution of X1:n given θ) with the “kernel” G(dn(X1:n, x1:n)). The factor

P
(
dn(X1:n, x1:n) < R | θ

)
can be interpreted as a coarsened likelihood, or c-likelihood, how-

ever, it does not necessarily correspond to a probability distribution on x1:n given θ. The

c-posterior should not be interpreted as implying a model for x1:n given θ; indeed, a key

advantage of the method is that it allows one to avoid explicitly specifying a robust model.

In Supplement S3.1, we derive the form of the c-posterior as n→ ∞. Meanwhile, in Sup-

plement S3.2, we show that under certain conditions, when n is fixed and the distribution of

5



R converges to 0, the c-posterior converges to the standard posterior. In Supplement S3.3,

we show that the c-posterior is robust to changes in Po that are small with respect to the

chosen discrepancy d(·, ·). There are different types of robustness that may be desired, and

the type of robustness exhibited by the c-posterior can be customized through the choice of

d(·, ·). A few potential candidates for d(·, ·) would be Kolmogorov–Smirnov (in the univari-

ate setting), Wasserstein, or a maximum mean discrepancy (Gretton et al., 2006). When

Pθ and Po have densities with respect to a common measure, it is also possible to accom-

modate discrepancies between densities such as relative entropy, Hellinger distance, and

various divergences—even though they may be undefined for empirical distributions—by

choosing dn(X1:n, x1:n) to be a consistent estimator of d(Pθ, Po).

In the examples, we focus on relative entropy and variations thereof as our choice of

d(·, ·), due to several appealing properties. In particular, there is an approximation that

makes it unnecessary to explicitly compute dn(X1:n, x1:n). We discuss this next.

2.1 Relative entropy c-posteriors

Suppose Po and Pθ (for all θ ∈ Θ) have densities po and pθ, respectively, with respect to some

sigma-finite measure λ (e.g., Lebesgue measure, or counting measure on a discrete space).

Define d(Pθ, Po) to be the relative entropy, also known as Kullback–Leibler divergence,

d(Pθ, Po) = D(po∥pθ) =
∫
po(x)

(
log

po(x)

pθ(x)

)
λ(dx).

Suppose dn(X1:n, x1:n) is a consistent estimator of D(po∥pθ), and R ∼ Exp(α). Then one

obtains the following approximation to the relative entropy c-posterior:

π
(
θ | dn(X1:n, x1:n) < R

)
∝∼ π(θ)

n∏
i=1

pθ(xi)
ζn , (2.2)

where ∝∼ means “approximately proportional to”, i.e., the distribution on the left is ap-

proximately equal to the distribution proportional to the expression on the right, and

ζn =
1/n

1/n+ 1/α
=

α

α + n
. (2.3)
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The approximation in Equation 2.2 is good when either n ≫ α or n ≪ α (Corollary S3.4,

Theorem S3.6), under mild conditions. Empirically we find that the approximation can

be quite accurate (see Figure 2). It makes intuitive sense that the approximation would

be good in both the large-sample (n ≫ α) and small-sample (n ≪ α) regimes, when

one considers the convolution representation in Equation 2.1. Also, note that ζn ≈ α/n

when n≫ α, whereas ζn ≈ 1 when n≪ α, and ζn smoothly interpolates between these two

regimes. For the motivation behind the particular form of the power ζn, see Supplement S5.

Section 4 introduces a technique for choosing α in a data-driven way.

A key feature of Equation 2.2 is that it enables one to approximate the c-posterior

without explicitly computing the relative entropy estimates dn(X1:n, x1:n), which would

normally involve computing a density estimate of po in order to handle the entropy term

−
∫
po log po in D(po∥pθ). Since this entropy term is constant with respect to θ, it is

absorbed into the constant of proportionality. Using an Exp(α) prior on R is not important

for robustness (indeed, our theoretical results in Supplement S3 allow a very large class of

distributions onR); choosingR ∼ Exp(α) is only important for obtaining a computationally

simple formula via cancellation of the entropy term.

Definition 2.2. Given ζ ∈ [0, 1], we refer to
∏n

i=1 pθ(xi)
ζ as a power likelihood, and we

refer to the distribution proportional to π(θ)
∏n

i=1 pθ(xi)
ζ as a power posterior.

Like the c-likelihood, the power likelihood should not be interpreted as implying a

probability distribution on x1:n given θ. It should only be interpreted as an approximation

to the c-likelihood, up to a constant of proportionality with respect to θ; see Equation S5.1.

A useful interpretation of the power posterior is that it corresponds to adjusting the sample

size from n to nζ, in the sense that the posterior will only be as concentrated as it would

be if there were nζ samples.

Due to its simple form, inference using the power posterior is often easy, or at least, no

harder than inference using the ordinary posterior. We discuss two commonly occurring

cases: analytical solution in the case of exponential families with conjugate priors, and
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Gibbs sampling in the case of conditionally conjugate priors.

2.1.1 Power posterior with conjugate priors

When using exponential families with conjugate priors, one can often obtain analytical

expressions for integrals with respect to the power posterior. Suppose pθ(x) = exp
(
θTs(x)−

κ(θ)
)
, where s(x) = (s1(x), . . . , sk(x))

T are the sufficient statistics, and suppose π(θ) =

πξ,ν(θ) where πξ,ν(θ) = exp
(
θTξ − νκ(θ) − ψ(ξ, ν)

)
, noting that this defines a conjugate

family. Then the power posterior is proportional to

πξ,ν(θ)
n∏

i=1

pθ(xi)
ζn ∝ exp

(
θT
(
ξ + ζn

∑
is(xi)

)
− (ν + nζn)κ(θ)

)
∝ πξn,νn(θ), (2.4)

where ξn = ξ + ζn
∑

i s(xi) and νn = ν + nζn, and thus, the power posterior remains in the

conjugate family.

For most conjugate families used in practice, simple analytical expressions are available

for the log-normalization constant ψ(ξ, ν) as well as for many integrals with respect to

πξ,ν(θ). This enables one to obtain analytical expressions for many quantities of inferential

interest under the power posterior, thus providing approximations to the corresponding

quantities under the relative entropy c-posterior. For instance, one obtains a marginal

power likelihood,
∫
Θ
πξ,ν(θ)

∏n
i=1 pθ(xi)

ζndθ = exp
(
ψ(ξn, νn)− ψ(ξ, ν)

)
, which can be used

to compute robustified Bayes factors and posterior model probabilities. Such c-posterior

summaries are robust to perturbations to Po that are small with respect to relative en-

tropy, whereas usual Bayes factors and model probabilities can be very sensitive to such

perturbations for large n (Supplement S4). In Section 3, we illustrate this approach in a

toy example involving Bernoulli trials, and in Section 6, we use this approach to perform

robust inference for the order of an autoregressive model.

2.1.2 MCMC on the power posterior

Often, it is desirable to place conditionally conjugate priors on the parameters—for in-

stance, placing independent normal and inverse-Wishart priors on the mean and covari-
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ance of a normal distribution. In such cases, one can easily use Gibbs sampling on the

power posterior, because for each parameter given the others, we are back in the case of a

conjugate prior, and thus the full conditionals belong to the conjugate family (just as in

Equation 2.4). In Section 5, we use Gibbs sampling for robust inference in mixture models

by employing a conditional power posterior. More generally, samples can be drawn from

the power posterior by using Metropolis–Hastings MCMC, with the power likelihood in

place of the usual likelihood.

The mixing performance of MCMC with the power posterior will often be better than

with the standard posterior, since raising the likelihood to a fractional power (i.e., a power

between 0 and 1) has the effect of flattening it, enabling the sampler to more easily move

through the space, particularly when there are multiple modes and n is large. Indeed,

raising the likelihood to a fractional power—also known as tempering—is sometimes done

in more complex MCMC schemes in order to improve mixing.

3 Toy example: Perturbed Bernoulli trials

The purpose of this toy example is to illustrate the method in the simplest possible setting,

and to assess the accuracy of the power posterior approximation in a situation where the ex-

act c-posterior can be computed easily. Suppose X1, . . . , Xn i.i.d. ∼ Bernoulli(θ) represent

the outcomes of n replicates of a laboratory experiment, and the team of experimenters

is interested in testing H0 : θ = 1/2 versus H1 : θ ̸= 1/2. The standard Bayesian ap-

proach is to define a prior probability for each hypothesis, say, Π(H0) = Π(H1) = 1/2,

and define a prior density for θ in the case of H1, say, θ|H1 ∼ Uniform(0, 1). Infer-

ence then proceeds based on the posterior probabilities of the hypotheses, Π(H0|x1:n) and

Π(H1|x1:n) = 1−Π(H0|x1:n), where x1:n = (x1, . . . , xn). If the observed data x1, . . . , xn are

sampled i.i.d. from Bernoulli(θ), then the posterior is guaranteed to converge to the correct

answer, that is, Π(H0|x1:n)
a.s.−−→ 1(θ = 1/2) as n→ ∞.

In reality, however, it is likely that the observed data do not exactly follow the assumed
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model. For instance, some of the experiments may have been conducted under slightly

different conditions than others (such as at different times or by different researchers), or

some of the outcomes may be corrupted due to human error in carrying out the experiment.

A natural choice of discrepancy is the relative entropy between the empirical distri-

butions of x1:n and X1:n, D(p̂x∥p̂X) =
∑1

i=0 p̂x(i) log(p̂x(i)/p̂X(i)), where p̂x(1) = x̄ and

p̂x(0) = 1− x̄ in this example. This leads us to consider the following coarsened posterior

for inferences about H0 and H1:

Π
(
H0

∣∣D(p̂x||p̂X) < R), (3.1)

where R ∼ Exp(α). How should we choose α? If we have no a priori knowledge of the size

of perturbation to expect, then we can use the calibration curve technique in Section 4.

Otherwise, in this example, we can interpret the neighborhood size r in terms of Euclidean

distance via the chi-squared approximation to relative entropy, D(p∥q) ≈ 1
2
χ2(p, q) (see

Prop. S5.1). In particular, when X̄ ≈ 1/2 we have D(p̂x||p̂X) ≈ 2|x̄ − X̄|2. Thus, if we

expect that the perturbation will shift the sample mean by no more than ε or so when

H0 : θ = 1/2 is true, then it makes sense to choose α so that ER ≈ 2ε2. Since ER = 1/α,

this suggests using α = 1/(2ε2).

In this toy example, the c-posterior in Equation 3.1 can be computed exactly (see

Supplement S7.1), however, in more complex cases, an approximation is needed. The

power likelihood approximation from Section 2.1, when applied to this example, yields

Π
(
H0

∣∣D(p̂x||p̂X) < R) ≈ 1/
(
1 + 2nζnB(1 + nζnx̄, 1 + nζn(1− x̄))

)
(3.2)

where ζn = α/(α+ n) and B(a, b) is the beta function (Supplement S7.1). Comparing this

to the standard posterior,

Π
(
H0

∣∣X1:n = x1:n) = 1/
(
1 + 2nB(1 + nx̄, 1 + n(1− x̄))

)
, (3.3)

note that the only difference is that n has been replaced by nζn.

To illustrate numerically, suppose we would like to be robust to perturbations affecting

x̄ by roughly ε = 0.02 when H0 is true. As described above, this corresponds to α =
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Figure 2: Bernoulli example. Left: Results using a priori choice of α = 1250, averaged over

1000 datasets, for θo = 0.51 and θo = 0.56. Center and right: α calibration curves for θo ∈

{0.5, 0.51, 0.75}, and results using the data-driven choice of α = 2500 when θo = 0.51.

1/(2·0.022) = 1250. Now, suppose that in reality H0 is indeed true (i.e., the true distribution

is PθI = Bernoulli(θI) where θI = 0.5), and the data are perturbed in such a way that

x1, . . . , xn behave like i.i.d. samples from Bernoulli(θo) where θo = 0.51 (i.e., the observed

data distribution is Po = Bernoulli(θo)). Figure 2 (top left) shows the probability of

H0 under the standard posterior, the exact c-posterior, and the approximate c-posterior

(Equations 3.3, 3.1, and 3.2, respectively), for increasing values of the sample size n.

When n is small, there is not enough power to distinguish between 0.5 and 0.51, so the

standard posterior favors H0 at first (due to the Bartlett–Lindley effect), but as n increases,

eventually the posterior probability of H0 goes to 0. (So, when n is large, the standard

posterior is not robust to this perturbation.) The c-posterior behaves the same way as the

standard posterior when n is small, but as n increases, the c-posterior probability of H0

remains high, as desired—thus, the c-posterior remains robust for large n. The approximate

c-posterior is so close to the exact c-posterior that the plots are visually indistinguishable.

What if the departure from H0 is significantly larger than our chosen tolerance of ε =

0.02? Does the c-posterior more strongly favor H1 in such cases, as it should? Indeed, it

does. Figure 2 (bottom left) shows the results when θo = 0.56. In this case, the c-posterior

behaves more like the standard posterior, favoring H1 when n is sufficiently large.
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4 Calibration curve technique for choosing α

If we have no a priori basis for choosing α, then the following graphical criterion can help

to make a data-driven choice. Let f(α) be a measure of fit to the data and let g(α) be a

measure of effective complexity—specifically, we use the posterior expected log likelihood

for f(α), and posterior expected model complexity for g(α). As α ranges from 0 to ∞,

(g(α), f(α)) traces out a curve in R2, and the technique is to choose a point on this curve

that achieves a good fit with low complexity.

To illustrate on the toy Bernoulli example, we define f(α) =
∫ (

log p(x1:n|θ)
)
Πα(dθ|x1:n)

to quantify fit to the data and g(α) = Πα(H1|x1:n) to quantify effective complexity, where

Πα(dθ|x1:n) ∝ p(x1:n|θ)ζnΠ(dθ) is the power posterior; see Supplement S7.1 for formulas.

Figure 2 shows the resulting calibration curves for three datasets of size n = 106, generated

(i) when H0 is true and there is no perturbation (θo = 0.5), (ii) when H0 is true and there

is a small perturbation (θo = 0.51), and (iii) when H1 is true and distance from 0.5 is

large (θo = 0.75). In each case, the curve goes from lower fit to higher fit as α increases.

The distinction between “small” and “large” distance depends on the choice of prior—e.g.,

θo = 0.51 is close to 0.5 relative to typical samples from our prior of θ|H1 ∼ Uniform(0, 1).

The three calibration curves in Figure 2 illustrate common patterns. Case (i): When

there is no perturbation from H0, the best fit is obtained with very low complexity at

the terminus α = ∞. This suggests choosing α = ∞, which would make the c-posterior

concentrate at the true value in this case. Case (ii): When there is a small perturbation

from H0 (θ
o = 0.51), the fit increases dramatically at first while maintaining low complexity,

then the curve reaches a cusp at α ≈ 2500 and levels off, with more modest increases in

fit at the cost of greater complexity. This suggests choosing α ≈ 2500. The curve sits near

the cusp for a large range of α values from around 1200 to 4000, e.g., the blue dot indicates

α = 1250, our a priori choice. Any value of α in this range yields similar results (e.g.,

see Figure 2 bottom right compared to top left). Case (iii): When the distance from H0 is

very large (θo = 0.75), there is no cusp in the curve, and a good fit can only be obtained
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at higher complexity. This curve suggests choosing α = ∞, in which case the c-posterior

would concentrate at H1. This makes sense since the distance from H0 is so large that

explaining it by a perturbation is implausible. Thus, the calibration curve can help decide

how much coarsening is needed, if any.

5 Mixture models and clustering

Consider a finite mixture model, X1, . . . , Xn|w,φ i.i.d. ∼
∑K

i=1wifφi
(x) with mixture

weights w, component parameters φ, and family of component distributions (fϕ : ϕ ∈

Φ). For the prior, suppose w ∼ Dirichlet(γ1, . . . , γK) and φ1, . . . , φK i.i.d. ∼ H. When

γi = c/K, this model approximates a Dirichlet process mixture as K → ∞ (Ishwaran and

Zarepour, 2002). Mixture models of this form are widely used for clustering.

However, this type of model is not robust to misspecification of the family of component

distributions. This has negative consequences in practice, since one might reasonably expect

the observed data x1, . . . , xn to come from a finite mixture, but it is usually unreasonable

to expect the component distributions to have a known parametric form. We illustrate how

coarsening enables one to perform inference in a way that is robust to misspecification of

the form of the component distributions.

We approximate the relative entropy c-posterior using the power posterior, defined

as πα(w,φ | x1:n) ∝ π(w,φ)
∏n

j=1

(∑K
i=1wifφi

(xj)
)ζn

where ζn = α/(α + n). The stan-

dard MCMC algorithms for mixture models use data augmentation with latent variables

z1, . . . , zn ∈ {1, . . . , K} indicating which component each datapoint comes from, but the

power likelihood rules out direct application of these algorithms. Antoniano-Villalobos and

Walker (2013) developed an auxiliary variable algorithm for mixture model power posteri-

ors, or reversible jump MCMC could be used (Green, 1995).

Here, we explore two algorithms: (a) a conditional coarsening algorithm and (b) an

importance sampling algorithm for the power posterior. The conditional coarsening algo-

rithm scales well, is easy to implement, and yields results similar to (but not exactly the
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same as) the power posterior. It is identical to the standard data augmentation algorithm

for mixtures, except that the updates to w and φ use a power likelihood.

Algorithm 5.1 (Conditional coarsening for mixture models).

� Input: x1, . . . , xn. Output: Samples of w, φ, and component assignments z1, . . . , zn.

� Initialize w ∼ Dirichlet(γ1, . . . , γK) and φ1, . . . , φK i.i.d. ∼ H.

� For iteration t = 1, . . . , T :

1. For j = 1, . . . , n: sample zj ∼ Categorical(w̃) where w̃i ∝ wifφi
(xj).

2. Sample w ∼ Dirichlet(γ̃1, . . . , γ̃K) where γ̃i = γi + ζn
∑n

j=1 1(zj = i).

3. For i = 1, . . . , K: sample φi ∼ q where q(φi) ∝ π(φi)
∏

j:zj=i fφi
(xj)

ζn, or make

some other update to φi that leaves q invariant.

See Supplement S7.2 for the motivation behind the algorithm. In some cases, Algo-

rithm 5.1 has difficulty escaping from local optima in which one cluster needs to be split

into two or more clusters. Therefore, we add the following step between steps 1 and 2,

to escape from these local optima during an initialization period that is discarded along

with the burn-in. Let S and Tinit be positive integers. Define Ni(z) =
∑n

j=1 1(zj = i) and

k(z) =
∑K

i=1 1(Ni(z) > 0).

1.5. (Periodic random splits) If t < Tinit and t is a multiple of S, then randomly split each

of the K − k(z) largest clusters into two clusters.

More precisely, let σ such that Nσ1(z) ≥ · · · ≥ NσK
(z), and let K ′ = k(z). Then, for

i = 1, . . . ,min{K ′, K −K ′}: for each j such that zj = σi, update zj ∼ Uniform{σi, σi+K′}.

To evaluate how closely the conditional coarsening algorithm approximates the power

posterior, we also consider an importance sampling (IS) algorithm; see Supplement S7.2.

5.1 Simulation example: Perturbed mixture of Gaussians

To demonstrate robustness to the form of the component distributions, we apply a univari-

ate Gaussian mixture model to data from a perturbed Gaussian mixture. We generate the
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(a) Demonstration on a perturbed mixture of k0 = 2 Gaussians.

(b) Demonstration on a perturbed mixture of k0 = 4 Gaussians.

Figure 3: Top left: True density (dotted blue line) and perturbed density (red line). Top right:

Calibration curve for α. Middle: Mixture density (dotted black line) and components (solid

colors) for typical samples from the posterior. Bottom left: The standard posterior has too many

clusters as n increases. Bottom right: Coarsening yields a more accurate number of clusters.
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observed data by starting with a true (idealized) distribution PθI =
∑k0

i=1w0iN (µ0i, σ
2
0i),

simulating a perturbation Po by taking a random draw of a Dirichlet process mixture with

base distribution PθI , concentration parameter 500, and N (0, 0.252) components, and then

sampling x1, . . . , xn i.i.d. ∼ Po. We illustrate with two examples: (a) a two-component

mixture with µ0 = (−2, 2), σ0 = (.7, .8), and w0 = (.5, .5), and (b) a four-component

mixture with µ0 = (−3.5, 0, 3, 6), σ0 = (.8, .4, .5, .5), and w0 = (.25, .3, .25, .2); see Figure 3.

For the model parameters, we use K = 20, γ1 = · · · = γK = 0.5/K, and define the prior

H on the component means and variances as µi ∼ N (m, ℓ−1) and σ2
i ∼ InverseGamma(a, b)

independently with m = 0, ℓ = 1/52, a = 1, and b = 1, where the component densities

are fµi,σ2
i
(x) = N (x|µi, σ

2
i ). To implement Algorithm 5.1, we define φi = (µi, σ

2
i ) and for

step 3 of the algorithm, we use power-likelihood Gibbs updates to µi and σ
2
i , specifically:

3. For i = 1, . . . , K, sample

� µi ∼ N (m̃, ℓ̃−1) where ℓ̃ = ℓ+ ζnNi(z)/σ
2
i , m̃ = (mℓ+ ζn

∑
j:zj=i xj/σ

2
i )/ℓ̃, and

� σ2
i ∼ InverseGamma(ã, b̃) where ã = a+ 1

2
ζnNi(z) and b̃ = b+ 1

2
ζn

∑
j:zj=i(xj − µi)

2.

Recall that Ni(z) =
∑n

j=1 1(zj = i). In each run of Algorithm 5.1, we use T = 104

iterations with a burn-in period of Tburn = 1000. Periodic random splits (step 1.5) are

performed using S = 10 and Tinit = 500. Samples from the standard posterior are obtained

by setting ζn to 1. For coarsening, we use ζn = α/(α + n) with α chosen as follows.

In this type of model, posterior samples often have one or more tiny “extra” clusters. To

focus on the larger clusters, we use the statistic k2%(z) =
∑K

i=1 1(Ni(z) > 0.02n) (i.e., the

number of clusters with more than 2% of the points) to quantify the number of nonnegligible

clusters, for a given assignment vector z. To choose α, we plot the calibration curve

with f(α) = 1
|T |

∑
t∈T log p(x1:n|w(t), φ(t)) to assess fit (where p(xj|w,φ) =

∑K
i=1wifφi

(xj))

and g(α) = 1
|T |

∑
t∈T k2%(z

(t)) to assess effective complexity, where (w(t), φ(t), z(t)) for t =

1, . . . , T are the posterior samples obtained using Algorithm 5.1, and T = {Tburn+1, . . . , T}.

Figure 3(a,b) shows the calibration curves for the k0 = 2 and k0 = 4 examples, with

n = 104 data points. In both examples, there is a clear cusp at a point of good fit and low
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complexity. In the k0 = 2 example, the curve is near the cusp when α is around 800 to

1000, and the tip is at α ≈ 800; thus, we choose α = 800 in this example. In the k0 = 4

example, a wide range of α values from 800 to 2000 are near the cusp, with the tip at

α ≈ 2000; thus, we pick α = 2000 in this case.

To assess performance, for both the two- and four-component examples, for each n ∈

{200, 1000, 5000, 10000, 20000}, we generated five independent datasets of size n. On each

dataset, for the standard posterior and for conditional coarsening, Algorithm 5.1 was run

using the settings above. The IS algorithm was also run using the same settings, and

yielded results similar to conditional coarsening; see Supplement S7.2.

In each of Figure 3(a) and (b), the middle row shows the mixture density
∑K

i=1wifµi,σ2
i
(x)

and the individual weighted components wifµi,σ2
i
(x) for typical posterior samples when

n = 20000. Samples from the standard posterior more closely fit the perturbed distri-

bution Po, and they have several more nonnegligible components than the true mixture

PθI . Meanwhile, typical samples using the coarsened approach more closely match the true

mixture PθI in terms of the number of nonnegligible components, as well as the weights,

locations, and scales of the components.

The bottom row in each of Figure 3(a) and (b) shows the posterior on k2% (the number

of clusters containing more than 2% of the points), averaged over the five datasets. The

standard posterior tends to introduce more clusters as n increases, in order to fit the

observed data distribution Po. Meanwhile, the coarsened approach shows strong support

for the true number of nonnegligible clusters, no matter how large n becomes.

In summary, when there is a perturbation, the coarsened approach yields more accurate

inferences for the true (unperturbed) mixture parameters.

5.2 Application: Robust clustering for flow cytometry

Flow cytometry is a high-throughput technology for measuring the properties of individual

cells in a sample of biological material. Typically, in each sample, tens of thousands of
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individual cells are measured with respect to around 3 to 20 properties. In flow cytometry

data, cells from distinct populations tend to fall into clusters; see Figure 4. Discovery and

characterization of cell populations by clustering is one of the primary tasks performed with

this type of data. Traditionally, this clustering is performed manually by defining piece-

wise linear boundaries between regions; this is known as “gating”. Since manual gating is

labor intensive and subjective, several automated clustering algorithms have been devel-

oped, and the Flow Cytometry: Critical Assessment of Population Identification Methods

(FlowCAP) challenges were established to evaluate the performance of these methods on

benchmark datasets for which ground truth clusters have been determined by manual gat-

ing (Aghaeepour et al., 2013).

We consider 12 of these benchmark datasets, originally from a longitudinal study of

graft-versus-host disease (GvHD) in patients undergoing blood or marrow transplantation

(Brinkman et al., 2007). Each dataset corresponds to one blood draw from one patient.

The objective of the study was to understand how various cell populations differed between

patients who developed GvHD and patients who did not. Separating distinct populations

of cells is the first step in the analysis of these data.

The difficulty is that the populations are not well-approximated by any parametric dis-

tribution, and further, the number of populations is not known in advance. Consequently,

using a model such as a mixture of Gaussians yields poor results, since many Gaussians

are needed to fit each population; see Figure 4 (row 2). Some previous algorithms for flow

cytometry have dealt with this problem by performing a post hoc step in which multiple

clusters are grouped together (Finak et al., 2009; Aghaeepour et al., 2011). Ideally, one

would use a nonparametric model for each of the component distributions, but this would

be computationally intensive due to the large number of multivariate data points in each

sample.

We explore a coarsening approach to robust clustering for flow cytometry data, using a

multivariate Gaussian mixture model. For the model parameters, in the same notation as at

the beginning of Section 5, we use K = 20, γ1 = · · · = γK = 0.5/K, and component param-

18



Figure 4: Flow cytometry clustering results on FlowCAP-I GvHD dataset #10 (n = 23377,

d = 4). The four dimensions are FL1.H, FL2.H, FL3.H, and FL4.H, which measure selected

antibodies; three two-dimensional projections are shown. Row 1: Expert manual gating identifies

three populations (clusters) of cells. Each point is one cell, and the colors indicate cluster labels,

with black indicating cells not labeled by the expert. Row 2: The standard posterior yields far too

many clusters — on this dataset, posterior samples typically have 13 clusters that contain more

than 2% of the points, each. Row 3: Conditional coarsening very closely matches the manual

ground truth (average F-measure = 0.998 in this case). In rows 2–3, the clusters shown are the

z∗ assignments from the last iteration of the algorithm.
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Figure 5: Calibration of α on the training set (GvHD datasets 1–6). The average F-measure is

shown for each α and each dataset. The black dotted line is the overall average for each α.

eter priors µi ∼ N (m,L−1) and Λi ∼ Wishart(V, ν) independently, where the component

densities are fµi,Λi
(x) = N (x|µi,Λ

−1
i ) for x ∈ Rd. We set the hyperparameters in a data-

dependent way: given input data x1, . . . , xn ∈ Rd, we choose prior mean m = 1
n

∑n
j=1 xj,

prior precision matrix L =
(
1
n

∑n
j=1(xj −m)(xj −m)T

)−1
, degrees of freedom ν = d, and

scale matrix V = L/ν. Algorithm 5.1 is implemented by defining φi = (µi,Λi) and using

power-likelihood Gibbs updates to µi and Λi for step 3 of the algorithm:

3. For i = 1, . . . , K, sample

� µi ∼ N (m̃, L̃−1) where L̃ = L+ ζnNi(z)Λi, m̃ = L̃−1(Lm+ ζnΛi

∑
j:zj=i xj), and

� Λi ∼ Wishart(Ṽ , ν̃) where ν̃ = ν+ζnNi(z), Ṽ
−1 = V −1+ζn

∑
j:zj=i(xj−µi)(xj−µi)

T.

In each iteration of the algorithm, we compute z∗j = argmaxiwifµi,Λi
(xj) for j = 1, . . . , n,

the most likely component assignments based on the parameter values at that iteration.

In each run of Algorithm 5.1, we use T = 4000, Tburn = 2000, S = 10, and Tinit = 400.

Setting ζn to 1 yields the standard posterior, and for coarsening we use ζn = α/(α+n). To

choose α, we split the data into a training set (datasets 1–6) and a test set (datasets 7–12).

The performance metric used in FlowCAP-I is F-measure, a similarity score between any

two partitions A and B of {1, . . . , N}, defined as

F (A,B) =
∑
A∈A

|A|
N

max
B∈B

2|A ∩B|
|A|+ |B|

.

20



Table 1: Average F-measures on the flow cytometry test set (GvHD datasets 7–12).

7 8 9 10 11 12

Standard 0.532 0.478 0.619 0.453 0.542 0.585

Coarsened 0.667 0.875 0.931 0.998 0.989 0.993

For a range of α values, for each training dataset, we run Algorithm 5.1 and at each iteration

we compute F (A,B) with A as the manual ground truth and B as the partition induced by

z∗. In each dataset, a small fraction of cells were not labeled by the human expert; these

unlabeled cells are included when running the algorithm, and excluded when computing

the F-measure. Figure 5 shows the average F-measure for each of these runs, excluding

burn-in. Averaging over the six training datasets, the best performance is obtained at

α = 200; thus, we set α = 200 to evaluate performance on the test datasets.

Table 1 shows the average F-measures on the test set (datasets 7–12), using the same

algorithm settings as above, comparing z∗ against ground truth as before. The standard

posterior performs very poorly, whereas the coarsening results are comparable to the best

performance obtained by algorithms tailored to flow cytometry clustering (Aghaeepour

et al., 2013). Of datasets 7–12, coarsening has the most difficulty on 7, but interestingly,

if we increase α to 500, then the F-measure increases to 0.937 and the resulting cluster

assignments closely resemble the ground truth; see Figure 6. This suggests that even better

performance may be possible with an improved method of choosing α for each dataset.

6 Autoregressive models of unknown order

In this section, we apply the c-posterior to perform inference for the order of an autoregres-

sive model in a way that is robust to misspecification of the structure of the model, such

as time-varying noise. This demonstrates how the robustified marginal likelihood can be

computed in closed form when using conjugate priors, and provides some insight into why

coarsening works. Consider an AR(k) model, that is, a kth-order autoregressive model:
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Figure 6: Flow cytometry clustering results on FlowCAP-I GvHD dataset #7 (n = 13773, d = 4).

Row 1: Ground truth clusters from expert labeling. Row 2: Standard posterior. Rows 3-4:

Conditional coarsening with α ∈ {200, 500}. See the text and Figure 4 for more information.
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Xt =
∑k

ℓ=1 θℓXt−ℓ + εt for t = 1, . . . , n, where ε1, . . . , εn i.i.d. ∼ N (0, σ2) and Xt = 0

for t ≤ 0. Let π(k) be a prior on the order k, let θ1, . . . , θk|k i.i.d. ∼ N (0, σ2
0), and for

simplicity, assume σ2 is known.

To obtain robustness to perturbations that are small with respect to relative entropy

rate, we employ a c-posterior for time-series (see Supplement S6.1 for details). Since θ|k

has been given a conjugate prior, we can analytically compute the resulting marginal power

likelihood as described in Section 2.1.1 with power ζn = α/(α + n),

Lα(k;x1:n) :=

∫
Rk

p(x1:n|θ, k)ζnπ(θ|k)dθ

=

∫
Rk

( n∏
t=1

N
(
xt

∣∣∑k
ℓ=1θℓxt−ℓ, σ

2
))ζn

N (θ | 0, σ2
0Ik×k)dθ

=
exp(1

2
ζ2nv

TΛ−1v)

σk
0 |Λ|1/2

N (x1:n | 0, σ2In×n)
ζn

where Λ = ζnM + σ−2
0 Ik×k, Mij =

∑n
t=1 xt−ixt−j/σ

2, vi =
∑n

t=1 xtxt−i/σ
2, and xt = 0 for

t ≤ 0. This, in turn, can be used to compute a robustified posterior on the model order k,

defined as πα(k|x1:n) ∝ Lα(k;x1:n)π(k).

To demonstrate empirically, we generate data from a process that is close to AR(4) but

exhibits time-varying noise that cannot be captured by the model:

xt =
4∑

ℓ=1

θℓxt−ℓ + εt +
1
2
sin t (6.1)

where θ = (1/4, 1/4,−1/4, 1/4), εt i.i.d. ∼ N (0, 1), and xt = 0 for t ≤ 0. We apply the

model above to such data, and compare the standard Bayesian approach to the coarsened

approach. For the model parameters, we set σ2 = 1 to match the true value, we set σ2
0 = 1,

and we use a Geometric(0.1) prior on k (i.e., π(k) = 0.9k0.1 for k ∈ {0, 1, 2, . . .}).

To choose α, we use the calibration technique described in Section 4. Specifically, for

a range of α values, we compute f(α) =
∑

k

(
log p(x1:n|k)

)
πα(k|x1:n) as a measure of fit

to the data (noting that log p(x1:n|k) = logL∞(k;x1:n)), and g(α) =
∑

k k πα(k|x1:n) as a

measure of effective complexity. Figure 7 (top right) shows the resulting calibration curve,

for a dataset of size n = 104. The fit increases sharply until a cusp is reached at α ≈ 250,
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Figure 7: Autoregression example. Row 1 (left): Data from the perturbed AR(4) process in

Equation 6.1. Row 1 (right): α calibration curve, when n = 104. Row 2: Posterior distributions

on k. Note that the standard posterior significantly overestimates k as n grows, whereas the

c-posterior strongly favors the true value of k. Rows 3-5: Log marginal likelihood of AR(k) model

(standard and coarsened) for k = 0, 1, . . . , 20, on increasing amounts of data from this process.

whereupon the curve levels off; in fact, a wide range of α values from around 200 to 600

are very near the cusp. This suggests choosing α = 250.

Figure 7 (rows 2–5) compares the standard posterior to the c-posterior with α = 250,

as n increases. Due to the misspecification, the standard posterior puts its mass on values

of k much greater than the true value of 4, when n gets sufficiently large. Meanwhile, the
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c-posterior stabilizes to a distribution on k favoring k = 4. When n < α, the standard and

coarsened approaches yield similar results, but as n grows larger they differ markedly.

This pattern is typical of the log marginal likelihood when comparing models of in-

creasing complexity. From the Laplace approximation, we see that more complex models

are penalized via a term of the form −1
2
tk log n where tk is the dimension of the parameter

for model k (see Supplement S4), e.g., tk = k for the AR(k) model above. This penalty is

visible in the linear decline exhibited in the n = 100 plot. As n increases, this complexity

penalty increases proportionally to only log n, and thus it becomes overwhelmed by the

main term of order n involving the log likelihood at the maximum likelihood estimator

within model k. When n is sufficiently large, the following pattern emerges, as seen in

the n = 10000 plot for the standard approach: for model complexity values k that are too

small, there is a clear lack of fit, and as k increases the log marginal likelihood increases

rapidly until the model can fairly closely approximate the data distribution, at which point

it plateaus, increasing only slightly after that as only fine grain improvements can be made.

From this perspective, the reason why the coarsened marginal likelihood “works” is

that when n is large, it maintains a balance between the model complexity penalty and the

main log-likelihood term.

7 Discussion

The c-posterior approach has a number of appealing features. It has a compelling

justification—it is valid Bayesian inference based on limited information. The interpre-

tation is conceptually clear—one does inference with the same model, but conditioned on

a different event than usual. As shown in Supplement S3, the c-posterior inherits the

continuity properties of the chosen discrepancy, and thus, exhibits robustness to small

perturbations. In this section, we address several frequently asked questions.
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Concentration versus calibration

It is important to note that, unlike the standard posterior, the c-posterior does not con-

centrate as n→ ∞. This is appropriate and desirable, since if there is a perturbation then

some uncertainty always remains about the true (idealized) distribution, no matter how

much data are observed. Thus, in practice, the best one can do is appropriately quantify

uncertainty about the true distribution, which is precisely what the c-posterior is designed

to do, by allowing for perturbations.

However, if too much coarsening is applied (e.g., if α is too small), then (1) model com-

plexity estimates under the c-posterior will tend to be biased downward, and (2) posterior

credible sets will be overly large, since the c-posterior will not be sufficiently concentrated.

These are the main disadvantages of using a c-posterior.

Thus, it is necessary to appropriately calibrate the amount of coarsening to match the

size of the perturbation. If the model is exactly correct, then any amount of coarsening

would be disadvantageous. However, in practice, the model is almost always wrong, so

some amount of coarsening would probably be beneficial in most applications.

Bias

For any given level of model complexity, parameter estimates under the c-posterior have

very similar bias to standard posterior estimates, as long as the prior is not overly strong.

For instance, in regression problems, the c-posterior mean of the regression function tends

to be very close to the standard posterior mean function — the c-posterior is just less

concentrated about this function.

Meanwhile, the bias of model complexity estimates can be considerably improved under

the c-posterior. This is illustrated by the mixture model example and the autoregression

example, in which the bias of the posterior mean of k is massively reduced by using a

c-posterior rather than the standard posterior.
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Not equivalent to renormalized tempering or overdispersion

The power posterior is not equivalent to the posterior under a model with density

f(x|θ, ζ) ∝ pθ(x)
ζ (where ∝ indicates proportionality with respect to x) since the nor-

malization constant of f involves θ, whereas the power likelihood does not contain this

normalization constant. Using a model based on f would not be expected to provide the

same robustness properties as the power posterior, since it simply amounts to a model with

one additional parameter, ζ.

Measurement error

A frequently asked question is whether the problems addressed by the c-posterior could

instead be handled using measurement error methods.

The term “measurement error” usually refers to the situation in which the covariates

in a regression model are observed with error (Carroll et al., 2006). This represents one

particular kind of perturbation, and it is usually dealt with by changing the model appro-

priately in order to make it correctly specified. We are concerned with the broader class

of misspecification problems in general — not just covariate error, and not just regression

models. Further, in many situations it is impractical to correct the model, and these are

the situations our method is intended to address.

Alternatively, sometimes “measurement error” is used to refer to an augmentation of

the model to account for additional error/noise/uncertainty in the observed data, beyond

what is already included in the original model. There are essentially two ways of doing this,

the first of which does not solve the fundamental problem addressed by the c-posterior,

and the second of which tends to be computationally expensive:

1. Error model. One could assume a model for the distribution of xi|Xi (in the

notation of Section 2), for example, Gaussian or some other error distribution. However,

this simply amounts to convolving the original model distribution Pθ with the chosen error

distribution, leading to a new model that has a few more parameters but is just as bound
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to be misspecified as the original model. For instance, if one is using a Gaussian mixture

model, and then introduces an additional Gaussian error distribution for xi|Xi, the result

is simply a new Gaussian mixture model with inflated variances, which is likely to suffer

from the same misspecification issues as the original model. Even if one nonparametrically

models the error distribution for xi|Xi, this is still more restrictive than our approach

of allowing for a distributional perturbation from the original model, rather than just a

convolution of it.

2. Joint error model. The second approach would be to jointly model the distribution

of x1:n|X1:n. In principle, this can work, but the choice of distribution for x1:n|X1:n cannot

be something simple, otherwise this ends up suffering from the same issue as modeling

xi|Xi. In order for this approach to work well, the distribution of x1:n|X1:n needs to allow

for distributional perturbations even as n→ ∞; essentially, it needs to be a nonparametric

model for the empirical distribution P̂x1:n given P̂X1:n (see Figure 1). But this seems just as

computationally burdensome as using a nonparametric model for Po given PθI , and then

modeling x1, . . . , xn as i.i.d. from Po.

Separation of the amount of coarsening from the choice of prior

A question that may be asked is whether there is a duality between coarsening and using

a robust prior. In particular, would less coarsening be required if one used a more robust

prior? The answer is “no” for two reasons, one technical and one conceptual.

The technical reason is that the likelihood overwhelms the prior as the sample size

increases. Thus, no matter what prior is selected, a perturbation involving the likelihood

will require the same amount of coarsening. A robust prior provides robustness to the

choice of prior, but not robustness to the choice of likelihood. For example, in variable

selection linear regression models, we have observed that using a mixture of g priors (a

leading example of a robust prior) is still just as sensitive to perturbations as using a more

informative prior. Coarsening addresses the problem by dealing with the likelihood directly.

Confusion over a perceived duality may arise due to a misinterpreted analogy with
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penalized regression methods. In penalized regression, there is a duality between the reg-

ularization coefficient of the penalty term and the weight given to the log likelihood term,

since both terms can be multiplied by a constant without affecting the optimizing value. In

contrast, when constructing a posterior distribution rather than computing an optimum,

the concentration of the distribution is affected if one multiplies both terms (in this case,

the log likelihood and the log prior) by a constant. Thus, adjusting the strength of the

prior is not equivalent to adjusting the strength of the likelihood. The analogy does hold

in one respect, which is that reducing the strength of the likelihood (as in coarsening) is

akin to increasing the regularization coefficient in penalized regression.

There is also a conceptual reason for separation between the choice of prior and the

amount of coarsening. In many applications, the parameters represent a true state of

nature that has a meaning and existence completely separate from any likelihood. The

prior represents our prior beliefs about this true state, regardless of any data generating

mechanism or misspecification thereof. For instance, suppose θ is the height of a particular

person. The prior distribution represents our uncertainty in θ before we have any idea what

type of data may be received, and thus, before any likelihood is specified. Then, various

data on the person’s height may be received — such as self-reported height, measurement

with a scale, parents’ heights, or estimation from a photograph — which can be used to

form a posterior by assuming a likelihood. The amount of coarsening required pertains to

the amount of misspecification of the assumed likelihood (or equivalently, the magnitude

of the perturbation), which is completely unrelated to the prior beliefs.

Overfitting

In the coarsening approach, we can choose the discrepancy function and α in addition to the

likelihood and prior, and one may wonder whether this could lead to overfitting. Usually,

having more choices makes a method more flexible. However, coarsening can be viewed

as a form of regularization, so in fact, it reduces overfitting and makes the results less

sensitive to modeling choices. To make a very rough analogy to penalized regression, the
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choices involved in coarsening (namely, the discrepancy and α) are analogous to the form

of regularization penalty (e.g., ridge, lasso, elastic net) and the regularization parameter,

λ. The point of coarsening is that it reduces sensitivity to model assumptions, by allowing

for perturbations of the model. The discrepancy and α simply specify in what way you

want to reduce sensitivity (i.e., what kind of perturbations you want robustness against).

8 Conclusion

The c-posterior approach seems promising as a general method of robust Bayesian inference.

There are several directions that would be interesting to pursue in future work. Instead

of using a single α for the entire likelihood, one could potentially use different amounts of

coarsening on different parts of the likelihood, since some parts may be more misspecified

than others. Further investigation of the accuracy of the power posterior approximation is

needed, both theoretically and empirically. Additionally, it would be beneficial if precise

guarantees could be provided regarding frequentist coverage properties of the c-posterior

when there is a perturbation. Finally, it would be interesting to explore coarsening in

frequentist procedures, since the scope of application is not limited to Bayesian inference.
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Supplementary material for “Robust
Bayesian inference via coarsening”

S1 Previous work

The c-posterior is mathematically equivalent to the posterior approximation resulting from

approximate Bayesian computation (ABC) (Tavaré et al., 1997; Marjoram et al., 2003;

Beaumont et al., 2002; Wilkinson, 2013). However, our motivation is completely different

from that of ABC—we are concerned with robustness to perturbations, whereas ABC is

concerned with inference in models with intractable likelihoods. Generally speaking, we

assume the likelihood can be computed easily, which makes our inferences much more

computationally efficient.

The c-posterior can also be viewed as conditioning on partial information, a technique

that is often used to improve robustness (Doksum and Lo, 1990; Pettitt, 1983; Hoff, 2007;

Dunson and Taylor, 2005; Lewis et al., 2014); also see Cox (1975). Usually, however,

this is done by conditioning on some insufficient statistic; for example, Doksum and Lo

(1990) perform robust Bayesian inference for a location parameter by conditioning only

on the sample median, rather than the whole sample. Our approach of conditioning on a

distributional neighborhood is quite different.

Gibbs posteriors have recently been introduced as a general framework for updating

prior beliefs using a generalized “likelihood” (Jiang and Tanner, 2008; Zhang, 2006b; Li

et al., 2014; Holmes et al., 2016). Under certain conditions (see Supplement S3.1), when

n is large the c-posterior is approximately proportional to exp(−αd(Pθ, P̂x1:n))π(θ), which

can be viewed as a Gibbs posterior with “risk” d(Pθ, P̂x1:n). In research involving Gibbs

posteriors, an issue of current interest is how to choose α so that the concentration of

the posterior is appropriately calibrated. The connection between Gibbs posteriors and

c-posteriors may provide insight into this calibration problem.
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A number of researchers have used the technique of raising the likelihood to a frac-

tional power. Usually, this is done for reasons completely unrelated to robustness, such

as marginal likelihood approximation (Friel and Pettitt, 2008), improved MCMC mix-

ing (Geyer, 1991), consistency in nonparametric models (Walker and Hjort, 2001; Zhang,

2006a), discounting historical data (Ibrahim and Chen, 2000; Smith, 1981), or objective

Bayesian model selection (O’Hagan, 1995). However, recently, the robustness properties of

power likelihoods have been noticed: Grünwald and van Ommen (2014) provide an in-depth

study of a simulation example in which a power posterior exhibits improved robustness to

misspecification, and they propose a method for choosing the power; also see Royall and

Tsou (2003) and Ghosh and Sudderth (2012). In all such previous work, a fixed power is

used, rather than a power tending to 0 as n→ ∞. It seems that neither the form of power

likelihood we use, nor the theoretical motivation for it, have appeared in any prior work.

Most of the previous work on Bayesian robustness has been concerned with robustness

to the choice of prior, rather than robustness to the form of the likelihood. Robustness

to the prior is often formulated from a decision-theoretic perspective in which one chooses

a decision rule that minimizes the worst-case Bayes risk over some set of priors; this is

known as the Γ-minimax approach (Berger, 1985; Berger and Berliner, 1986). In a similar

vein, minimax decision-theoretic approaches for robustness to the likelihood have also been

explored: Hansen and Sargent (2001) propose choosing a decision rule that minimizes

worst-case expected loss over a set of data distributions within a neighborhood of some

point estimate; also see Whittle (1990) and Watson and Holmes (2016). These decision-

theoretic approaches are appealing, but are quite different from what we propose.

Conceptually, the existing methods that seem most similar to the idea of the c-posterior

are goodness-of-fit tests that assess whether the data distribution is close to the set of

model distributions (Rudas et al., 1994; Goutis and Robert, 1998; Carota et al., 1996;

Dette and Munk, 2003; Liu and Lindsay, 2009), however, the methods used previously are

very different from ours. Related to such work is the model credibility index of Lindsay and

Liu (2009), which has heavily influenced our thinking in the development of the c-posterior.
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S2 Further discussion

In this section, we address additional frequently asked questions.

Strategies for choosing the amount of coarsening

There are several possible strategies for choosing α.

� Strategy #1: Calibration curve. Plot (g(α), f(α)) as α ranges from 0 to ∞, where

f(α) is a measure of fit to the data and g(α) is a measure of effective complexity;

then choose α at a point where the curve achieves good fit at low complexity. See

Section 4 for details. This strategy is illustrated in Sections 3, 5.1, and 6.

� Strategy #2: A priori knowledge. Set the mean neighborhood size ER = 1/α accord-

ing to the expected size of the perturbation. To help quantify a priori knowledge in

terms of neighborhood size R, it is possible in some cases to roughly translate intu-

itive notions like Euclidean distance into relative entropy. This strategy is illustrated

in Section 3.

� Strategy #3: Inference. If the chosen discrepancy dn(X1:n, x1:n) can be easily com-

puted, then one can attempt to infer α by comparing the observed data x1:n to

idealized data X1:n generated by an inferred model. This strategy is best suited to

situations in which the model cannot approximate the perturbation. The reason we

do not apply this strategy to the examples in this paper is that the relative entropy

is difficult to estimate for continuous distributions due to the
∫
po log po term, which

requires a density estimate; this is computationally and statistically inefficient except

in very low dimensional cases.

� Strategy #4: Sensitivity analysis. Consider a range of α values, for sensitivity analysis

or exploratory analysis.

In Strategy #2, a useful rule of thumb is to set α = N in order to be robust to perturba-

tions that would require at least N samples to distinguish. Recall that the power posterior
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can be interpreted as adjusting the sample size from n to nζn, in terms of concentration

of the posterior. Thus, since nζn → α as n → ∞, choosing α = N can be interpreted as

saying that we want the posterior to be only as concentrated as when N samples or fewer

are available.

What type of deviations does coarsening tolerate?

The type of deviations tolerated by the c-posterior depends on the choice of discrepancy

dn(·, ·) between distributions, and the size of deviation tolerated is governed by the prior

on R. For instance, choosing dn(·, ·) to be Wasserstein distance yields a c-posterior that

is robust to deviations from the model that are small in Wasserstein distance — i.e.,

any perturbation that is small in Wasserstein distance results in a small change to the

c-posterior. Meanwhile, if we choose relative entropy (i.e., Kullback–Leibler divergence),

then any perturbation that is small in Kullback–Leibler divergence results in a small change

to the c-posterior.

For the simulations, we used examples in which the perturbation is small with respect to

the chosen discrepancy, in order to illustrate robustness of the c-posterior to such perturba-

tions. One could choose any perturbation that is small with respect to a given discrepancy,

and the corresponding c-posterior would be robust to it (Section S3.3).

Bayesian updating

It is important to note that c-posteriors do not follow the standard rule for Bayesian

updating—that is, if one multiplies the c-posterior for a subset of the data times the

c-likelihood for the rest of the data, this is not proportional to the c-posterior for the

whole data set, in general. Interestingly, however, there is a more general rule for rational

Bayesian belief revision, known as Jeffrey conditionalization (Diaconis and Zabell, 1982;

Jeffrey, 1965; Joyce, 2008). Jeffrey conditionalization handles cases in which one is only

given partial information, which is precisely the situation dealt with by the c-posterior.
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Likelihood principle

A potential philosophical criticism of c-posteriors is that they do not, in general, adhere to

the likelihood principle. However, many important statistical methods violate the likelihood

principle, so the practical relevance of this point is dubious. Curiously, the power posterior

does adhere to the likelihood principle.

Data augmentation issues

Generally speaking, it is straightforward to use MCMC for sampling from the power pos-

terior. However, there is a subtle point that should be carefully observed. Often, latent

variables are introduced into an MCMC scheme in order to facilitate moves or to improve

mixing, and sometimes, such latent variables do not work in the same way for the power

posterior. For example, in a mixture model, say,
∑K

i=1wifφi
(x), latent variables z1, . . . , zn

indicating which component each datapoint comes from are often introduced so that the

full conditional distributions for w, φ, and z take nice and simple forms. However, when

using the power posterior, the likelihood is
∏n

j=1

(∑K
i=1wifφi

(xj)
)ζn

, and it seems that

introducing z1, . . . , zn no longer leads to nice full conditionals. Algorithm 5.1 is designed to

approximate the power posterior via an algorithm that closely resembles the standard data

augmentation approach involving z1, . . . , zn. Alternatively, in some cases it may be possible

to use a different set of latent variables; see Antoniano-Villalobos and Walker (2013) for

the case of mixtures.

S3 Theory

In this section, we establish the asymptotic form of c-posteriors as n→ ∞ (Section S3.1),

the limit as the distribution of R converges to 0, with n fixed (Section S3.2), and the

robustness properties of c-posteriors (Section S3.3). Let X and Θ be standard Borel spaces,

and letM denote the space of probability measures on X , equipped with the weak topology.

Let {Pθ : θ ∈ Θ} ⊆ M be a family of probability measures on X such that θ 7→ Pθ(A) is
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measurable for all measurable subsets A ⊆ X . Let Π be a prior measure on Θ, and let

θ ∼ Π,

X1, . . . , Xn|θ i.i.d. ∼ Pθθθ, and

R ∼ H, independently of θ, X1:n,

where H is a distribution on [0,∞). We use (bold) θ for the random variable, and θ for

particular values. Define G(r) = P(R > r). Suppose the observed data x1, . . . , xn ∈ X

behave like i.i.d. samples from some Po ∈ M. Let d : M × M → [0,∞], and for n ∈

{1, 2, . . .}, let dn : X n × X n → [0,∞]. It is assumed that θ 7→ d(Pθ, P ) is measurable for

all P ∈ M, and dn(·, ·) is measurable for each n.

S3.1 Large-sample asymptotics of the c-posterior

The c-posterior takes a simple form as n → ∞, under mild regularity conditions. The

following basic lemma captures the underlying principle at work in establishing both the

asymptotic form of the c-posterior (Theorem S3.3) and its robustness (Theorem S3.8).

Lemma S3.1. If U,Un, V,W ∈ R ∪ {∞} are random variables such that Un
a.s.−−−→

n→∞
U ,

P(U = V ) = 0, P(U < V ) > 0, and E|W | <∞, then E(W | Un < V ) −−−→
n→∞

E(W | U < V ).

Proof. Since P(U = V ) = 0, we have 1(Un < V )
a.s.−−→ 1(U < V ), and thus, also W1(Un <

V )
a.s.−−→ W1(U < V ). Hence, by the dominated convergence theorem (Breiman, 1968, 2.44),

P(Un < V ) −→ P(U < V ) and

E
(
W1(Un < V )

)
−→ E

(
W1(U < V )

)
since 0 ≤ 1(·) ≤ 1, |W1(Un < V )| ≤ |W |, and E|W | <∞. By assumption, P(U < V ) > 0,

hence P(Un < V ) > 0 for all n sufficiently large, and

E(W |Un < V ) =
E
(
W1(Un < V )

)
P(Un < V )

−−−→
n→∞

E
(
W1(U < V )

)
P(U < V )

= E(W |U < V ).
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The following condition is necessary to avoid certain pathologies; it is always satisfied

when d(Pθθθ, Po) <∞ with positive probability and R has a density with respect to Lebesgue

measure that is positive on [0,∞), for instance. We use ⇒ to denote convergence with

respect to the weak topology.

Condition S3.2. Assume P(d(Pθθθ, Po) = R) = 0 and P(d(Pθθθ, Po) < R) > 0.

Theorem S3.3. If dn(X1:n, x1:n)
a.s.−−−→

n→∞
d(Pθθθ, Po) and Condition S3.2 is satisfied, then

Π
(
dθ | dn(X1:n, x1:n) < R

)
===⇒
n→∞

Π
(
dθ | d(Pθθθ, Po) < R

)
∝ G

(
d(Pθ, Po)

)
Π(dθ), (S3.1)

and in fact,

E
(
h(θ) | dn(X1:n, x1:n) < R

)
−−−→
n→∞

E
(
h(θ) | d(Pθθθ, Po) < R

)
=

Eh(θ)G
(
d(Pθθθ, Po)

)
EG

(
d(Pθθθ, Po)

) (S3.2)

for any h ∈ L1(Π), i.e., any measurable h : Θ → R such that
∫
|h(θ)|Π(dθ) <∞.

Proof. We apply Lemma S3.1 with U = d(Pθθθ, Po), Un = dn(X1:n, x1:n), V = R, and W =

h(θ). By assumption, Un
a.s.−−→ U , P(U = V ) = 0, P(U < V ) > 0, and E|W | < ∞. Hence,

by Lemma S3.1,

E(W | Un < V ) −→ E(W | U < V ) =
E(W1(U < V ))

P(U < V )

=
E
(
WE(1(U < V )|W,U)

)
E
(
P(U < V | U)

) =
E(WG(U))

EG(U)

since V ⊥ U,W by construction. This establishes Equation S3.2, and since in particular

this holds for any bounded continuous h, Equation S3.1 follows.

A case of particular interest arises when R ∼ Exp(α), since then G(r) = e−αr and

the resulting asymptotic c-posterior is proportional to exp(−αd(Pθ, Po))Π(dθ), by Theo-

rem S3.3. This is asymptotically equivalent to exp(−αd(Pθ, P̂x1:n))Π(dθ), provided that

d(Pθθθ, P̂x1:n)
a.s.−−→ d(Pθθθ, Po), which is precisely the form of a Gibbs posterior as discussed in

Section S1. If R = r0 a.s. for some r0 > 0, then G(r) = 1(r < r0), and by Theorem S3.3

the asymptotic c-posterior is proportional to 1(d(Pθ, Po) < r0)Π(dθ), i.e., it is zero outside

the radius r0 “neighborhood” of Po and reverts to the prior inside.

S7



The following corollary establishes the asymptotic form of the relative entropy c-

posterior.

Corollary S3.4. Suppose Po has density po, Pθ has density pθ for each θ, and dn(X1:n, x1:n)

is an almost-surely consistent estimator of D(po∥pθθθ), i.e., dn(X1:n, x1:n)
a.s.−→ D(po∥pθθθ). If

d(Pθ, Po) = D(po∥pθ) and Condition S3.2 is satisfied, then Equations S3.1 and S3.2 hold.

We also obtain the following interesting corollary. Recall that P̂x1:n = 1
n

∑n
i=1 δxi

.

Corollary S3.5. Suppose d : M×M → [0,∞] has the property that d(Pn, Qn) → d(P,Q)

whenever Pn ⇒ P and Qn ⇒ Q. If Condition S3.2 is satisfied, then Equations S3.1 and

S3.2 hold when dn(X1:n, x1:n) = d(P̂X1:n , P̂x1:n).

Proof. Since X1, . . . , Xn|θ i.i.d. ∼ Pθθθ and x1, . . . , xn behaves like an i.i.d. sequence from

Po, then P̂X1:n

a.s.
==⇒ Pθθθ and P̂x1:n =⇒ Po (Dudley, 2002, Theorem 11.4.1). Hence,

dn(X1:n, x1:n)
a.s.−−→ d(Pθθθ, Po), and Theorem S3.3 applies.

S3.2 Small-sample behavior of the c-posterior

When n is small, the c-posterior tends to be well-approximated by the standard poste-

rior. To study this, we consider a different asymptotic regime—namely, the limit as the

distribution of R converges to 0 in a certain sense, while holding n fixed.

We continue to assume the setup from the beginning of Section S3. Further, suppose

each Pθ has a density pθ with respect to some common measure λ on X . Let E(x1:n) =

{(xσ1 , . . . , xσn) : σ ∈ Sn} where Sn is the set of permutations of (1, . . . , n) and x1, . . . , xn ∈

X are the observed data.

Theorem S3.6. There exists cα ∈ (0,∞) depending on X , λ, x1:n, dn, and G—but not

depending on θ—such that

cα P
(
dn(X1:n, x1:n) < R/α

∣∣ θ) −−−→
α→∞

n∏
i=1

pθ(xi),

if either of the following two cases hold:

S8



1. (Discrete case) Suppose X is countable and λ is counting measure. Suppose

dn(x
′
1:n, x1:n) = 0 if and only if x′1:n ∈ E(x1:n). Assume G(0) > 0.

2. (Continuous case) Suppose X = Rm for some m, and λ is Lebesgue measure on X .

Assume pθ is continuous at each of x1, . . . , xn. Assume dn(x
′
1:n, x1:n) = dn(x

′
σ, x1:n)

for all x′1:n ∈ X n, σ ∈ Sn (i.e., dn(x
′
1:n, x1:n) is invariant to the order of x′1, . . . , x

′
n).

Suppose that for any sequence x
(1)
1:n, x

(2)
1:n, . . . ∈ X n, we have dn(x

(k)
1:n, x1:n) → 0 if and

only if minσ∈Sn

∑n
i=1 ∥x

(k)
σi − xi∥2 → 0 as k → ∞. Assume that G(r) > 0 for all

r ∈ [0,∞), and that there exists γ ∈ (0, 1) such that G(r)/G(γr) → 0 as r → ∞.

Proof. (Discrete case) By the dominated convergence theorem,

1/G(0)

|E(x1:n)|
P
(
dn(X1:n, x1:n) < R/α

∣∣ θ) = 1/G(0)

|E(x1:n)|
∑

x′
1:n∈Xn

G(αdn(x
′
1:n, x1:n))

n∏
i=1

pθ(x
′
i)

−−−→
α→∞

1/G(0)

|E(x1:n)|
∑

x′
1:n∈E(x1:n)

G(0)
n∏

i=1

pθ(x
′
i) =

n∏
i=1

pθ(xi).

(Continuous case) Let us abbreviate x = x1:n and E = E(x1:n). For y ∈ X n, denote

Br(y) = {z ∈ X n :
∑n

i=1 ∥yi − zi∥2 < r2} , i.e., the Euclidean ball of radius r in Rmn.

Choose r ∈ (0,∞) small enough that for any y, z ∈ E such that y ̸= z, we have Br(y) ∩

Br(z) = ∅. Define X̃ =
(
X n \

⋃
y∈E Br(y)

)
∪ Br(x), and give X̃ the Euclidean metric.

Define a Borel measure λ̃ on X̃ by λ̃(A) = λ(A) + (|E| − 1)λ(A ∩ Br(x)). Let Zα =∫
Br(x)

G(αdn(x
′, x))dλ̃(x′). Then

1

Zα

P
(
dn(X1:n, x1:n) < R/α

∣∣ θ) (a)
=

1

Zα

∫
Xn

G(αdn(x
′, x))

(∏n
i=1 pθ(x

′
i)
)
dx′

(b)
=

1

Zα

∫
X̃
G(αdn(x

′, x))
(∏n

i=1 pθ(x
′
i)
)
dλ̃(x′)

(c)−→
n∏

i=1

pθ(xi)

as α → ∞; (a) is by Equation 2.1; (b) is since there are |E| distinct permutations of

x′1, . . . , x
′
n and the integrand is invariant to these permutations; (c) is by Lemma S3.7

applied to X̃ , λ̃, f(x′) = dn(x
′, x), and h(x′) =

∏n
i=1 pθ(x

′
i).

Lemma S3.7. Let X be a metric space, and let λ be a Borel measure on X . Let f :

X → [0,∞] be measurable. Suppose there is a point x0 ∈ X such that for any sequence
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x1, x2, . . . ∈ X , we have f(xn) → 0 if and only if xn → x0. Let h : X → [0,∞) such that

h ∈ L1(λ) and h is continuous at x0. Assume 0 < λ(Br(x0)) < ∞ for all r ∈ (0,∞).

Suppose G(r) = P(R > r) for some random variable R on [0,∞) such that G(r) > 0 for

all r ∈ [0,∞), and suppose there exists γ ∈ (0, 1) such that G(r)/G(γr) → 0 as r → ∞.

Then for any r ∈ (0,∞),

1

Zα(r)

∫
X
G(αf(x))h(x)dλ(x) −→ h(x0)

as α → ∞, where Zα(r) =
∫
Br(x0)

G(αf(x))dλ(x).

Here, Br(x0) := {x ∈ X : dX (x, x0) < r}, where dX is the metric of X . Note that

the condition on f implies, in particular, that (a) f(x) = 0 if and only if x = x0, (b) f is

continuous at x0, and (c) for any r > 0, inf{f(x) : x ∈ Br(x0)
c} > 0.

Proof. Let us abbreviate Br = Br(x0). Let ε > 0. Using the continuity of h at x0, choose

δ ∈ (0, r) such that for all x ∈ Bδ, h(x0)− ε ≤ h(x) ≤ h(x0) + ε. Let α > 0. Then

1

Zα(r)

∫
X
G(αf(x))h(x)dλ =

1

Zα(r)

∫
Bc

δ

G(αf(x))h(x)dλ+
Zα(δ)

Zα(r)

1

Zα(δ)

∫
Bδ

G(αf(x))h(x)dλ.

By our choice of δ,

h(x0)− ε ≤ 1

Zα(δ)

∫
Bδ

G(αf(x))h(x)dλ ≤ h(x0) + ε.

So, if we can show that 1
Zα(r)

∫
Bc

δ
G(αf(x))h(x)dλ → 0 and Zα(δ)/Zα(r) → 1 as α → ∞,

then the result will follow since ε > 0 is arbitrary. Let β = min{1, inf{f(x) : x ∈ Bc
δ}}, and

note that 0 < β < ∞. By the continuity of f at x0, choose ρ ∈ (0, δ) such that f(x) < βγ

for all x ∈ Bρ. Then

0 ≤ 1

Zα(r)

∫
Bc

δ

G(αf(x))h(x)dλ ≤
G(αβ)

∫
Bc

δ
h(x)dλ∫

Bρ
G(αf(x))dλ

≤
G(αβ)

∫
X h(x)dλ

G(αβγ)λ(Bρ)
−→ 0

as α → ∞. Similarly,

Zα(r)

Zα(δ)
= 1 +

∫
Br\Bδ

G(αf(x))dλ∫
Bδ
G(αf(x))dλ

−→ 1.
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S3.3 Robustness of the c-posterior

The definition of robustness, roughly speaking, is that small changes to the distribution

of the data result in small changes to the resulting inferences. This can be formalized by

requiring that the outcome of an inference procedure be continuous as a function of Po,

asymptotically, with respect to some topology (the weak topology being a standard choice)

(Huber, 2004). The lack of robustness of the standard posterior can be seen as a lack of

continuity with respect to Po, asymptotically (see Section S4).

We show in the following theorem that the asymptotic c-posterior inherits the continuity

properties of whatever discrepancy d(·, ·) is used to define it. Consequently, the c-posterior

is robust to perturbations to Po that are small with respect to d(·, ·). In the terminology

of Section 2, if the observed data distribution Po is close to the idealized distribution PθI ,

then the c-posterior will be close to what it would be if Po = PθI .

To interpret the theorem, recall that on any metric space, a function f(x) is continuous

if and only if xm → x implies f(xm) → f(x). Thus, to show continuity as a function

of Po (in some topology), one must show that if Pm → Po, then the resulting sequence

of asymptotic c-posteriors converges as well. In fact, if d(·, ·) is continuous (in this same

topology), then the theorem shows a bit more than that, since then Pm → Po implies

d(Pθ, Pm) → d(Pθ, Po).

Theorem S3.8. If P1, P2, . . . ∈ M such that d(Pθ, Pm) → d(Pθ, Po) as m → ∞ for Π-

almost all θ ∈ Θ, and Condition S3.2 is satisfied, then for any h ∈ L1(Π),

E
(
h(θ) | d(Pθθθ, Pm) < R

)
−→ E

(
h(θ) | d(Pθθθ, Po) < R

)
as m→ ∞, and in particular, Π

(
dθ | d(Pθθθ, Pm) < R

)
=⇒ Π

(
dθ | d(Pθθθ, Po) < R

)
.

Proof. Apply Lemma S3.1 with U = d(Pθθθ, Po), Um = d(Pθθθ, Pm), V = R, andW = h(θ).

Theorem S3.8 implies that the c-posterior is robust in the context of model selec-

tion/inference, since if h(θ) = 1(θ ∈ Θk) where Θk represents model k (see Section S4),
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then Π
(
Θk | d(Pθθθ, Pm) < R

)
−→ Π

(
Θk | d(Pθθθ, Po) < R

)
as m→ ∞, under the assumptions

of the theorem.

The statement of the theorem concerns the asymptotic c-posterior, rather than the

finite-sample c-posterior, because the characterization of robustness in terms of continuity

only makes sense asymptotically. A similar result can be proved in the finite-sample case,

but this would be uninteresting since usually the standard posterior is also continuous (but

perhaps highly sensitive) with respect to a finite sample. What would be more interesting

in the finite-sample case would be to quantify or bound the change in posterior expectations

of interest, as a function of the size of the perturbation.

S4 Lack of robustness of the standard posterior

Standard model selection methods do not address the model misspecification/perturbation

problem, because they choose the model that is nearest in Kullback–Leibler divergence to

the observed data distribution, when n is sufficiently large. We focus here on Bayesian

model averaging, but similar arguments apply to AIC and BIC, for example.

When n is large, the standard posterior can be strongly affected by small changes to

the observed data distribution Po, particularly when performing model selection/inference

(see Section S4.1), while c-posteriors are robust to small changes in Po (as shown in Sec-

tion S3.3). To see roughly why the standard posterior is not robust, note that if Po and Pθ

have densities po and pθ, respectively, and the prior Π has density π, then

π(θ | X1:n = x1:n) ∝ exp
( n∑

i=1

log pθ(xi)
)
π(θ)

.
= exp

(
n
∫
po log pθ

)
π(θ)

∝ exp(−nD(po∥pθ))π(θ),

where
.
= denotes agreement to first order in the exponent (in other words, an

.
= bn if

(1/n) log(an/bn) → 0). Due to the n in the exponent, even a slight change to po can

dramatically change the posterior. On the other hand, by comparison, the relative entropy

c-posterior with R ∼ Exp(α) is asymptotically proportional to exp(−αD(po∥pθ))π(θ), and
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consequently, it remains stable in the limit as n→ ∞ (Section S3).

S4.1 Model selection sensitivity

The standard posterior is particularly susceptible to robustness issues when applied to

model selection/inference. Suppose that for each k in some countable index set, we have a

model Mk = {Pθ : θ ∈ Θk}, where Θk is a tk-dimensional Euclidean space. Let π(k) be a

prior on the model index k, and for each k, let πk be a probability density with respect to

Lebesgue measure on Θk; this induces a prior Π on the disjoint union Θ =
⋃

k Θk.

It is well-known that, under mild regularity conditions, the marginal likelihood

p(x1:n|k) =
∫
Θk
p(x1:n|θ)πk(θ)dθ has the asymptotic representation

p(x1:n|k) ∼
p(x1:n|θnk )πk(θ∗k)
| detH(θ∗k; po)|1/2

(2π
n

)tk/2

,

as n → ∞, where θnk = argmaxθ∈Θk
p(x1:n|θ) is the maximum likelihood estimator for

model k, θ∗k = argminθ∈Θk
D(po∥pθ) is the minimal Kullback–Leibler (KL) point within

model k, and H(θ; po) = −
∫
po
(
∇2

θ log pθ
)
. Here, an ∼ bn means an/bn → 1. Letting

fn(k) = − 1
n
log p(x1:n|θnk ), this implies that

p(x1:n|k) ∼ cke
−nfn(k)n−tk/2 (S4.1)

for a constant ck not depending on n or x1:n. Typically, fn(k) → f(k) := D(po∥pθ∗k) −∫
po log po. Note that f(k′) < f(k) if and only if model k′ is closer to po than model k

in terms of minimal KL divergence; also, note that the marginal likelihood automatically

penalizes more complex models via the n−tk/2 factor.

Given such an asymptotic representation, it is easy to see that for any k, if there

exists k′ such that f(k′) < f(k), then π(k|x1:n) → 0 as n → ∞. Consequently, even the

slightest change to po can result in major shifts in the posterior on k, when n is large.

For instance, it often happens that the models are nested, e.g., M1 ⊆ M2 ⊆ · · · and

t1 < t2 < · · · . This is the case, for example, when Mk consists of k-component mixtures,

or kth-order autoregressive models; variable selection is slightly more complicated but
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ultimately similar. If the collection of models is correctly specified with respect to po, then

there is some minimal k′ such that D(po∥pθ∗
k′
) = 0, and thus π(k|x1:n) → 0 for all k < k′

(and typically, the posterior on k will concentrate at this k′). However, even the slightest

perturbation to po will usually result in either (a) an increase in this minimal k′, or (b)

a situation where infkD(po∥pθ∗k) is not attained at any k, causing the posterior on k to

diverge, in the sense that π(k|x1:n) → 0 for all k. Hence, model selection/inference with

the standard posterior is not robust.

S5 Power posterior approximation

In this section, we provide further explanation of the power posterior approximation to

the relative entropy c-posterior. As shown in Section S3.1, if dn(X1:n, x1:n) is a consistent

estimator of D(po∥pθ), and R ∼ Exp(α), then asymptotically as n → ∞, the c-posterior

based on dn(X1:n, x1:n) is proportional to

exp(−αD(po∥pθ))π(θ) ∝ exp(α
∫
po log pθ) π(θ)

≈ exp
(
α
1

n

n∑
i=1

log pθ(xi)
)
π(θ) = π(θ)

n∏
i=1

pθ(xi)
α/n

under mild regularity conditions. Thus, the power posterior approximation in Equation 2.2

is good when n≫ α, since then ζn ≈ α/n.

Meanwhile, by Theorem S3.6, when α ≫ n the c-posterior is well-approximated by the

standard posterior, under regularity conditions. Thus, since ζn ≈ 1 when α ≫ n, the power

posterior approximation is also good when n is much smaller than α. This makes intuitive

sense since the distribution of R is strongly concentrated near 0 when α ≫ n, and thus,

for an appropriate choice of dn, conditioning on dn(X1:n, x1:n) < R is roughly the same as

conditioning on the event that X1:n and x1:n have the same empirical distribution.

What about the intermediate regime where n and α are comparable in magnitude? The

point of choosing ζn = α/(α+ n) is that it smoothly transitions through this intermediate

regime; for this reason we refer to it as the power interpolation formula. This particular for-
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mula for ζn is obtained by analyzing the special case where the sample space X has finitely

many elements. When |X | <∞, a natural choice of dn(X1:n, x1:n) is simply D(p̂x1:n∥p̂X1:n),

that is, the relative entropy of the empirical densities. If, further, R ∼ Exp(α), then by an

approximation detailed in Section S5.1,

π
(
θ | dn(X1:n, x1:n) < R

)
∝ P

(
dn(X1:n, x1:n) < R | θ

)
π(θ)

= E
(
exp(−αD(p̂x1:n∥p̂X1:n)) | θ

)
π(θ)

≈ (nζn/α)
|X|−1

2 exp(−nζnD(p̂x1:n∥pθ))π(θ) (S5.1)

∝ π(θ)
n∏

i=1

pθ(xi)
ζn

where ∝ indicates proportionality with respect to θ, and ζn = α/(α + n).

S5.1 Justification of Equation S5.1

Let ∆k = {p ∈ Rk :
∑

i pi = 1, pi > 0 ∀i}. Let s ∈ ∆k. We argue that if X1, . . . , Xn i.i.d. ∼

s and ŝj =
1
n

∑n
i=1 1(Xi = j) for j = 1, . . . , k, then for p ∈ ∆k near s,

E exp(−αD(p∥ŝ)) ≈ (nζn/α)
k−1
2 exp(−nζnD(p∥s)), (S5.2)

where ζn = (1/n)/(1/n+ 1/α). We use bold here to denote random variables. For x ∈ Rd,

define C(x) ∈ Rd×d such that C(x)ij = xi1(i = j) − xixj, and denote x′ = (x1, . . . , xd−1).

First, for q ∈ ∆k near p,

D(p∥q) ≈ 1
2
χ2(p, q) = 1

2
(p′ − q′)TC(q′)−1(p′ − q′) (S5.3)

by Propositions S5.1 and S5.2 below. By the central limit theorem, ŝ is approximately

N (s, C(s)/n) distributed. Therefore, letting q ∼ N (s, C(s)/n) and C = C(s′),

E exp(−αD(p∥ŝ)) ≈ E exp(−αD(p∥q))1(q ∈ ∆k)

(a)
≈ E exp

(
− α

2
(p′ − q′)TC−1(p′ − q′)

)
= (2π)

k−1
2 |C/α|1/2

∫
N (p′|q′, C/α)N (q′|s′, C/n)dq′
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(b)
= (2π)

k−1
2 |C/α|1/2N (p′|s′, (1/α + 1/n)C)

=
( 1/α

1/α + 1/n

) k−1
2

exp
(
− 1

2
(1/α + 1/n)−1(p′ − s′)TC−1(p′ − s′)

)
(c)
≈ (nζn/α)

k−1
2 exp(−nζnD(p∥s)),

where (a) is by Equation S5.3 along with the approximation C(q′) ≈ C(s′), (b) uses the

convolution formula for independent normals, and (c) is again by Equation S5.3. This

yields Equation S5.2.

It is well-known that chi-squared distance is a second-order Taylor approximation to

relative entropy (Cover and Thomas, 2006, Lemma 17.3.3); for completeness, we include

the proof.

Proposition S5.1. For p, q ∈ ∆k, D(p∥q) = 1
2
χ2(p, q) + o(∥p − q∥2) as p → q, where

D(p∥q) =
∑

i pi log(pi/qi) and χ
2(p, q) =

∑
i(pi − qi)

2/qi.

Proof. Fix b > 0, and define f(a) = a log(a/b) for a > 0. Then by Taylor’s theorem,

f(a) = f(b) + f ′(b)(a− b) + 1
2
f ′′(b)(a− b)2 + o(|a− b|2)

= (a− b) +
1

2

(a− b)2

b
+ o(|a− b|2)

as a→ b. It follows that

k∑
i=1

pi log
pi
qi

=
∑
i

(pi − qi) +
1

2

∑
i

(pi − qi)
2

qi
+ o(∥p− q∥2) = 1

2
χ2(p, q) + o(∥p− q∥2)

as p→ q.

The following result expresses the chi-squared distance χ2(p, q) in terms of the (k− 1)-

dimensional Mahalanobis distance for Z ′ when Z ∼ Multinomial(1, q). For interpretation,

note that C below equals Cov(Z ′) when Z ∼ Multinomial(1, q).

Proposition S5.2. For any p, q ∈ ∆k, χ
2(p, q) = (p′ − q′)TC−1(p′ − q′) where C ∈

R(k−1)×(k−1) such that Cij = qi1(i = j)− qiqj.
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Proof. By the Sherman–Morrison formula for rank-one updates, C−1 = (diag(q′) −

q′q′T)−1 = diag(q′)−1 + (1/qk)11
T where 1 = (1, . . . , 1)T, hence

(p′ − q′)TC−1(p′ − q′) =
k−1∑
i=1

(pi − qi)
2

qi
+

(∑k−1
i=1 (pi − qi)

)2
qk

and
∑k−1

i=1 (pi − qi) = (1− pk)− (1− qk) = qk − pk.

S6 Extensions

S6.1 Time-series c-posterior based on relative entropy rate

Suppose the sequence of observed data (x1, . . . , xn) is a partial sample from a stationary

and ergodic process with distribution Po, and suppose the model {Pθ : θ ∈ Θ} consists

of stationary finite-order Markov processes. Assume that for some sigma-finite measure

µ on X , for all n ∈ {1, 2, . . .} and all θ ∈ Θ, the finite-dimensional distributions have

densities po(x1, . . . , xn) and pθ(x1, . . . , xn) with respect to the product measure µn, and

assume EPo| log po(X1:n)| <∞ and EPo| log pθ(X1:n)| <∞.

A natural way of assessing the discrepancy between the processes Po and Pθ is by the

relative entropy rate (Gray, 1990),

D(Po∥Pθ) = lim
n→∞

1

n
D
(
po(x1:n)∥pθ(x1:n)

)
.

Suppose dn(X1:n, x1:n) is an a.s.-consistent estimator of D(Po∥Pθ) when (X1, X2, . . .) ∼ Pθ

and (x1, x2, . . .) ∼ Po, and consider the c-posterior Π
(
dθ | dn(X1:n, x1:n) < R

)
, with R ∼

Exp(α). Then by Lemma S3.1, the asymptotic c-posterior is

Π(dθ | D(Po∥Pθ) < R) ∝ exp(−αD(Po∥Pθ))Π(dθ).

If Pθ is kth-order Markov, then

D(Po∥Pθ) = −H(Po)− EPo log pθ(Xk+1|X1, . . . , Xk)
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where H(Po) is the entropy rate of Po, which we assume is finite (Gray, 1990, Lemma 2.4.3).

Further, when (x1, x2, . . .) ∼ Po,

1

n

n∑
i=1

log pθ(xi|x1, . . . , xi−1) −−−→
n→∞

EPo log pθ(Xk+1|X1, . . . , Xk)

with probability 1, by the ergodic theorem (Breiman, 1968, 6.28). This leads to the ap-

proximation

Π
(
dθ | dn(X1:n, x1:n) < R

)
∝∼ exp

(
− nζn

[
−H(Po)−

1

n

n∑
i=1

log pθ(xi|x1, . . . , xi−1)
])

Π(dθ)

∝ Π(dθ)
n∏

i=1

pθ(xi|x1, . . . , xi−1)
ζn ,

using the power interpolation formula ζn = α/(α + n) to scale appropriately for small n.

Thus, as in the i.i.d. case, the end result is an approximation obtained by simply raising

the likelihood to the power ζn. In Section 6, we apply this to perform robust inference for

the order of an autoregressive model.

S6.2 Regression c-posterior based on conditional relative entropy

In regression, one observes covariates/predictors x1, . . . , xn associated with target values

y1, . . . , yn, and models the conditional distribution of y given x. As in the i.i.d. setting, in or-

der to construct a c-posterior allowing for perturbations/misspecification, let us assume that

Yi|xi is drawn from the model pθ(y|x) for i = 1, . . . , n, and that the observed values y1:n are

a slightly perturbed version of Y1:n, in the sense that dn(Y1:n, y1:n|x1:n) < R for some mea-

sure of discrepancy dn(·, ·|·). Suppose that, in fact, the observed data (x1, y1), . . . , (xn, yn)

behave like i.i.d. samples from some po(x, y). For notational clarity, let us assume that

these densities on x and y are with respect to measures that we will denote by dx and dy,

respectively.

A natural choice of discrepancy between the conditional distributions po(y|x) and

pθ(y|x) is the conditional relative entropy,

Dθ :=

∫
po(x, y) log

po(y|x)
pθ(y|x)

dx dy,
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and in turn, an a.s.-consistent estimator of this quantity is a sensible choice for dn(·, ·|·).

Then, by Lemma S3.1, the resulting c-posterior converges to a nice asymptotic form:

Π
(
dθ | dn(Y1:n, y1:n|x1:n) < R

)
=⇒ Π(dθ | Dθ < R) ∝ exp(−αDθ)Π(dθ)

∝ exp
(
α

∫
po(x, y) log pθ(y|x) dx dy

)
Π(dθ)

if we take R ∼ Exp(α) as usual. To obtain an approximation that is applicable for smaller

n as well, we apply the same power interpolation formula as before, replacing α by nζn.

Along with an empirical approximation to the integral, this suggests using

Π(dθ | dn(Y1:n, y1:n|x1:n) < R) ∝∼ exp
(
ζn
∑

i log pθ(yi|xi)
)
Π(dθ)

= Π(dθ)
n∏

i=1

pθ(yi|xi)ζn .

Consequently, once again, we arrive at a power posterior approximation to the c-posterior,

allowing us to bypass the computation of dn(·, ·|·).

S7 Additional details on the examples

S7.1 Bernoulli example details

S7.1.1 Computation of the exact c-posterior

Letting Z = 1(D(p̂x||p̂X) < R), by Bayes’ theorem we have that for h ∈ {H0,H1},

Π
(
h|Z = 1) ∝

h
P(Z = 1|h)Π(h)

(a)
∝
h
P(Z = 1|h)

(b)
= E

(
P(Z = 1|X1:n, h)

∣∣h) (c)
= E

(
exp(−αD(p̂x||p̂X))

∣∣h)
where (a) is since Π(h) = 1/2, (b) is by the law of iterated expectations, and (c) by

the fact that P(R > r) = exp(−αr). This is easily computed exactly, since, letting S =∑n
i=1Xi = np̂X(1), we have S|H0 ∼ Binomial(n, 1/2) and S|H1 ∼ BetaBinomial(n, 1, 1) =

Uniform{0, 1, . . . , n}.
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S7.1.2 Formulas for the power posterior and the calibration curve

The power posterior on (h, θ), for h ∈ {H0,H1} and θ ∈ (0, 1), is

πα(h, θ|x1:n) = c π(h, θ)
n∏

i=1

pθ(xi)
ζ = c π(h)π(θ|h) θsζ(1− θ)(n−s)ζ

where pθ(x) = θx(1− θ)1−x1(x ∈ {0, 1}), ζ = α/(α+ n), and s =
∑n

i=1 xi. If h = H0, then

θ = 1/2 with probability 1, so integrating over θ yields

Πα(H0|x1:n) = cΠ(H0)(1/2)
sζ(1− 1/2)(n−s)ζ = c (1/2)nζ+1.

Meanwhile, if h = H1, then π(θ|h) = Uniform(θ|0, 1), so

Πα(H1|x1:n) = cΠ(H1)

∫ 1

0

θsζ(1− θ)(n−s)ζdθ = c 1
2
B(sζ + 1, (n− s)ζ + 1).

Therefore, Πα(H0|x1:n) = 1/
(
1+2nζB(sζ+1, (n−s)ζ+1)

)
, which establishes Equation 3.2.

For the α calibration curve, we need the expected log likelihood under the power poste-

rior, and it turns out that this can also be computed analytically. Note that πα(θ|H1, x1:n) ∝

π(θ|H1) θ
sζ(1− θ)(n−s)ζ ∝ Beta(θ|A,B) where A = sζ +1 and B = (n− s)ζ +1. Therefore,∫ (

log p(x1:n|θ)
)
Πα(dθ|x1:n) = Eα

(∑
i log pθ(xi)

∣∣x1:n)
= Eα

(
Eα

(
s log θ + (n− s) log(1− θ) | H, x1:n

) ∣∣∣x1:n)
= (n log 1

2
)Πα(H0|x1:n) +

(
sG(A,B) + (n− s)G(B,A)

)
Πα(H1|x1:n),

where G(a, b) =
∫
(log θ)Beta(θ|a, b)dθ = ψ(a)−ψ(a+ b), with ψ(·) denoting the digamma

function.

S7.2 Mixture model details

S7.2.1 Motivation behind the conditional coarsening algorithm

Here, we explain why Algorithm 5.1 behaves similarly to (but not exactly the same as)

sampling from the power posterior. Suppose the power ζ ∈ (0, 1) is such that nζ is an

integer, say, m = nζ. Recall that using the power posterior can be thought of as reducing
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the sample size tom = nζ, in terms of the concentration of the posterior. In fact, the power

posterior is proportional to the geometric mean of all the posteriors based on subsets of

size m, that is, letting S =
{
A ⊆ {1, . . . , n} : |A| = m

}
, we have

∏
A∈S

π(θ|xA)1/|S| ∝
∏
A∈S

(
p(xA|θ)π(θ)

)1/|S|
= π(θ)

∏
A∈S

∏
j∈A

p(xj|θ)1/|S| (S7.1)

= π(θ)
n∏

j=1

p(xj|θ)Nj/|S| = π(θ)
n∏

j=1

p(xj|θ)ζ

where Nj = #{A ∈ S : j ∈ A}; the last step holds since |S| =
(
n
m

)
and Nj =

(
n−1
m−1

)
, hence

Nj/|S| = m/n = ζ for all j.

Now, if A is uniformly drawn from S, then π(θ|xA) provides a noisy approximation

to the power posterior. So one could simply choose a random subset A of size m, and

apply the standard Gibbs sampling algorithm as though xA were all of the data, i.e., apply

Algorithm 5.1 with input data xA = (xj : j ∈ A) and with ζn set to 1. However, this would

be more noisy than the power posterior, since the power posterior uses all of the available

data, rather than just a fraction of it.

To obtain a better approximation, we propose to aggregate over all A ∈ S when per-

forming the parameter updates in the Gibbs sampling algorithm. Specifically, update the

assignment variables z1, . . . , zn in the usual way (by sampling zj ∼ Categorical(w̃) where

w̃i ∝ wifφi
(xj)), but then update the mixture parameters (w,φ) using the geometric mean

of all the full conditional distributions based on subsets A ∈ S, i.e., update w and φ using

the distribution defined by q(w,φ) ∝
∏

A∈S π(w,φ|xA, zA)1/|S|. By the same logic as in

Equation S7.1, this is equivalent to q(w,φ) ∝ π(w,φ)
∏n

j=1

(
wzjfφzj

(xj)
)ζ
. Thus, we arrive

at the w and φ update steps in Algorithm 5.1 by sampling from q(w,φ), or more precisely,

by making moves that preserve q(w,φ).

S7.2.2 Importance sampling algorithm

To evaluate how well the conditional coarsening algorithm approximates the power poste-

rior, we consider the following importance sampling (IS) algorithm. Uniformly at random,
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Figure S1: Top: Using the IS algorithm, the c-posterior favors the true number of nonnegligible

clusters in the both examples. Bottom: Mixture density (dotted black line) and components

(solid colors) for prototypical samples from the c-posterior, in each example, when n = 20000.

choose a subset A ⊆ {1, . . . , n} of size m, where m is the nearest integer to nζn. Run

Algorithm 5.1 with input data xA = (xj : j ∈ A) and with ζn set to 1, in order to draw

MCMC samples from π(w,φ|xA), i.e., the standard posterior for this subset of points. Then,

reweight the MCMC samples using importance sampling weights with the power posterior

πα(w,φ|x1:n) as the target distribution and π(w,φ|xA) as the proposal distribution. Note

that the normalizing constants do not need to be evaluated for importance sampling.

This IS algorithm is guaranteed to converge to the power posterior, however, it does not

scale well since π(w,φ|xA) does not always remain sufficiently close to the power posterior

as the sample size and dimensionality grow, causing the effective sample size to degrade.

Nonetheless, it allows us to compare results with the conditional coarsening algorithm

in limited cases where the effective sample size is acceptable. Figure S1 shows the IS

algorithm results on the perturbed univariate Gaussian mixture examples from Section 5.1.

To facilitate comparison, we use the same values of α as in Section 5.1, namely, α = 800

for the k0 = 2 example and α = 2000 for the k0 = 4 example. The IS algorithm results

are quite similar to the conditional coarsening algorithm results (compare with Figure 3),

except that the conditional coarsening results tend to be slightly more concentrated.
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