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Abstract

We describe a dynamic programming algorithm for exact counting and exact uni-
form sampling of matrices with specified row and column sums. The algorithm runs
in polynomial time when the column sums are bounded. Binary or non-negative inte-
ger matrices are handled. The method is distinguished by applicability to non-regular
margins, tractability on large matrices, and the capacity for exact sampling.
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1 Introduction

Let N(p,q) be the number of m×n binary matrices with margins (row and column sums)
p = (p1, . . . , pm) ∈ Nm, q = (q1, . . . , qn) ∈ Nn respectively, and let M(p,q) be the
corresponding number of N-valued matrices. In this paper we develop a technique for
efficiently finding N(p,q) and M(p,q). Uniform sampling from these sets of matrices is
an important problem in statistics [7], and the method given here permits efficient exact
uniform sampling once the underlying enumeration problem has been solved.

Since a bipartite graph with degree sequences p = (p1, . . . , pm) ∈ Nm, q = (q1, . . . , qn) ∈
Nn (and m,n vertices in each part respectively) can be viewed as a m × n matrix with
row and column sums (p,q), our technique applies equally well to counting and uniformly
sampling such bipartite graphs. Under this correspondence, simple graphs correspond to
binary matrices, and multigraphs correspond to N-valued matrices.
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The distinguishing characteristic of the method is its tractability on matrices of non-trivial
size. In general, computing M(p,q) is #P-complete [10], and perhaps N(p,q) is as well.
However, if we assume a bound on the column sums then our algorithm computes both
numbers in polynomial time. After enumeration, uniform samples may be drawn in poly-
nomial expected time for bounded column sums. To our knowledge, all previous algorithms
for the non-regular case require super-polynomial time (in the worst case) to compute these
numbers, even for bounded column sums. (We assume a description length of at least m+n
and no more than m log a + n log b, where a = max pi, b = max qi.) In general (without
assuming a bound on the column sums), our algorithm computes N(p,q) or M(p,q) in
O(m(ab + c)(a + b)b−1(b + c)b−1(log c)3) time for m × n matrices, where a = max pi,
b = max qi, and c =

∑
pi =

∑
qi. After enumeration, uniform samples may be drawn in

O(mc log c) expected time.

In complement to most approaches to computing M(p,q), which are efficient for small
matrices with large margins, our algorithm is efficient for large matrices with small
margins. For instance, in Section 4 we count the 100 × 100 matrices with margins
(70, 30, 20, 10, 5(6), 4(10), 3(20), 2(60)), (4(80), 3(20)) (where x(n) denotes x repeated n times).

To illustrate the problem at hand, consider a trivial example: if p = (2, 2, 1, 1), q =
(3, 2, 1), then N(p,q) = 8 and M(p,q) = 24. The 8 binary matrices are below.

1 1 0
1 1 0
1 0 0
0 0 1

1 1 0
1 1 0
0 0 1
1 0 0

1 1 0
1 0 1
1 0 0
0 1 0

1 1 0
1 0 1
0 1 0
1 0 0

1 1 0
0 1 1
1 0 0
1 0 0

1 0 1
1 1 0
1 0 0
0 1 0

1 0 1
1 1 0
0 1 0
1 0 0

0 1 1
1 1 0
1 0 0
1 0 0

The paper will proceed as follows:

§2 Main results
§3 Brief review
§4 Applications
§5 Proof of recursions
§6 Proof of bounds on computation time.

2 Main results: Recursions, Bounds, Algorithms

Introducing the following notation will be useful. Taking N := {0, 1, 2, . . . }, we consider
Nn to be the subset of N∞ := {(r1, r2, . . . ) : ri ∈ N for i = 1, 2, . . . } such that all but
the first n components are zero. Let L : N∞ → N∞ denote the left-shift map: Lr =
(r2, . . . , rn, 0, 0, . . . ). Given r, s ∈ Nn, let r\s := r − s + Ls, (which may be read as “r
reduce s”), let (

r

s

)
:=

(
r1
s1

)
· · ·

(
rn
sn

)
,
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and let r̄ denote the vector of counts, r̄ := (r̄1, r̄2, . . . ) where r̄i := #{j : rj = i}. We write
r ≤ s if ri ≤ si for all i. Given n ∈ N, let Cn(k) := {r ∈ Nn :

∑
i ri = k} be the n-part

compositions (including zero) of k, and given s ∈ Nn, let Cs(k) := {r ∈ Cn(k) : r ≤ s}.
For (p,q) ∈ Nm × Nn, define the numbers

N(p,q) := #{X ∈ {0, 1}m×n :
∑
j

xij = pi,
∑
i

xij = qj, for 1 ≤ i ≤ m, 1 ≤ j ≤ n},

M(p,q) := #{X ∈ Nm×n :
∑
j

xij = pi,
∑
i

xij = qj, for 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Since N(p,q) and M(p,q) are fixed under permutations of the row sums p and column
sums q, and since zero margins do not affect the number of matrices and can effectively
be ignored, then we may define N̄(p, q̄) := N(p,q) and M̄(p, q̄) := M(p,q) without
ambiguity. We can now state our main results.

Theorem 2.1 (Recursions) The number of matrices with margins (p,q) ∈ Nm × Nn is
given by

(1) N̄(p, r) =
∑

s∈Cr(p1)

(
r

s

)
N̄(Lp, r\s) for binary matrices, and

(2) M̄(p, r) =
∑

s∈Cr+Ls(p1)

(
r+ Ls

s

)
M̄(Lp, r\s) for N-valued matrices,

where r = q̄, and in (2), we sum over all s such that s ∈ Cr+Ls(p1).

Proofs will be given in Section 5. The Gale-Ryser conditions [11, 29] simplify computation
of the sum in (1) by providing a necessary and sufficient condition for there to exist a binary
matrix with margins (p,q): if q′i := #{j : qj ≥ i} and p1 ≥ · · · ≥ pm, then N(p,q) ̸= 0
if and only if

∑j
i=1 pi ≤

∑j
i=1 q

′
i for all j < m and

∑m
i=1 pi =

∑m
i=1 q

′
i. This is easily

translated into a similar condition in terms of (p, q̄) and N̄(p, q̄). The following recursive
procedure can be used to compute either N(p,q) or M(p,q).

Algorithm 2.2 (Enumeration)
Input: (p, q̄), where (p,q) ∈ Nm×Nn are row and column sums such that

∑
i pi =

∑
i qi.

Output: N(p,q) (or M(p,q)), the number of binary (or N-valued) matrices.
Storage: Lookup table of cached results, initialized with N̄(0,0) = 1 (or M̄(0,0) = 1).

(1) If N̄(p, q̄) is in the lookup table, return the result.
(2) In the binary case, if Gale-Ryser gives N̄(p, q̄) = 0, cache the result and return 0.
(3) Evaluate the sum in Theorem 2.1, recursing to step (1) for each term.
(4) Cache the result and return it.
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Let T (p,q) be the time (number of machine operations) required by Algorithm 2.2 to
compute N(p,q) or M(p,q), after performing an O(n3) preprocessing step to compute all
needed binomial coefficients. (It turns out that computing M(p,q) always takes longer, but
the bounds we prove apply to both N(p,q) and M(p,q).) We give a series of bounds on
T (p,q) ranging from tighter but more complicated, to more crude but simpler. The bounds
will absorb the O(n3) pre-computation except for the trivial case when the maximum col-
umn sum is 1.

Theorem 2.3 (Bounds) Suppose (p,q) ∈ Nm × Nn, a = max pi, b = max qi, and c =∑
pi =

∑
qi. Then

(1) T (p,q) ≤ O((ab+ c)(log c)3
m∑
i=1

(
pi + b− 1

b− 1

)(
pi + · · ·+ pm + b− 1

b− 1

)
),

(2) T (p,q) ≤ O(m(ab+ c)(a+ b)b−1(b+ c)b−1(log c)3),
(3) T (p,q) ≤ O(mn2b−1(log n)3) for bounded b,
(4) T (p,q) ≤ O(mnb(log n)3) for bounded a, b.

Remark Since we may swap the row sums with the column sums without changing
the number of matrices, we could use Algorithm 2.2 on (q, p̄) to compute N(p,q) or
M(p,q) using T (q,p) operations, which, for example, is O(nma(logm)3) for bounded
a, b. T (p,q) also depends on the ordering of the row sums p1, . . . , pm as suggested by
Theorem 2.3(1), and we find that putting them in decreasing order p1 ≥ · · · ≥ pm tends
to work well. Algorithm 2.2 is typically made significantly more efficient by using the
Gale-Ryser conditions, and this is not accounted for in these bounds. Although we observe
empirically that this reduces computation tremendously, we do not have a proof of this.

Algorithm 2.2 traverses a directed acyclic graph in which each node represents a distinct set
of input arguments to the algorithm, such as (p, q̄). Node (u, v̄) is the child of node (p, q̄)
if the algorithm is called (recursively) with arguments (u, v̄) while executing a call with
arguments (p, q̄). If the initial input arguments are (p, q̄), then all nodes are descendents of
node (p, q̄). Meanwhile, all nodes are ancestors of node (0,0). Note the correspondence
between the children of a node (u, v̄) and the compositions s ∈ C v̄(u1) in the binary
case, and s ∈ C v̄+Ls(u1) in the N-valued case, under which s corresponds with the child
(Lu, v̄\s). We also associate with each node its count: the number of matrices with the
corresponding margins.

As an additional benefit of caching the counts in a lookup table (as in Algorithm 2.2), once
the enumeration is complete we obtain an efficient algorithm for uniform sampling from
the set of (p,q) matrices (binary or N-valued). It is straightforward to prove that since the
counts are exact, the following algorithm yields a sample from the uniform distribution.
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Algorithm 2.4 (Sampling)
Input:
· Row and column sums (p,q) ∈ Nm × Nn such that

∑
i pi =

∑
i qi.

· Lookup table of counts generated by Algorithm 2.2 on input (p, q̄).
Output: A binary (or N-valued) matrix with margins (p,q), drawn uniformly at random.

(1) Initialize (u,v)← (p,q).
(2) If (u,v) = (0,0), exit.
(3) Choose a child (Lu, v̄\s) of (u, v̄) with probability proportional to its count times the

number of corresponding rows (that is, the rows r ∈ Cv(u1) such that v − r = v̄\s.)
(4) Choose a row uniformly among the corresponding rows.
(5) (u,v)← (Lu,v − r).
(6) Goto (2).

In step (3), there are
(
v̄
s

)
corresponding rows r in the binary case, and

(
v̄+Ls

s

)
in the N-

valued case. In step (4), in the binary case of course we only choose among r ∈ {0, 1}n. In
Section 6 we prove that Algorithm 2.4 takes O(mc log c) expected time per sample, where
c =

∑
i pi.

3 Brief review

We briefly cover the previous work on this problem. This review is not exhaustive, focusing
instead on those results which are particularly significant or closely related to the present
work. Let Hn(r) and H∗

n(r) denote M(p,q) and N(p,q), respectively, when p = q =
(r, . . . , r) ∈ Nn. The predominant focus has been on the regular cases Hn(r) and H∗

n(r).

Work on counting these matrices goes back at least as far as MacMahon, who applied
his expansive theory to find the polynomial for H3(r) [21] (Vol II, p.161), and developed
the theory of Hammond operators, which we will use below. Redfield’s theorem [28],
inspired by MacMahon, can be used to derive summations for some special cases, such as
Hn(r), H

∗
n(r) for r = 2, 3, and in similar work Read [26, 27] used Pólya theory to derive

these summations for r = 3. Two beautiful theoretical results must also be mentioned:
Stanley [31] proved that for fixed n, Hn(r) is a polynomial in r, and Gessel [12, 13] showed
that for fixed r, both Hn(r) and H∗

n(r) are P-recursive in n, vastly generalizing the linear
recursions for Hn(2), H∗

n(2) found by Anand, Dumir, and Gupta [1].

We turn next to algorithmic results more closely related to the present work. McKay
[22, 5] has demonstrated a coefficient extraction technique for computing N(p,q) in the
semi-regular case (in which p = (a, . . . , a) ∈ Nm and q = (b, . . . , b) ∈ Nn). To our
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knowledge, McKay’s is the most efficient method known previously for N(p,q). By our
analysis it requires at least Ω(mnb) time for bounded a, b, while the method presented here
is O(mnb(log n)3) in this case. Since this latter bound is quite crude, we expect that our
method should have comparable or better performance, and indeed empirically we find that
typically it is more efficient. If only b is bounded, McKay’s algorithm is still Ω(mnb),
but the bound on our performance increases to O(mn2b−1(log n)3), so it is possible that
McKay’s algorithm will outperform ours in these cases. Nonetheless, it is important to
bear in mind that McKay’s algorithm is efficient only in the semi-regular case (while our
method permits non-regular margins). If neither a nor b is bounded, McKay’s method is
exponential in b (as is ours).

Regarding M(p,q), one of the most efficient algorithms known to date is LattE (Lattice
point Enumeration) [19], which uses Barvinok’s algorithm [2] to count lattice points con-
tained in convex polyhedra. It runs in polynomial time for any fixed dimension, and as a
result it can compute M(p,q) for astoundingly large margins, provided that m and n are
small. However, since the computation time grows very quickly with the dimension, LattE
is currently inapplicable when m and n are larger than 6. There are similar algorithms
[23, 20, 3] that are efficient for small matrices.

In addition, several other algorithms have been presented for finding N(p,q) (such as
[18, 32, 33, 24]) and M(p,q) (see review [8]) allowing non-regular margins, however,
it appears that all are exponential in the size of the matrix, even for bounded margins.
While in this work we are concerned solely with exact results, we note that many useful
approximations for N(p,q) and M(p,q) (in the general case) have been found, as well as
approximate sampling algorithms [17, 7, 14, 4, 16].

4 Applications

4.1 Occurrence matrices from ecology

The need to count and sample occurrence matrices (binary matrices indicating observed
pairings of elements of two sets) arises in ecology. A standard dataset of this type is “Dar-
win’s finch data”, a 13×17 matrix indicating which of 13 species of finches inhabit which of
17 of the Galápagos Islands. The margins of this matrix are (14, 13, 14, 10, 12, 2, 10, 1, 10,
11, 6, 2, 17), (4, 4, 11, 10, 10, 8, 9, 10, 8, 9, 3, 10, 4, 7, 9, 3, 3). We count the number of such
matrices to be 67,149,106,137,567,626 (in 1.5 seconds) confirming [7]. Further, we sample
exactly from the uniform distribution over this set at a rate of 0.001 seconds per sample.
(All computations were performed on a 64-bit 2.8 GHz machine with 6 GB of RAM.) A
similar dataset describes the distribution of 23 land birds on the 15 southern islands in the
Gulf of California [7, 6]: this binary matrix has margins (14, 14, 14, 12, 5, 13, 9, 11, 11, 11,
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11, 11, 7, 8, 8, 7, 2, 4, 2, 3, 2, 2, 2), (21, 19, 18, 19, 14, 15, 12, 15, 12, 12, 12, 5, 4, 4, 1), for
which we count 839,926,782,939,601,640 corresponding binary matrices. Counting takes 1
second, and sampling is 0.002 seconds per sample. One more example of this type: for bird
species on the California Islands [25] we find that there are 1,360,641,571,195,211,109,388
binary matrices with margins (1, 4, 3, 2, 1, 1, 1, 5, 1, 3, 1, 4, 4, 5, 1, 2, 1, 5, 4, 5, 3, 7, 1,
3, 2, 4, 1, 3, 2, 4, 6), (2, 14, 24, 8, 2, 5, 20, 15) in 4 seconds; samples take 0.003 seconds
each. Larger matrices can be handled as well, provided the margins are small. For exam-
ple, we count 860585058801817078819959949756...000 (459 digits total, see Appendix)
100× 100 matrices with margins (70, 30, 20, 10, 5(6), 4(10), 3(20), 2(60)), (4(80), 3(20)) (where
x(n) denotes x repeated n times) in 46 minutes. We know of no previous algorithm capable
of efficiently and exactly counting and sampling from sets such as this.

4.2 Ehrhart polynomials of the Birkhoff polytope

Stanley [31] proved a remarkable conjecture of Anand, Dumir, and Gupta [1]: given n ∈ N,
Hn(r) is a polynomial in r (where Hn(r) = M(p,q) with p = q = (r, r, . . . , r) ∈ Nn).
Given Hn(1), . . . , Hn(

(
n−1
2

)
), one can solve for the coefficients of Hn(r) (as we describe

below). These polynomials have been computed for n ≤ 9 by Beck and Pixton [3]. As an
application of our method, we computed them for n ≤ 8, and found that the computation
time is comparable to that of Beck and Pixton. For n = 4, . . . , 8, the numbers Hn(r) for
r = 1, . . . ,

(
n−1
2

)
are listed in the Appendix, and the polynomial H4(r) is displayed here as

an example. Our results confirm those of Beck and Pixton.

H4(r) = 1 + (65/18)r + (379/63)r2 + (35117/5670)r3 + (43/10)r4

+(1109/540)r5 + (2/3)r6 + (19/135)r7 + (11/630)r8 + (11/11340)r9.

The coefficients of Hn(r) can be determined by the following method. By Stanley’s
theorem [31], Hn(r) is a polynomial in r such that (a) degHn(r) = (n − 1)2, (b)
Hn(−1) = · · · = Hn(−n+1) = 0, and (c) Hn(−n−r) = (−1)(n−1)2Hn(r) for r ∈ N. For
each n = 4, . . . , 8, we perform the following computation. Let k =

(
n−1
2

)
and d = (n−1)2.

Compute the numbers Hn(r) for r = 0, 1, . . . , k using Algorithm 2.2, and form the vec-
tor v := (Hn(−n − k + 1), . . . , Hn(k))

⊤ ∈ Zd+1 using (b) and (c). Form the matrix
A =

(
(i− n− k)j−1

)d+1

i,j=1
∈ Z(d+1)×(d+1), and compute u = A−1v. Then by (a),

Hn(r) =
d∑

j=0

uj+1r
j.
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4.3 Contingency Tables

As an example of counting contingency tables with non-regular margins, we count
620017488391049592297896956531...000 (483 digits total, see Appendix) 100× 100 ma-
trices with margins (70, 30, 20, 10, 5(6), 4(10), 3(20), 2(60)), (4(80), 3(20)) (where x(n) denotes
x repeated n times) in 118 minutes. Again, we know of no previous algorithm capable
of efficiently and exactly counting and sampling from sets such as this. (However, for
small contingency tables with large margins, our algorithm is much less efficient than other
methods such as LattE.) Exact uniform sampling is possible for contingency tables as well,
which occasionally finds use in statistics [9].

5 Proof of recursions

We give two proofs of Theorem 2.1. The first is a “direct” proof, which provides the basis
for the sampling algorithm outlined above. In addition to the direct proof, we also provide a
proof using generating functions which is seen to be a natural consequence of MacMahon’s
development [21] of symmetric functions, and yields results of a more general nature.

5.1 Preliminary observations

For r ∈ Nn, let r′ denote the conjugate of r, that is, r′i = #{j : rj ≥ i} for i = 1, 2, 3, . . . .
For r, s ∈ N∞, let r∧s denote the component-wise minimum, that is, (r1∧s1, r2∧s2, . . . ).
In particular, r∧1 = (r1∧1, r2∧1, . . . ). Recall our convention that Nn is considered to be
the subset of N∞ such that all but the first n components are zero. (Similarly, we consider
Zn ⊂ Z∞.)

Lemma 5.1 Let u,v ∈ Nn such that u ≤ v.

(1) Suppose s ∈ Nd for some d ∈ N. Then v − u = v̄\s if and only if s = v′− (v−u)′.
(2) If s = v′ − (v − u)′ then

∑
si =

∑
ui and s ≤ v̄ + Ls.

(3) If s = v′ − (v − u)′ and u ≤ v ∧ 1 then s ≤ v̄.

Proof (1) Letting I be the identity operator, a straightforward calculation shows that for
any d ∈ N, r ∈ Zd, we have

(∑∞
k=0 L

k
)
(I − L)r = r and (I − L)

(∑∞
k=0 L

k
)
r = r, that

is, (I −L)−1 =
∑∞

k=0 L
k on Zd, where I is the identity operator. Further, (I −L)−1r̄ = r′.

Thus, v − u = v̄\s = v̄ − s + Ls if and only if (I − L)s = v̄ − v − u if and only if
s = (I − L)−1(v̄ − v − u) = v′ − (v − u)′.
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(2) If s = v′−(v−u)′ then
∑

si =
∑

v′i−
∑

(v−u)′i =
∑

vi−
∑

(vi−ui) =
∑

ui since∑
r′i =

∑
ri for all r ∈ Nn. By (1), v̄ − s+ Ls = v̄\s = v − u ≥ 0 and so s ≤ v̄ + Ls.

(3) If s = v′ − (v − u)′ and u ≤ v ∧ 1 then by definition, si = #{j : vj ≥ i} − #{j :
vj − uj ≥ i} = #{j : vj = i and uj = 1} ≤ #{j : vj = i} = v̄i.

Lemma 5.2 Let v ∈ Nn, k ∈ N, and let f(u) = v′− (v−u)′ for u ∈ Nn such that u ≤ v.

(1) f(Cv∧1(k)) = C v̄(k), and for any s ∈ C v̄(k), #{u ∈ Cv∧1(k) : f(u) = s} =
(
v̄
s

)
.

(2) f(Cv(k)) = {s : s ∈ C v̄+Ls(k)}, and for any s such that s ∈ C v̄+Ls(k), #{u ∈
Cv(k) : f(u) = s} =

(
v̄+Ls

s

)
.

Proof (1) f(Cv∧1(k)) ⊂ C v̄(k) follows from Lemma 5.1(2 and 3). Let s ∈ C v̄(k).
Choose u as follows. For i = 1, 2, 3, . . . , choose si of the v̄i positions j such that vj = i,
and set uj = 1 for each chosen j. (Set uj = 0 for all remaining j.) This determines some
u ∈ Cv∧1(k) such that si = #{j : vj = i and uj = 1} for all i. Furthermore, it is not hard
to see that any such u is obtained by such a sequence of choices. Now, as in the proof of
Lemma 5.1(3), si = #{j : vj = i and uj = 1} if and only if f(u) = s (when u ≤ v ∧ 1).
Hence, f(Cv∧1(k)) ⊃ C v̄(k), and since there were

(
v̄
s

)
possible ways to choose u, then

this proves (1).

(2) f(Cv(k)) ⊂ {s : s ∈ C v̄+Ls(k)} follows from Lemma 5.1(2). Suppose s ∈ C v̄+Ls(k).
Let r = v̄ and t = r\s. Note that t ≥ 0 since s ≤ r + Ls. Also, r, s, t ∈ Nd where
d = max vj . Choose u as follows. First, consider the rd positions j in v at which vj = d.
There are

(
rd
td

)
ways to choose td of these rd positions. Having made such a choice, we

set uj = vj − d = 0 for each such j that was chosen. Next, consider the rd−1 positions
j at which vj = d − 1, in addition to the rd − td remaining positions at which vj = d.
There are

(
rd−1+(rd−td)

td−1

)
ways to choose td−1 of these. Having made such a choice, we

set uj = vj − (d − 1) for each such j that was chosen. Continuing in this way, for i =
d − 2, . . . , 1: consider the ri positions j in v which vj = i, in addition to the ri+1 + · · · +
rd − td − · · · − ti+1 remaining positions at which vj > i, choose ti of these (in one of(
ri + ri+1 + · · ·+ rd − td − · · · − ti+1

ti

)
ways), and set uj = vj − i for each such j that

was chosen. After following these steps for each i, set uj = vj for any remaining positions
j. This determines some u such that 0 ≤ u ≤ v.

Now, for i = d, d − 1, . . . , 1, we have chosen ti positions j and we have set uj = vj − i.
That is, ti = #{j : vj−uj = i}, and so t = v − u. Hence, v − u = v̄\s (by the definition
of t), so s = f(u) by Lemma 5.1(1), and additionally,

∑
uj =

∑
sj = k by 5.1(2). Thus,

we have shown that f(Cv(k)) ⊃ {s : s ∈ C v̄+Ls(k)}.
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Using tj = rj − sj + sj+1 (the definition of t), we see that there were(
rd
td

)(
rd−1 + (rd − td)

td−1

)
· · ·

(
r1 + r2 + · · ·+ rd − td − · · · − t2

t1

)

=

(
rd
sd

)(
rd−1 + sd

sd−1

)
· · ·

(
r1 + s2

s1

)
=

(
r+ Ls

s

)
> 0

ways to make such a sequence of choices, where the inequality holds since s ≤ r + Ls.
Hence, there are at least

(
r+Ls

s

)
distinct choices of u ∈ Cv(k) such that f(u) = s. On the

other hand, given any u ∈ Cv(k) such that f(u) = s, we have t = v − u (by Lemma
5.1(1)), thus ti = #{j : uj = vj− i}, and since vj ≥ i for any j such that uj = vj− i, such
a u is obtained by one of the sequences of choices above. Hence, #{u ∈ Cv(k) : f(u) =
s} =

(
v̄+Ls

s

)
.

5.2 Direct proof

We are now prepared to prove Theorem 2.1. Recall the statement of the theorem:

The number of matrices with margins (p,q) ∈ Nm × Nn is given by

(1) N̄(p, r) =
∑

s∈Cr(p1)

(
r

s

)
N̄(Lp, r\s) for binary matrices, and

(2) M̄(p, r) =
∑

s∈Cr+Ls(p1)

(
r+ Ls

s

)
M̄(Lp, r\s) for N-valued matrices,

where r = q̄, and in (2), we sum over all s such that s ∈ Cr+Ls(p1).

Proof of Theorem 2.1

(1) First, we prove the binary case. Let (p,q) ∈ Nm × Nn, r = q̄. Using Lemma 5.2(1),
define the surjection f : Cq∧1(p1)→ Cr(p1) by f(u) = q′ − (q− u)′. Then

N̄(p, r) = N(p,q)
(a)
=

∑
u∈Cq∧1(p1)

N(Lp,q− u)

(b)
=

∑
s∈Cr(p1)

∑
u∈f−1(s)

N(Lp,q− u)
(c)
=

∑
s∈Cr(p1)

(
r

s

)
N̄(Lp, r\s).

Step (a) follows from partitioning the set of (p,q) matrices according to the first row u ∈
Cq∧1(p1) of the matrix. Step (b) partitions Cq∧1(p1) into the level sets of f , that is, the sets
f−1(s) = {u ∈ Cq∧1(p1) : f(u) = s} as s ranges over f(Cq∧1(p1)) = Cr(p1). Step (c)
follows since if f(u) = s then q− u = r\s (by Lemma 5.1(1)) and thus N(Lp,q− u) =
N̄(Lp, r\s), and since #f−1(s) =

(
r
s

)
(by Lemma 5.2(1)) . This proves 2.1(1).
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(2) Now, we consider the N-valued case. Let S = {s : s ∈ Cr+Ls(p1)}. Using Lemma
5.2(2), define the surjection g : Cq(p1)→ S by g(u) = q′ − (q− u)′. Then, similarly,

M̄(p, r) = M(p,q)
(a)
=

∑
u∈Cq(p1)

M(Lp,q− u)

(b)
=

∑
s∈S

∑
u∈g−1(s)

M(Lp,q− u)
(c)
=

∑
s∈S

(
r+ Ls

s

)
M̄(Lp, r\s).

As before, step (a) follows from partitioning the set of matrices according to the first row
u ∈ Cq(p1), step (b) partitions Cq(p1) into the level sets of g, and step (c) follows since
#g−1(s) =

(
r+Ls

s

)
(by Lemma 5.2(2)). This proves Theorem 2.1.

5.3 Generating function proof

In addition to the direct approach above, one may also view the recursions as the application
of a certain differential operator to a certain symmetric functions. Although such operators
were used extensively by MacMahon [21] on problems of this type, at first it would appear
that for computation this approach would be hopelessly inefficient in all but the simplest
examples. In fact, it turns out that a simple observation allows one to exploit regularities
in the present problem, reducing the computation time to polynomial for bounded margins.
Specifically, when there are many columns with the same sum, the symmetric function un-
der consideration has many repeated factors, and the action of the operator in this situation
takes a simplified form.

We will identify N(p,q) and M(p,q) as the coefficients of certain symmetric functions,
introduce an operator for extracting coefficients, and show that its action yields the recur-
sion above.

Let en denote the elementary symmetric function of degree n, in a countably infinite num-
ber of variables {x1, x2, . . . }:

en :=
∑

r1<r2<···<rn

xr1xr2 · · ·xrn ,

and let hn be the complete symmetric function of degree n:

hn :=
∑

r1≤r2≤···≤rn

xr1xr2 · · ·xrn ,

where r1, . . . , rn ∈ {1, 2, 3, . . . }. For convenience, let x0 = e0 = h0 = 1 and en = hn = 0
if n < 0. Given r ∈ Nn, let xr := xr1

1 · · ·xrn
n and xr := xr1 · · ·xrn . Apply the same

notation for er and er, as well as hr and hr. Note that if r = q̄, then xr = xq.

11



Lemma 5.3 (MacMahon) For any p ∈ Nm, q ∈ Nn,

(1) N(p,q) is the coefficient of xp in eq, and
(2) M(p,q) is the coefficient of xp in hq.

Proof The coefficient of xp in eq is the number of ways to choose one term from each of
the n factors eq1 , . . . , eqn , such that the product of these terms is xp. Observe the corre-
spondence in which the n factors in eq = eq1 · · · eqn are identified with the n columns in
the matrix, and choosing a term xr in a given eqi corresponds to choosing column i to have
ones in rows r1, . . . , rqi (and zeros elsewhere). For any choice of terms xr1 , . . . , xrn from
eq1 , . . . , eqn respectively such that xr1 · · ·xrn = xp, we have a binary matrix with margins
(p,q), and conversely, for any such matrix there is such a choice of terms xr1 , . . . , xrn .
Thus, the coefficient of xp in eq is also the number of such matrices, N(p,q).

The proof for M(p,q) is the same, except in this case, choosing a term xr in a given
hqi corresponds to choosing column i to have entries r1, . . . , rm, and a sequence such that
xr1 · · ·xrn = xp corresponds to an N-valued matrix with margins (p,q).

In what follows, when we say “series”, we mean a formal power series in x1, x2, . . . . Write
x = (x1, x2, . . . ) for the sequence of variables, and let Rx = (0, x1, x2, . . . ). For k ∈ N,
define the differential operator:

Dk :=
1

k!

∂k

∂xk
1

∣∣∣
x=Rx

.

In other words, after taking the kth derivative with respect to x1 and dividing by k!, replace
x1 with zero, and xi+1 with xi for i = 1, 2, . . . . Acting on a series in x1, x2, . . . , the operator
Dk annihilates every term except those in which the power of x1 is exactly k. (Note that
Dk coincides with Hammond’s operator [15, 21], on any symmetric series.) Define

Dr := Drn · · ·Dr1

(note the reverse order) where n = max{j : rj ̸= 0} if r ̸= 0 and Dr is the identity
operator otherwise. By applying the operator Dr, we keep only terms exactly divisible by
xr (that is, the power of xi is ri for i = 1, . . . , n). In particular, if f is a homogeneous
series of degree

∑
ri, (so that each term has degree

∑
ri), then Drf is a number equal to

the coefficient of xr in f . Since eq and hq are homogeneous series of degree
∑

qi, then by
Lemma 5.3 we have

Corollary 5.4 For any p ∈ Nm, q ∈ Nn such that
∑

pi =
∑

qi,

(1) Dpeq = N(p,q),
(2) Dphq = M(p,q).
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The following identities begin to reveal the utility of the operators Dk.

Lemma 5.5 (MacMahon) For n, k ∈ N,

(1) Dkhn = hn−k

(2) Dken =

{
en−k if k ≤ 1
0 if k > 1

(3) For any functions f1, . . . , fn,

Dk(f1 · · · fn) =
∑

s∈Cn(k)

(Ds1f1) · · · (Dsnfn).

Proof (1) and (2) are straightforward calculations. For (3), writing ∂k = ∂k

∂xk
1
, we have

k!Dk(f1 · · · fn) =
∑

r∈{1,...,n}k
(∂ r̄1f1) · · · (∂ r̄nfn)

∣∣∣
x=Rx

=
∑

s∈Cn(k)

k!

s1! . . . sn!
(∂s1f1) · · · (∂snfn)

∣∣∣
x=Rx

=
∑

s∈Cn(k)

k!(Ds1f1) · · · (Dsnfn),

where the first step follows by recursive application of the product rule, and the second by
collecting like terms.

Lemma 5.6 (Power rules) For any k ∈ N, r ∈ Nn,

(1) Dke
r =

∑
s∈Cr(k)

(
r

s

)
er\s

(2) Dkh
r =

∑
s∈Cr+Ls(k)

(
r+ Ls

s

)
hr\s.

Proof (1) For any m, i ∈ N,

Dke
m
i =

(
m

k

)
em−k
i eki−1

by Lemma 5.5(2 and 3). Thus,

Dke
r = Dk(e

r1
1 · · · ernn )

(a)
=

∑
s∈Cn(k)

(Ds1e
r1
1 ) · · · (Dsne

rn
n )

13



(b)
=

∑
s∈Cn(k)

((
r1
s1

)
er1−s1
1 es10

)
· · ·

((
rn
sn

)
ern−sn
n esnn−1

)
(c)
=

∑
s∈Cn(k)

(
r

s

)
er1−s1+s2
1 er2−s2+s3

2 · · · ern−sn
n

(d)
=

∑
s∈Cr(k)

(
r

s

)
er\s,

with (a) by Lemma 5.5(3), (b) by the preceding observation, (c) by collecting factors, and
(d) since

(
r
s

)
= 0 unless s ≤ r and by the definition of r\s.

(2) Let m =
∑

ri and let v ∈ Nm be any vector such that v̄ = r, so that hr = hv. Let
S = {s : s ∈ Cr+Ls(k)}, and using Lemma 5.2(2), define the surjection g : Cv(k)→ S by
g(u) = v′ − (v − u)′. Then

Dkh
r = Dk(hv1 . . . hvm)

(a)
=

∑
u∈Cm(k)

(Du1hv1) . . . (Dumhvm)

(b)
=

∑
u∈Cm(k)

hv−u
(c)
=

∑
u∈Cv(k)

hv−u =
∑

u∈Cv(k)

hv−u

(d)
=

∑
s∈Cr+Ls(k)

∑
u∈g−1(s)

hv−u (e)
=

∑
s∈Cr+Ls(k)

(
r+ Ls

s

)
hr\s,

where (a) follows from Lemma 5.5(3), (b) by 5.5(1), (c) since hj = 0 if j < 0 and thus
hv−u = 0 if u ̸≤ v, (d) by 5.2(2), and (e) by 5.1(1) and 5.2(2).

We now complete the generating function proof of Theorem 2.1. If p ∈ Nm, q ∈ Nn,∑
pi =

∑
qi, and r = q̄, then by Lemma 5.6(1),

Dpe
r = DLp(Dp1e

r) =
∑

s∈Cr(p1)

(
r

s

)
DLpe

r\s,

and since er = eq, then using Corollary 5.4 (twice) we have

N̄(p, r) = N(p,q) = Dpeq = Dpe
r =

∑
s∈Cr(p1)

(
r

s

)
N̄(Lp, r\s).

This proves Theorem 2.1(1). Similarly, in view of Corollary 5.4, Theorem 2.1(2) follows
immediately from Lemma 5.6(2).
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6 Computation time

Let W (r) :=
∑n

k=1 krk = the weight of r ∈ Zn.

Lemma 6.1 (Properties of the weight) If r, s ∈ Zn then

(1) W (r+ s) = W (r) +W (s)
(2) W (s− Ls) =

∑
si

(3) W (r\s) = W (r)−
∑

si
(4) W (s̄) =

∑
si.

Proof All four are simple calculations.

For the rest of this section, fix (p,q) ∈ Nm × Nn such that
∑

pi =
∑

qi, and consider
(p,q) to be the margins of a set of m× n matrices. First, we address the time to compute
N(p,q) using Algorithm 2.2, and M(p,q) will follow easily.

Let D(p,q) denote the set of nontrivial nodes (u, v̄) in the directed acyclic graph (as dis-
cussed in Section 2) descending from (p, q̄) (including (p, q̄)), where nontrivial means
(u, v̄) ̸= (0,0). Let ∆k(j) := {s ∈ Nk : W (s) = j} for j, k ∈ N. The intuitive content
of the following lemma is that the graph descending from (p, q̄) is contained in a union of
sets ∆k(j) with weights decreasing by steps of p1, . . . , pm.

Lemma 6.2 (Descendants) D(p,q) ⊂ {(u, v̄) : u = Lj−1p, v̄ ∈ ∆b(tj), j = 1, . . . ,m},
where tj =

∑m
i=j pi and b = max qi.

Proof By the form of the recursion, (u, v̄) ∈ D(p,q) if and only if for some 1 ≤ j ≤ m
there exist s1, . . . , sj−1 in Cr1(p1), . . . , C

rj−1
(pj−1) respectively, with r1 = q̄, ri+1 = ri\si

for i = 1, . . . , j − 1, such that (u, v̄) = (Lj−1p, rj). For j ≥ 2, by Lemma 6.1(3 and 4),

W (rj) = W (rj−1\sj−1) = W (rj−1)− pj−1 = W (rj−2)− pj−2 − pj−1

= · · · = W (r1)− (p1 + · · ·+ pj−1) =
n∑

i=1

qi −
j−1∑
i=1

pi =
m∑
i=1

pi −
j−1∑
i=1

pi = tj,

and rj ∈ Nb by construction, so rj ∈ ∆b(tj). Hence, (u, v̄) = (Lj−1p, rj) belongs to the
set as claimed.

Let T (p,q) be the time (number of machine operations) required by the algorithm (Algo-
rithm 2.2) to compute N(p,q) after precomputing all needed binomial coefficients. Let
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τ(u, v̄) be the time to compute N̄(u, v̄) given N̄(Lu, v̄\s) for all s ∈ C v̄(u1). That is,
T (p,q) is the time to perform the entire recursive computation, whereas τ(u, v̄) is the
time to perform a given call to the algorithm not including time spent in subcalls to the
algorithm.

Let n0 := #{i : qi > 0} denote the number of nonempty columns. By constructing
Pascal’s triangle, we precompute all possible binomial coefficients that will be needed, and
store them in a lookup table. We only need binomial coefficients with entries less or equal
to n0, for the following reason. In the binary case, the recursion involves numbers of the
form

(
v̄
s

)
with s ≤ v̄, and for any descendent (u, v̄) and any i > 0 we have v̄i ≤ n0

since the number of columns with sum i is less or equal to the total number of nonempty
columns. For the N-valued case, the same set of binomial coefficients will be sufficient,
since then we have numbers of the form

(
v̄+Ls

s

)
with s ≤ v̄ + Ls, and thus

v̄i + si+1 ≤ v̄i + v̄i+1 + si+2 ≤ · · · ≤ v̄i + v̄i+1 + v̄i+2 + · · · ≤ n0,

where the last inequality holds because the number of columns j with sum greater or equal
to i is no more than the total number of nonempty columns. Since the addition of two d-
digit numbers takes Θ(d) time, and there are

(
n0+2
2

)
binomial coefficients with entries less

or equal to n0, then the bound log
(
j
k

)
+1 ≤ n0 log 2+ 1 on the number of digits for such a

binomial coefficient shows that this pre-computation can be done in O(n3
0) time. Except in

trivial cases (when the largest column sum is 1), the additional time needed does not affect
the bounds on T (p,q) that we will prove below.

We now bound the time required for a given call to the algorithm.

Lemma 6.3 (Time per call) τ(u, v̄) ≤ O((ab+ c)(log c)3|Cb(u1)|) for (u, v̄) ∈ D(p,q),
where a = max pi, b = max qi, and c =

∑
pi.

Proof Note that we always have v̄i ≤ n0, since the number of columns with sum i cannot
exceed the number of nonempty columns. Thus, in the recursion formula, for each s in the
sum corresponding to (u, v̄), we have the bound(

v̄

s

)
=

b∏
i=1

(
v̄i
si

)
≤

b∏
i=1

v̄sii ≤ n
∑

i si
0 ≤ na

0 ≤ ca.

Let Tm(k) be the time required to multiply two numbers of magnitude k or less. By the
Schönhage-Strassen algorithm [30], Tm(k) ≤ O((log k)(log log k)(log log log k)). There-
fore, Tm(

(
v̄
s

)
) ≤ Tm(c

a) ≤ O(a(log c)3). Since we have precomputed the binomial co-
efficients, the time required to compute

(
v̄
s

)
is thus bounded by O(ab(log c)3). To finish

computing the term corresponding to s in the recursion formula, we must multiply
(
v̄
s

)
by
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N̄(Lu, v̄\s). Since

N̄(Lu, v̄\s) ≤ N(p,q) ≤
m∏
i=1

(
n0

pi

)
≤

m∏
i=1

npi
0 = nc

0 ≤ cc,

then this multiplication can be done in Tm(N(p,q)) ≤ Tm(c
c) ≤ O(c(log c)3) time. Since

we are summing over C v̄(u1), and C v̄(u1) ⊂ Cb(u1), then altogether we have τ(u, v̄) ≤
O((ab+ c)(log c)3|Cb(u1)|) for the time per call.

Lemma 6.4 (Bound on weighted simplices) #∆k(j) ≤
(
j + k − 1

k − 1

)
for any j, k ∈ N.

Proof The map f(r) = (1r1, 2r2, . . . , krk) is an injection f : ∆k(j) → Ck(j). Thus,
#∆k(j) ≤ #Ck(j) =

(
j+k−1
k−1

)
.

We are now ready to prove Theorem 2.3 for the case of N(p,q).

Proof of Theorem 2.3 for N(p,q)

By storing intermediate results in a lookup table, once we have computed N̄(u, v̄) upon
our first visit to node (u, v̄), we can simply reuse the result for later visits. Hence, we need
only expend τ(u, v̄) time for each node (u, v̄) occuring in the graph. Let tj =

∑m
i=j pi and

d = (ab+ c)(log c)3. Then

T (p,q) =
∑

(u,v̄)∈D(p,q)

τ(u, v̄)
(a)
≤

m∑
j=1

∑
v̄∈∆b(tj)

τ(Lj−1p, v̄)

(b)
≤

∑
j

∑
v̄

O(d|Cb(pj)|) =
∑
j

O(d|Cb(pj)||∆b(tj)|)

(c)
≤

∑
j

O(d

(
pj + b− 1

b− 1

)(
tj + b− 1

b− 1

)
)

(d)
≤

∑
j

O(d

(
a+ b− 1

b− 1

)(
c+ b− 1

b− 1

)
) ≤ O(dm(a+ b− 1)b−1(c+ b− 1)b−1),

where (a) follows by Lemma 6.2, (b) by 6.3, (c) by 6.4, and (d) since pj ≤ a and tj ≤ c.
This proves (1) and (2). Now, (3) and (4) follow from (2) since a ≤ c ≤ bn.
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Proof of Theorem 2.3 for M(p,q)

Other than the coefficients, the only difference between the recursion for M̄(p, q̄) and
that for N̄(p, q̄) is that we are summing over s such that s ∈ Cr+Ls(p1). Lemma 6.2
holds with the same proof, except with Cr1(p1), . . . , C

rj−1
(pj−1) replaced by Cr1+Ls1(p1),

. . . , Crj−1+Lsj−1
(pj−1), respectively. Considering Lemma 6.3, let (u, v̄) be a descendent

of (p, q̄) in the graph for M̄(p, q̄), and let s be such that s ∈ C v̄+Ls(u1). Similarly to
before, recalling that v̄i + si+1 ≤ n0 (as proven above in our discussion of precomputing
the binomial coefficients), we have(

v̄ + Ls

s

)
=

b∏
i=1

(
v̄i + si+1

si

)
≤

∏
i

(v̄i + si+1)
si ≤ n

∑
si

0 ≤ na
0 ≤ ca.

This yields Tm(
(
v̄+Ls

s

)
) ≤ Tm(c

a) ≤ O(a(log c)3), just as before. Since

M̄(Lu, v̄\s) ≤M(p,q) ≤
m∏
i=1

(
pi + n0 − 1

pi

)
≤

∏
i

(2c)pi = (2c)c,

then we also obtain Tm(M(p,q)) ≤ Tm((2c)
c) ≤ O(c(log c)3) as before. Further, {s : s ∈

C v̄+Ls(u1)} ⊂ Cb(u1), so altogether the time per call is O((ab + c)(log c)3|Cb(u1)|), and
thus the result of Lemma 6.3 continues to hold. With this result, the proof of the bounds
goes through as well.

This completes the proof of Theorem 2.3. Now, we address the time required to uniformly
sample a matrix with specified margins. Let Tr(k) be the maximum over 1 ≤ j ≤ k
of the expected time to generate a random integer uniformly between 1 and j. If we are
given a random bitstream (independent and identically distributed Bernoulli(1/2) random
variables) with constant cost per bit, then Tr(k) = O(log k), since for any j ≤ k, ⌈log2 j⌉ ≤
⌈log2 k⌉ random bits can be used to generate an integer uniformly between 1 and 2⌈log2 j⌉

and then rejection sampling can be used to generate uniform samples over {1, . . . , j}. Since
the expected value of a Geometric(p) random variable is 1/p, then the expected number of
samples required to obtain one that falls in {1, . . . , j} is always less than 2. More generally,
for any fixed d ∈ N, if we can draw uniform samples from {1, . . . , d}, then we have
Tr(k) = O(log k) by considering the base-d analogue of the preceding argument.

Lemma 6.5 (Sampling time) Algorithm 2.4 takes O(mTr(n
c)+maTr(n)+mb log(a+b))

expected time per sample in the binary case, and O(mTr((2c)
c) +maTr(n) +mb log(a+

b)) expected time per sample in the N-valued case. If Tr(k) = O(log k), then this is
O(mc log c) expected time per sample in both cases.

Remark If b is bounded then O(mc log c) ≤ O(mn log n) since c ≤ bn, and so this is
polynomial expected time for bounded column sums.
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Proof By the form of the recursion, the depth of the graph descending from (p, q̄) is equal
to the number of rows m, since p ∈ Nm and thus Lmp = 0. For each of the m iterations
of the sampling algorithm, we begin at some node (u, v̄), and we must (A) randomly
choose a child (Lu, v̄\s) with probability proportional to its count times the number of
corresponding rows, and then (B) choose a row uniformly from among the

(
v̄
s

)
possible

choices in the binary case (or
(
v̄+Ls

s

)
in the N-valued case).

First consider the binary case. To randomly choose a child, consider a partition of the
integers 1, . . . , N(u,v) with each part corresponding to a term in the recursion formula
for N̄(u, v̄). Generate an integer uniformly at random between 1 and N(u,v), and
choose the corresponding child. Generating such a random number takes Tr(N(u,v)) ≤
Tr(N(p,q)) ≤ Tr(n

c
0) time. Since there are no more than

(
a+b−1
b−1

)
≤ (a + b − 1)b−1

children at any step, one can determine which child corresponds to the chosen number in
O((b − 1) log(a + b − 1)) time by organizing the children in a binary tree. So (A) takes
O(Tr(n

c
0) + b log(a+ b)) time. Choosing a row consists of uniformly sampling a subset of

size si from a set of v̄i elements, for i = 1, . . . , b. Sampling such a subset can be done by
sampling without replacement si times, which takes

∑si−1
j=0 Tr(v̄i− j) ≤ siTr(n0) time. So

(B) can be done in
∑b

i=1 siTr(n0) ≤ aTr(n0) time. Repeating this process m times, once
for each row, we see that sampling a matrix takes O(mTr(n

c
0)+mb log(a+b)+maTr(n0))

time. If Tr(k) ≤ O(log k), this is O(mc log n0+mb log(a+b)+ma log n0) ≤ O(mc log c)
since a, b, n0 ≤ c.

For the N-valued case, the same argument applies, replacing N(u,v) with M(u,v), nc
0

with (2c)c, and v̄i with v̄i + si+1.
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A Enumeration results

Binary matrices with margins (70, 30, 20, 10, 5(6), 4(10), 3(20), 2(60)), (4(80), 3(20))

860585058801817078819959949756041558231879514104670757612387
280341919502865086909993523205599348663646837362726765460951
032776118129432733489342067673016169716787054236343091407458
802261593735765113169808512677339861494709092492858489355535
514748397544147637928475318462070009855280569561693514768239
201499080842592443823774161366680107327323365049702068246736
456919918589686056321467354298509024976141650428747522863473
529515269318246400000000000000000000000

N-valued matrices with margins (70, 30, 20, 10, 5(6), 4(10), 3(20), 2(60)), (4(80), 3(20))

620017488391049592297896956531192562528805388295441812965295
130897484012791595142882674755488640101825726867156331426482
441148514978852842582445295040041143220637964258279947442682
896809706562683189375098411751981435132377208717294759756041
358372207736032818841045369779439398975681041714752821787419
816573563436066161167632677774184809010338787868042742993719
703936093873250600121874335524794990013547042810153560084573
133035731217642637607153615611029851392000000000000000000000
000

Ehrhart polynomials Hn(r) for n = 4, . . . , 8

H4(1) = 24
H4(2) = 282
H4(3) = 2008

H5(1) = 120
H5(2) = 6210
H5(3) = 153040
H5(4) = 2224955
H5(5) = 22069251
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H5(6) = 164176640

H6(1) = 720
H6(2) = 202410
H6(3) = 20933840
H6(4) = 1047649905
H6(5) = 30767936616
H6(6) = 602351808741
H6(7) = 8575979362560
H6(8) = 94459713879600
H6(9) = 842286559093240
H6(10) = 6292583664553881

H7(1) = 5040
H7(2) = 9135630
H7(3) = 4662857360
H7(4) = 936670590450
H7(5) = 94161778046406
H7(6) = 5562418293759978
H7(7) = 215717608046511873
H7(8) = 5945968652327831925
H7(9) = 123538613356253145400
H7(10) = 2023270039486328373811
H7(11) = 27046306550096288483238
H7(12) = 303378141987182515342992
H7(13) = 2920054336492521720572276
H7(14) = 24563127009195223721952590
H7(15) = 183343273080700916973016745

H8(1) = 40320
H8(2) = 545007960
H8(3) = 1579060246400
H8(4) = 1455918295922650
H8(5) = 569304690994400256
H8(6) = 114601242382721619224
H8(7) = 13590707419428422843904
H8(8) = 1046591482728407939338275
H8(9) = 56272722406349235035916800
H8(10) = 2233160342369825596702148720
H8(11) = 68316292103293669997188919040
H8(12) = 1667932098862773837734823042196
H8(13) = 33427469280977307618866364694400
H8(14) = 562798805673342016752366344185200
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H8(15) = 8115208977465404874100226492575360
H8(16) = 101857066150530294146428615917957029
H8(17) = 1128282526405022554049557329097252992
H8(18) = 11161302946841260178530673680176000200
H8(19) = 99613494890126594335550124219924540800
H8(20) = 809256770610540675454657517194018680846
H8(21) = 6031107989875562751266116901999327710720
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