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Abstract

In many applications, a finite mixture is a natural model, but it can be difficult to choose an
appropriate number of components. To circumvent this choice, investigators are increas-
ingly turning to Dirichlet process mixtures (DPMs), and Pitman–Yor process mixtures
(PYMs), more generally. While these models may be well-suited for Bayesian density esti-
mation, many investigators are using them for inferences about the number of components,
by considering the posterior on the number of components represented in the observed data.
We show that this posterior is not consistent—that is, on data from a finite mixture, it
does not concentrate at the true number of components. This result applies to a large class
of nonparametric mixtures, including DPMs and PYMs, over a wide variety of families of
component distributions, including essentially all discrete families, as well as continuous
exponential families satisfying mild regularity conditions (such as multivariate Gaussians).

Keywords: consistency, Dirichlet process mixture, number of components, finite mixture,
Bayesian nonparametrics

1. Introduction

We begin with a motivating example. In population genetics, determining the “population
structure” is an important step in the analysis of sampled data. To illustrate, consider the
impala, a species of antelope in southern Africa. Impalas are divided into two subspecies: the
common impala occupying much of the eastern half of the region, and the black-faced impala
inhabiting a small area in the west. While common impalas are abundant, the number of
black-faced impalas has been decimated by drought, poaching, and declining resources due
to human and livestock expansion. To assist conservation efforts, Lorenzen et al. (2006)
collected samples from 216 impalas, and analyzed the genetic variation between/within the
two subspecies.

A key part of their analysis consisted of inferring the population structure—that is, par-
titioning the data into distinct populations, and in particular, determining how many such
populations there are. To infer the impala population structure, Lorenzen et al. employed a
widely-used tool called Structure (Pritchard et al., 2000) which, in the simplest version,
models the data as a finite mixture, with each component in the mixture corresponding
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(a) Posterior for impala data (b) Posterior for Gaussian mixture data

Figure 1: Estimated DPM posterior distributions of the number of clusters, with concentration
parameter 1: (a) For the impala data of Lorenzen et al. (n = 216 data points); we use
the same base measure as Huelsenbeck and Andolfatto, and our empirical results, shown
here, agree with theirs. (b) For data from the three-component univariate Gaussian

mixture
∑3

i=1 πiN (x|µi, σ
2
i ) with π = (0.45, 0.3, 0.25), µ = (4, 6, 8), and σ = (1, 0.2, 0.6);

we use a base measure with the same parameters as Richardson and Green (1997); each
plot is the average over 10 independently-drawn data sets. For both (a) and (b), estimates
were made via Gibbs sampling (MacEachern, 1994; Neal, 2000), with 105 burn-in sweeps
and 2× 105 sample sweeps.

to a distinct population. Structure uses an ad hoc method to choose the number of
components, but this comes with no guarantees.

Seeking a more principled approach, Pella and Masuda (2006) proposed using a Dirich-
let process mixture (DPM). Now, in a DPM, the number of components is infinite with
probability 1, and thus the posterior on the number of components is always, trivially, a
point mass at infinity. Consequently, Pella and Masuda instead employed the posterior on
the number of clusters (that is, the number of components used in generating the data
observed so far) for inferences about the number of components. (The terms “component”
and “cluster” are often used interchangeably, but we make the following crucial distinction:
a component is part of a mixture distribution, while a cluster is the set of indices of data
points coming from a given component.) This DPM approach was implemented in a soft-
ware tool called Structurama (Huelsenbeck and Andolfatto, 2007), and demonstrated on
the impala data of Lorenzen et al.; see Figure 1(a).

Structurama has gained acceptance within the population genetics community, and
has been used in studies of a variety of organisms, from apples and avocados, to sardines
and geckos (Richards et al., 2009; Chen et al., 2009; Gonzalez and Zardoya, 2007; Leaché
and Fujita, 2010). Studies such as these can carry significant weight, since they may be
used by officials to make informed policy decisions regarding agriculture, conservation, and
public health.

More generally, in a number of applications the same scenario has played out: a fi-
nite mixture seems to be a natural model, but requires the user to choose the number of
components, while a Dirichlet process mixture offers a convenient way to avoid this choice.
For nonparametric Bayesian density estimation, DPMs are indeed attractive, since the pos-
terior on the density exhibits nice convergence properties; see Section 1.2. However, in
several applications, investigators have drawn inferences from the posterior on the number
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Figure 2: A typical partition sampled from the posterior of a Dirichlet process mixture of bivariate
Gaussians, on simulated data from a four-component mixture. Different clusters have
different marker shapes (+,×,O,M,◦,2) and different colors. Note the tiny “extra”
clusters (◦ and 2), in addition to the four dominant clusters.

of clusters—not just the density—on the assumption that this is informative about the
number of components. Further examples include gene expression profiling (Medvedovic
and Sivaganesan, 2002), haplotype inference (Xing et al., 2006), survival analysis (Argiento
et al., 2009), econometrics (Otranto and Gallo, 2002), and evaluation of inference algo-
rithms (Fearnhead, 2004). Of course, if the data-generating process is well-modeled by a
DPM, then it is sensible to use this posterior for inference about the number of components
represented so far in the data—but that does not seem to be the perspective of these in-
vestigators, since they measure performance on simulated data coming from finitely many
components or populations.

Therefore, it is important to understand the properties of this procedure. Simulation
results give some cause for concern; for instance, Figure 1(b) displays results on data from
a mixture of univariate Gaussians with three components. The posterior on the number
of clusters does not appear to be concentrating as the number of data points n increases.
Empirically, it seems that this is because partitions sampled from the posterior often have
tiny, transient “extra” clusters (as has been noted before, see Section 1.2); for instance, see
Figure 2, showing a typical posterior sample on data from a four-component mixture of
bivariate Gaussians. This raises a fundamental question that has not been addressed in the
literature: With enough data, will this posterior eventually concentrate at the true number
of components? In other words, is it consistent?

It is well-known that under the prior, the number of clusters goes to infinity as n→∞,
with probability 1. However, this does not necessarily imply that the same is true under the
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posterior—it may be that the likelihood is strong enough to overcome this prior tendency.
Of course, in a typical Bayesian setting, the prior is fixed, and as n increases the likelihood
overwhelms it. In the present situation, though, both the prior (on the number of clusters)
and the likelihood (given the number of clusters) are changing with n, and the resulting
behavior of the posterior is far from obvious.

1.1 Overview of Results

In this manuscript, we prove that under fairly general conditions, when using a Dirichlet
process mixture, the posterior on the number of clusters will not concentrate at any finite
value, and therefore will not be consistent for the number of components in a finite mixture.
In fact, our results apply to a large class of nonparametric mixtures including DPMs, and
Pitman–Yor process mixtures (PYMs) more generally, over a wide variety of families of
component distributions.

Before treating our general results and their prerequisite technicalities, we would like
to highlight a few interesting special cases that can be succinctly stated. The terminology
and notation used below will be made precise in later sections. To reiterate, our results are
considerably more general than the following corollary, which is simply presented for the
reader’s convenience.

Corollary 1 Consider a Pitman–Yor process mixture with component distributions from
one of the following families:

(a) Normal(µ,Σ) (multivariate Gaussian),

(b) Exponential(θ),

(c) Gamma(a, b),

(d) Log-Normal(µ, σ2), or

(e) Weibull(a, b) with fixed shape a > 0,

along with a base measure that is a conjugate prior of the form in Section 5.2, or

(f) any discrete family {Pθ} such that
⋂
θ{x : Pθ(x) > 0} 6= ∅ (e.g., Poisson, Geometric,

Negative Binomial, Binomial, Multinomial, etc.),

along with any continuous base measure. Consider any t ∈ {1, 2, . . . }, except for t = N in
the case of a Pitman–Yor process with parameters σ < 0 and ϑ = N |σ|. If X1, X2, . . . are
i.i.d. from a mixture with t components from the family used in the model, then the posterior
on the number of clusters Tn is not consistent for t, and in fact,

lim sup
n→∞

p(Tn = t | X1:n) < 1

with probability 1.
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This is implied by Theorems 6, 7, and 11. These more general theorems apply to a
broad class of partition distributions, handling Pitman–Yor processes as a special case, and
they apply to many other families of component distributions: Theorem 11 covers a large
class of exponential families, and Theorem 7 covers families satisfying a certain boundedness
condition on the densities (including any case in which the model and data distributions
have one or more point masses in common, as well as many location–scale families with
scale bounded away from zero). Dirichlet processes are subsumed as a further special case,
being Pitman–Yor processes with parameters σ = 0 and ϑ > 0. Also, the assumption of
i.i.d. data from a finite mixture is much stronger than what is required by these results.

For PYMs with σ ∈ [0, 1) (including DPMs), our results show that p(Tn = t | X1:n) does
not concentrate at any finite value, however, we have not been able to determine the precise
limiting behavior of this posterior; the two most plausible outcomes are that it diverges, or
stabilizes at some limiting distribution.

Regarding the exception of t = N when σ < 0 in Corollary 1: posterior consistency at
t = N is possible, however, this could only occur if the chosen parameter N just happens to
be equal to the actual number of components, t. On the other hand, consistency at any t
can (in principle) be obtained by putting a prior on N ; see Section 1.2.1 below. In a similar
vein, some investigators place a prior on the concentration parameter ϑ in a DPM, or allow
ϑ to depend on n; we conjecture that inconsistency can still occur in these cases, but in this
paper, we examine only the case of fixed σ and ϑ.

Truncated stick-breaking processes (Ishwaran and James, 2001) are sometimes used to
approximate nonparametric models. In a very limited case—see Section 2.1—our results
show that on data from a one-component mixture, such a process truncated at two com-
ponents will be inconsistent for the number of components. It seems likely that this will
extend to truncations at any number of components.

1.2 Discussion / Related Work

We would like to emphasize that this inconsistency should not be viewed as a deficiency
of DPMs and PYMs, but is simply due to a misapplication of them. As flexible priors
on densities, DPMs are superb, and there are strong results showing that in many cases
the posterior on the density converges in L1 to the true density at the minimax-optimal
rate, up to logarithmic factors (Ghosal et al., 1999; Ghosal and Van der Vaart, 2001; Lijoi
et al., 2005; Tokdar, 2006; Ghosh and Ghosal, 2006; Tang and Ghosal, 2007; Ghosal and
Van der Vaart, 2007; Walker et al., 2007; James, 2008; Wu and Ghosal, 2010; Bhattacharya
and Dunson, 2010; Khazaei et al., 2012; Scricciolo, 2012; Pati et al., 2013); for a general
overview, see Ghosal (2010).

We would also like to stress that we do not intend to discourage the use of DPMs and
PYMs for clustering—provided that the model is indeed well-suited to the application. In
some situations, however, it may be that a finite mixture model with an unknown number
of components is more appropriate—in particular, for cluster sizes that are all the same
order of magnitude—and in such cases, one would expect to get better clustering results by
using a variable-dimension mixture model (see Section 1.2.1 below) rather than a DPM or
PYM.
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Existing work on posterior consistency of nonparametric mixtures has been primarily
focused on the density estimation problem (as mentioned above), although recently, Nguyen
(2013) has shown that the DPM posterior on the mixing distribution converges in the
Wasserstein metric to the true mixing distribution. These existing results do not necessarily
imply consistency for the number of components, since any mixture can be approximated
arbitrarily well in these metrics by another mixture with a larger number of components
(for instance, by making the weights of the extra components infinitesimally small). There
seems to be no prior work on consistency of DPMs or PYMs for the number of components
in a finite mixture (aside from Miller and Harrison, 2013, in which we discuss the very
special case of a DPM on data from a univariate Gaussian “mixture” with one component
of known variance).

In the context of “species sampling”, several authors have studied the Pitman–Yor
process posterior (Pitman, 1996; Hansen and Pitman, 2000; James, 2008; Jang et al., 2010;
Lijoi et al., 2007, 2008), and interestingly, James (2008) and Jang et al. (2010) have shown
that on data from a continuous distribution, the posterior of a Pitman–Yor process with
σ > 0 is inconsistent in the sense that it does not converge weakly to the true distribution.
(In contrast, the Dirichlet process is consistent in this sense.) However, this is very different
from our situation—in a species sampling model, the observed data is drawn directly from
a discrete measure with a Pitman–Yor process prior, while in a PYM model, the observed
data is drawn from a mixture with such a measure as the mixing distribution.

Rousseau and Mengersen (2011) proved an interesting result on “overfitted” mixtures, in
which data from a finite mixture is modeled by a finite mixture with too many components.
In cases where this approximates a DPM, their result implies that the posterior weight of
the extra components goes to zero. In a rough sense, this is complementary to our results,
which involve showing that there are always some nonempty (but perhaps small) extra
clusters.

Empirically, many investigators have noticed that the DPM posterior tends to overes-
timate the number of components (e.g., West et al., 1994; Ji et al., 2010; Argiento et al.,
2009; Lartillot and Philippe, 2004; Onogi et al., 2011, and others), and such observations are
consistent with our theoretical results. This overestimation seems to occur because there
are typically a few tiny “extra” clusters, and among researchers using DPMs for clustering,
this is an annoyance that is sometimes dealt with by pruning such clusters—that is, by
removing them before calculating statistics such as the number of clusters (e.g., West et al.,
1994; Fox et al., 2007). It may be possible to obtain consistent estimators in this way, but
this remains an open question; Rousseau and Mengersen’s (2011) results may be applicable
here. Other possibilities are using a maximum a posteriori (MAP) partition or posterior
“mean” partition (Dahl, 2006; Huelsenbeck and Andolfatto, 2007; Onogi et al., 2011) to
estimate the number of components; again, the consistency of such approaches remains an
open question to our knowledge.

1.2.1 Estimating the Number of Components

A variety of methods for estimating the number of components in a finite mixture have been
developed, and many of them come with guarantees of consistency (Henna, 1985; Keribin,
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(a) Posterior for impala data (b) Posterior for Gaussian mixture data

Figure 3: Estimated posterior distributions of the number of components for variable-dimension
mixture models applied to the same data sets as in Figure 1. The same priors on com-
ponent parameters (base measures) were used as in the DPM models.

2000; Nobile, 1994; Leroux, 1992; Ishwaran et al., 2001; James et al., 2001; Henna, 2005;
Woo and Sriram, 2006, 2007).

From the Bayesian perspective, perhaps the most natural approach is simply to take a
finite mixture model and put a prior on the number of components. For instance, draw the
number of components k from a prior which is positive on all positive integers (so there
is no a priori upper bound), draw mixture weights (π1, . . . , πk) from, say, a k-dimensional
Dirichlet distribution, draw component parameters θ1, . . . , θk, and draw the data X1, . . . , Xn

from the resulting mixture. (Interestingly, it turns out that putting a prior on N in a
PYM with σ < 0 and ϑ = N |σ| is a special case of this; see Gnedin and Pitman, 2006.)
Such variable-dimension mixture models have been widely used (Nobile, 1994; Phillips and
Smith, 1996; Richardson and Green, 1997; Stephens, 2000; Green and Richardson, 2001;
Nobile and Fearnside, 2007), and for density estimation, they have been shown to have
posterior rates of concentration similar to Dirichlet process mixtures (Kruijer, 2008; Kruijer
et al., 2010). Under the (strong) assumption that the family of component distributions is
correctly specified, it has been proven that such models exhibit posterior consistency for
the number of components (as well as for the mixing measure and the density) under very
general conditions (Nobile, 1994).

Figure 3 shows the posterior on the number of components k for variable-dimension
mixture models applied to the same impala data and Gaussian mixture data as in Figure 1.
In Figure 3(b), the posterior on k seems to be concentrating at the true number of compo-
nents (as expected, due to Nobile, 1994), while in Figure 1(b) the DPM posterior does not
appear to be concentrating (as expected, due to our results). There is enough information
in the data to make the posterior concentrate at the true value; the problem with the DPM
posterior is not that estimating the number of components is inherently difficult, but that
the DPM posterior is simply the wrong tool for this job.

However, it should be emphasized that this guarantee of posterior consistency for the
number of components is contingent upon correct specification of the family of component
distributions. In most applications, it seems unreasonable to expect that the data would
come from a mixture over a known parametric family, and unfortunately, the posterior on the
number of components can be highly sensitive to this type of misspecification—for instance,
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since any sufficiently regular density can be approximated arbitrarily well by a mixture of
Gaussians, if the data distribution is close to but not exactly a finite mixture of Gaussians,
a Gaussian mixture model will introduce more and more components as the amount of
data increases. It seems that in order to obtain reliable assessments of heterogeneity using
mixture models, one needs to carefully consider the effects of potential misspecification.
Steps toward addressing this robustness issue have been taken by Woo and Sriram (2006,
2007).

1.3 Idea of the Proof

Roughly speaking, the reason why the posterior on the number of clusters does not con-
centrate for PYMs with σ ∈ [0, 1) (the σ < 0 case is somewhat different) is that under the
prior, the partition distribution strongly prefers that some of the clusters be very small, and
the likelihood is not significantly decreased by splitting off such small clusters. Handling
the likelihood—in a general setting—is the challenging part of the proof.

The proof involves showing that p(Tn = t + 1 | X1:n) is at least the same order of
magnitude (asymptotically with respect to n) as p(Tn = t | X1:n). To get the basic idea of
why this occurs, write

p(Tn = t | X1:n) =
p(X1:n, Tn = t)

p(X1:n)
=

1

p(X1:n)

∑
A∈At(n)

p(X1:n|A)p(A), (1)

where the sum is over all partitions A of {1, . . . , n} into t parts.

Now, given some t-part partition A, suppose B is a (t+1)-part partition obtained from A
by splitting off a single element j to be in its own cluster. For Pitman–Yor processes, p(B) is
at least the same order of magnitude as p(A)/n. In Section 3, this property is encapsulated
in Condition 3, which is simple to check for any closed-form partition distribution.

Similarly, it turns out that typically, for a non-negligible fraction of the elements j, the
likelihood p(X1:n|B) is at least the same order of magnitude as p(X1:n|A); in Section 3, this
is made precise in Condition 4. This is trivial in discrete cases (see Section 4), and often is
easy to show in any particular continuous case, but establishing this condition in a general
setting requires some work, and it is this that occupies the bulk of the proof (Section 8 and
the appendices).

When both of these conditions are satisfied, we show that in the expression for p(Tn =
t | X1:n) in Equation 1, for each term p(X1:n|A)p(A) there are on the order of n terms
p(X1:n|B)p(B) in the corresponding expression for p(Tn = t+ 1 | X1:n) that collectively are
at least the same order of magnitude as p(X1:n|A)p(A).

1.4 Organization of the Paper

In Section 2, we define the family of partition-based mixture models under consideration,
which includes Pitman–Yor and Dirichlet process mixtures as special cases. In Section 3,
we state a general inconsistency theorem for partition-based mixtures satisfying certain
conditions. In Section 4, we apply the theorem to cases satisfying a certain boundedness
condition on the densities, including discrete families as a special case. In Section 5, we
introduce notation for exponential families and conjugate priors, and in Section 6, we apply
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the theorem to cases in which the mixture is over an exponential family satisfying some
regularity conditions. The rest of the paper contains proofs of the results described in the
previous sections: Section 7 contains the proof of the general theorem and its application
to discrete or bounded cases, Section 8 contains the proof of the application to exponential
families, and the appendices contain a number of supporting results for the exponential
family case.

2. Model Distribution

Our analysis involves two probability distributions: one which is defined by the model, and
another which gives rise to the data. In this section, we describe the model distribution.

Building upon the Dirichlet process (Ferguson, 1973; Blackwell and MacQueen, 1973;
Antoniak, 1974), Dirichlet process mixtures were first studied by Antoniak (1974), Berry and
Christensen (1979), Ferguson (1983), and Lo (1984), and were later made practical through
the efforts of a number of authors (Escobar, 1988; MacEachern, 1994; Escobar and West,
1995; West, 1992; West et al., 1994; Neal, 1992; Liu, 1994; Bush and MacEachern, 1996;
MacEachern and Müller, 1998; MacEachern, 1998; Escobar and West, 1998; MacEachern,
1999; Neal, 2000). Pitman–Yor process mixtures (Ishwaran and James, 2001, 2003) are a
generalization of DPMs based on the Pitman–Yor process (Perman et al., 1992; Pitman
and Yor, 1997), also known as the two-parameter Poisson–Dirichlet process. We consider a
general class of partition-based mixture models that includes DPMs and PYMs.

2.1 Partition Distribution

We will use p(·) to denote probabilities and probability densities under the model. Our
model specification begins with a distribution on partitions, or more precisely, on ordered
partitions. Given n ∈ {1, 2, . . . } and t ∈ {1, . . . , n}, let At(n) denote the set of all ordered
partitions A = (A1, . . . , At) of {1, . . . , n} into t nonempty sets (or “parts”). In other words,

At(n) =
{

(A1, . . . , At) : A1, . . . , At are disjoint,
t⋃
i=1

Ai = {1, . . . , n}, |Ai| ≥ 1 ∀i
}
.

For each n ∈ {1, 2, . . . }, consider a probability mass function (p.m.f.) p(A) on
⋃n
t=1At(n).

This induces a distribution on t in the natural way, via p(t | A) = I(A ∈ At(n)). (Through-
out, we use I to denote the indicator function: I(E) is 1 if E is true, and 0 otherwise.) It
follows that p(A) = p(A, t) when A ∈ At(n).

Although it is more common to use a distribution on unordered partitions {A1, . . . , At},
for our purposes it is more convenient to work with the corresponding distribution on ordered
partitions (A1, . . . , At) obtained by uniformly permuting the parts. This does not affect the
distribution of t. Thus, often, p(A) is invariant under permutations of the parts, but we
do not require this. (Also, we do not assume that, as n varies, the sequence of partition
distributions necessarily satisfies the marginalization property referred to as “consistency
in distribution”; Pitman, 2006.)
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For example, the partition distribution for the Dirichlet process is

p(A) =
ϑt

ϑn↑1 t!

t∏
i=1

(|Ai| − 1)! (2)

for A ∈ At(n), where ϑ > 0 and xn↑δ = x(x+ δ)(x+ 2δ) · · · (x+ (n− 1)δ), with x0↑δ = 1 by
convention. The t! in the denominator appears since we are working with ordered partitions.
More generally, the partition distribution for the Pitman–Yor process is

p(A) =
(ϑ+ σ)t−1↑σ

(ϑ+ 1)n−1↑1 t!

t∏
i=1

(1− σ)|Ai|−1↑1 (3)

for A ∈ At(n), where either σ ∈ [0, 1) and ϑ ∈ (−σ,∞), or σ ∈ (−∞, 0) and ϑ = N |σ| for
some N ∈ {1, 2, . . . }. When σ = 0, this reduces to the partition distribution of the Dirichlet
process. When σ < 0 and ϑ = N |σ|, it is the partition distribution obtained by drawing
q = (q1, . . . , qN ) from a symmetric N -dimensional Dirichlet with parameters |σ|, . . . , |σ|,
sampling assignments Z1, . . . , Zn i.i.d. from q, and removing any empty parts (Gnedin and
Pitman, 2006). Thus, in this latter case, t is always in {1, . . . , N}.

Stick-breaking processes truncated at N components are sometimes used to approximate
nonparametric models (Ishwaran and James, 2001). This approach gives rise to a partition
distribution as follows: let Vi ∼ Beta(ai, bi) independently for i = 1, . . . , N−1, and VN = 1,
set qi = Vi

∏
j<i(1− Vj) for i = 1, . . . , N , sample assignments Z1, . . . , Zn i.i.d. from q, and

remove any empty parts. In general, it seems that this partition distribution takes a slightly
complicated form, however, in the very special case when N = 2 and a1 = b1, it is simply
a Pitman–Yor process with σ = −a1 = −b1 and ϑ = 2|σ|.

2.2 Partition-based Mixture Model

Consider the hierarchical model

p(A, t) = p(A)

p(θ1:t | A, t) =
t∏
i=1

π(θi) (4)

p(x1:n | θ1:t, A, t) =

t∏
i=1

∏
j∈Ai

pθi(xj)

where π is a prior density on component parameters θ ∈ Θ ⊂ Rk for some k, and {pθ : θ ∈ Θ}
is a parameterized family of densities on x ∈ X ⊂ Rd for some d. Here, x1:n = (x1, . . . , xn)
with xi ∈ X , θ1:t = (θ1, . . . , θt) with θi ∈ Θ, and A ∈ At(n). Assume that π is a density
with respect to Lebesgue measure, and that {pθ : θ ∈ Θ} are densities with respect to
some sigma-finite Borel measure λ on X , such that (θ, x) 7→ pθ(x) is measurable. (The
distribution of x under pθ(x) may be discrete, continuous, or neither, depending on λ.)

For x1, . . . , xn ∈ X and J ⊂ {1, . . . , n}, define the single-cluster marginal,

m(xJ) =

∫
Θ

(∏
j∈J

pθ(xj)
)
π(θ) dθ, (5)
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where xJ = (xj : j ∈ J), and assume m(xJ) <∞. By convention, m(xJ) = 1 when J = ∅.
Note that m(xJ) is a density with respect to the product measure λ` on X `, where ` = |J |,
and that m(xJ) can (and often will) be positive outside the support of λ`.

Definition 2 We refer to such a hierarchical model as a partition-based mixture model.

In particular, it is a Dirichlet process mixture model when p(A) is as in Equation 2, or more
generally, a Pitman–Yor process mixture model when p(A) is as in Equation 3.

The prior on the number of clusters under such a model is p(Tn = t) =
∑

A∈At(n) p(A).
We use Tn, rather than T , to denote the random variable representing the number of clusters,
as a reminder that its distribution depends on n.

Since we are concerned with the posterior p(Tn = t | x1:n) on the number of clusters, we
will be especially interested in the marginal density of (x1:n, t), given by p(x1:n, Tn = t) =∑

A∈At(n) p(x1:n, A). Observe that

p(x1:n, A) = p(A)
t∏
i=1

∫ ( ∏
j∈Ai

pθi(xj)
)
π(θi) dθi = p(A)

t∏
i=1

m(xAi). (6)

For definiteness, we employ the usual version of the posterior of Tn,

p(Tn = t | x1:n) =
p(x1:n, Tn = t)

p(x1:n)
=

p(x1:n, Tn = t)∑∞
t′=1 p(x1:n, Tn = t′)

whenever the denominator is nonzero, and p(Tn = t | x1:n) = 0 otherwise (for notational
convenience).

3. General Theorem

The essential ingredients in the main theorem are Conditions 3 and 4 below. For A ∈ At(n),
define RA =

⋃
i:|Ai|≥2Ai, and for j ∈ RA, define B(A, j) to be the element B of At+1(n)

such that Bi = Ai r j for i = 1, . . . , t, and Bt+1 = {j} (that is, remove j from whatever
part it belongs to, and make {j} the (t + 1)th part). Let ZA = {B(A, j) : j ∈ RA}. For
n > t ≥ 1, define

cn(t) =
1

n
max

A∈At(n)
max
B∈ZA

p(A)

p(B)
, (7)

with the convention that 0/0 = 0 and y/0 =∞ for y > 0.

Condition 3 Assume lim supn→∞ cn(t) <∞, given some particular t ∈ {1, 2, . . . }.

For Pitman–Yor processes, Condition 3 holds for all relevant values of t; see Proposition 5
below. Now, given n ≥ t ≥ 1, x1, . . . , xn ∈ X , and c ∈ [0,∞), define

ϕt(x1:n, c) = min
A∈At(n)

1

n
|SA(x1:n, c)|

where SA(x1:n, c) is the set of indices j ∈ {1, . . . , n} such that the part A` containing j
satisfies m(xA`) ≤ cm(xA`rj)m(xj).
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Condition 4 Given a sequence of random variables X1, X2, . . . ∈ X , and t ∈ {1, 2, . . . },
assume

sup
c∈[0,∞)

lim inf
n→∞

ϕt(X1:n, c) > 0 with probability 1.

Note that Condition 3 involves only the partition distributions, while Condition 4 in-
volves only the data distribution and the single-cluster marginals.

Proposition 5 Consider a Pitman–Yor process. If σ ∈ [0, 1) and ϑ ∈ (−σ,∞) then Con-
dition 3 holds for any t ∈ {1, 2, . . . }. If σ ∈ (−∞, 0) and ϑ = N |σ|, then it holds for any
t ∈ {1, 2, . . . } except N .

Proof See Section 7.

Theorem 6 Let X1, X2, . . . ∈ X be a sequence of random variables (not necessarily i.i.d.).
Consider a partition-based mixture model. For any t ∈ {1, 2, . . . }, if Conditions 3 and 4
hold, then

lim sup
n→∞

p(Tn = t | X1:n) < 1 with probability 1.

If, further, the sequence X1, X2, . . . is i.i.d. from a mixture with t components, then with
probability 1, the posterior of Tn (under the model) is not consistent for t.

Proof See Section 7.

4. Application to Discrete or Bounded Cases

By Theorem 6, the following result implies inconsistency in a large class of PYM models,
including essentially all discrete cases (or more generally anything with at least one point
mass) and a number of continuous cases as well.

Theorem 7 Let X1, X2, . . . ∈ X be a sequence of random variables (not necessarily i.i.d.).
If there exists U ⊂ X such that

(1) lim inf
n→∞

1

n

n∑
j=1

I(Xj ∈ U) > 0 with probability 1, and

(2) sup
{pθ(x)

m(x)
: x ∈ U, θ ∈ Θ

}
<∞ (where 0/0 = 0, y/0 =∞ for y > 0),

then Condition 4 holds for all t ∈ {1, 2, . . . }.

Proof See Section 7.

The preceding theorem covers a fairly wide range of cases; here are some examples.
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(i) Finite sample space. Suppose X is a finite set, λ is counting measure, and m(x) > 0
for all x ∈ X . Then choosing U = X , Conditions 7(1) and 7(2) of Theorem 7 are
trivially satisfied, regardless of the distribution of X1, X2, . . . . (Note that when λ is
counting measure, pθ(x) and m(x) are p.m.f.s on X .) It is often easy to check that
m(x) > 0 by using the fact that this is true whenever {θ ∈ Θ : pθ(x) > 0} has
nonzero probability under π. This case covers, for instance, Multinomials (including
Binomials), and the population genetics model from Section 1.

We should mention a subtle point here: when X is finite, mixture identifiability
might only hold up to a certain maximum number of components (e.g., Teicher, 1963,
Proposition 4, showed this for Binomials), making consistency impossible in general—
however, consistency might still be possible within that identifiable range. Regardless,
our result shows that PYMs are not consistent anyway.

Now, suppose P is a probability measure on X , and X1, X2, . . .
iid∼ P . Let us abuse

notation and write P (x) = P ({x}) and λ(x) = λ({x}) for x ∈ X .

(ii) One or more point masses in common. If there exists x0 ∈ X such that P (x0) >
0, λ(x0) > 0, and m(x0) > 0, then it is easy to verify that Conditions 7(1) and 7(2)
are satisfied with U = {x0}. (Note that λ(x0) > 0 implies pθ(x0) ≤ 1/λ(x0) for any
θ ∈ Θ.)

(iii) Discrete families. Case (ii) essentially covers all discrete families—e.g., Poisson,
Geometric, Negative Binomial, or any power-series distribution (see Sapatinas, 1995,
for mixture identifiability of these)—provided that the data is i.i.d.. For, suppose X
is a countable set and λ is counting measure. By case (ii), the theorem applies if there
is any x0 ∈ X such that m(x0) > 0 and P (x0) > 0. If this is not so, the model is
extremely misspecified, since then the model distribution and the data distribution
are mutually singular.

(iv) Continuous densities bounded on some non-null compact set. Suppose there
exists c ∈ (0,∞) and U ⊂ X compact such that

(a) P (U) > 0,

(b) x 7→ pθ(x) is continuous on U for all θ ∈ Θ, and

(c) pθ(x) ∈ (0, c] for all x ∈ U , θ ∈ Θ.

Then Condition 7(1) is satisfied due to item (a), and Condition 7(2) follows easily
from (b) and (c) since m(x) is continuous (by the dominated convergence theorem)
and positive on the compact set U , so infx∈U m(x) > 0. This case covers, for example,
the following families (with any P ):

(a) Exponential(θ), X = (0,∞),

(b) Gamma(a, b), X = (0,∞), with variance a/b2 bounded away from zero,

(c) Normal(µ,Σ), X = Rd, (multivariate Gaussian) with det(Σ) bounded away from
zero, and
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(d) many location–scale families with scale bounded away from zero (for instance,
Laplace(µ, σ) or Cauchy(µ, σ), with σ ≥ ε > 0).

The examples listed in item (iv) are indicative of a deficiency in Theorem 7: Condi-
tion 7(2) is not satisfied in some important cases, such as multivariate Gaussians with
unrestricted covariance. Nonetheless, it turns out that Condition 4 still holds for many
exponential families; we turn to this next.

5. Exponential Families and Conjugate Priors

In this section, we state the usual definitions for exponential families and list the regularity
conditions to be assumed.

5.1 Exponential Families

Consider an exponential family of the following form. Fix a sigma-finite Borel measure λ
on X ⊂ Rd such that λ(X ) 6= 0, let s : X → Rk be Borel measurable, and for θ ∈ Θ ⊂ Rk,
define a density pθ with respect to λ by setting

pθ(x) = exp(θTs(x)− κ(θ))

where

κ(θ) = log

∫
X

exp(θTs(x)) dλ(x).

Let Pθ be the probability measure on X corresponding to pθ, that is, Pθ(E) =
∫
E pθ(x) dλ(x)

for E ⊂ X measurable. Any exponential family on Rd can be written in the form above by
reparameterizing if necessary, and choosing λ appropriately. We will assume the following
(very mild) regularity conditions.

Condition 8 Assume the family {Pθ : θ ∈ Θ} is:

(1) full, that is, Θ = {θ ∈ Rk : κ(θ) <∞},

(2) nonempty, that is, Θ 6= ∅,

(3) regular, that is, Θ is an open subset of Rk, and

(4) identifiable, that is, if θ 6= θ′ then Pθ 6= Pθ′.

Most commonly-used exponential families satisfy Condition 8, including multivariate
Gaussian, Exponential, Gamma, Poisson, Geometric, and others. (A notable exception is
the Inverse Gaussian, for which Θ is not open.) Let M denote the moment space, that is,

M = {Eθs(X) : θ ∈ Θ}

where Eθ denotes expectation under Pθ. Finiteness of these expectations is guaranteed,
thus M⊂ Rk; see Appendix A for this and other well-known properties that we will use.
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5.2 Conjugate Priors

Given an exponential family {Pθ} as above, let

Ξ =
{

(ξ, ν) : ξ ∈ Rk, ν > 0 s.t. ξ/ν ∈M
}
,

and consider the family {πξ,ν : (ξ, ν) ∈ Ξ} where

πξ,ν(θ) = exp
(
ξTθ − νκ(θ)− ψ(ξ, ν)

)
I(θ ∈ Θ)

is a density with respect to Lebesgue measure on Rk. Here,

ψ(ξ, ν) = log

∫
Θ

exp
(
ξTθ − νκ(θ)

)
dθ.

In Appendix A, we note a few basic properties of this family—in particular, it is a conjugate
prior for {Pθ}.

Definition 9 We will say that an exponential family with conjugate prior is well-behaved
if it takes the form above, satisfies Condition 8, and has (ξ, ν) ∈ Ξ.

6. Application to Exponential Families

In this section, we apply Theorem 6 to prove that in many cases, a PYM model using
a well-behaved exponential family with conjugate prior will exhibit inconsistency for the
number of components.

Condition 10 Consider an exponential family with sufficient statistics function s : X →
Rk and moment space M. Given a probability measure P on X , let X ∼ P and assume:

(1) E|s(X)| <∞,

(2) P(s(X) ∈M) = 1, and

(3) P(s(X) ∈ L) = 0 for any hyperplane L that does not intersect M.

Throughout, we use | · | to denote the Euclidean norm. Here, a hyperplane refers to a set
L = {x ∈ Rk : xTy = b} for some y ∈ Rk r {0}, b ∈ R. In Theorem 11 below, it is assumed
that the data comes from a distribution P satisfying Condition 10. In Proposition 12, we
give some simple conditions under which, if P is a finite mixture from the exponential family
under consideration, then Condition 10 holds.

Theorem 11 Consider a well-behaved exponential family with conjugate prior (as in Def-
inition 9), along with the resulting collection of single-cluster marginals m(·). Let P be a
probability measure on X satisfying Condition 10 (for the s and M from the exponential

family under consideration), and let X1, X2, . . .
iid∼ P . Then Condition 4 holds for any

t ∈ {1, 2, . . . }.
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Proof See Section 7.

This theorem implies inconsistency in several important cases. In particular, it can be
verified that each of the following is well-behaved (when put in canonical form and given
the conjugate prior in Section 5.2) and, using Proposition 12 below, that if P is a finite
mixture from the same family then P satisfies Condition 10:

(a) Normal(µ,Σ) (multivariate Gaussian),

(b) Exponential(θ),

(c) Gamma(a, b),

(d) Log-Normal(µ, σ2), and

(e) Weibull(a, b) with fixed shape a > 0.

Combined with the cases covered by Theorem 7, these results are fairly comprehensive.

Proposition 12 Consider an exponential family {Pθ : θ ∈ Θ} satisfying Condition 8. If
X ∼ P =

∑t
i=1 πiPθ(i) for some θ(1), . . . , θ(t) ∈ Θ and some π1, . . . , πt ≥ 0 such that∑t

i=1 πi = 1, then

(1) E|s(X)| <∞, and

(2) P(s(X) ∈M) = 1.

If, further, the underlying measure λ is absolutely continuous with respect to Lebesgue mea-
sure on X , X ⊂ Rd is open and connected, and the sufficient statistics function s : X → Rk
is real analytic (that is, each coordinate function s1, . . . , sk is real analytic), then

(3) P(s(X) ∈ L) = 0 for any hyperplane L ⊂ Rk.

Proof See Appendix A.

Sometimes, Condition 10(3) will be satisfied even when Proposition 12 is not applica-
ble. In any particular case, it may be a simple matter to check this condition by using
the characterization of M as the interior of the closed convex hull of support(λs−1) (see
Proposition 19(8) in the Appendix).

7. Proof of the General Theorem

The remainder of the paper consists of proofs of the results described in the preceding
sections. In this section, we prove Theorem 6, as well as Proposition 5 and the application
to discrete or bounded cases in Theorem 7; these proofs do not depend on anything in
Section 8 or the appendices.

Proof of Proposition 5 There are two cases: (I) σ ∈ [0, 1) and ϑ > −σ, or (II) σ < 0
and ϑ = N |σ|. In either case, we have 1 − σ > 0 and ϑ + 1 > 0; further, ϑ + tσ > 0 for
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(case I) t ∈ {1, 2, . . . }, (case II) t ∈ {1, . . . , N − 1}. Let (case I) t ∈ {1, 2, . . . }, (case II)
t ∈ {1, . . . , N − 1}. Let n > t, A ∈ At(n), and B ∈ ZA, and suppose B = B(A, j), j ∈ A`.
Note that |A`| ≥ 2.

By the preceding observations, all the factors in the expressions for p(A) and p(B)
(Equation 3) are strictly positive, hence

1

n

p(A)

p(B)
=

1

n

t+ 1

ϑ+ tσ
(1− σ + |A`| − 2) ≤ t+ 1

ϑ+ tσ

1− σ + n− 2

n
,

which is bounded above for n ∈ {1, 2, . . . }. If t > N in case II, then p(A)/p(B) = 0/0 = 0
by convention. (If t = N in case II, then p(A)/p(B) = ∞.) Therefore, lim supn cn(t) < ∞
in either case, for any t ∈ {1, 2, . . . } except t = N in case II.

Proof of Theorem 6 The central part of the argument is Lemma 13 below, from which
the result follows easily. Let t ∈ {1, 2, . . . }, and assume Conditions 3 and 4 hold. Let
x1, x2, . . . ∈ X , and suppose supc∈[0,∞) lim infn ϕt(x1:n, c) > 0 (which occurs with probability
1). We show that this implies lim supn p(Tn = t | x1:n) < 1, proving the theorem.

Let α ∈ (0,∞) such that lim supn cn(t) < α. Choose c ∈ [0,∞) and ε ∈ (0, 1) such
that lim infn ϕt(x1:n, c) > ε. Choose N > 2t/ε large enough that for any n > N we have
cn(t) < α and ϕt(x1:n, c) > ε. Then by Lemma 13, for any n > N ,

p(Tn = t | x1:n) ≤ Ct(x1:n, c)

1 + Ct(x1:n, c)
≤ 2tcα/ε

1 + 2tcα/ε
,

since ϕt(x1:n, c) − t/n > ε − ε/2 = ε/2 (and y 7→ y/(1 + y) is monotone increas-
ing on [0,∞)). Since this upper bound does not depend on n (and is less than 1),
lim supn p(Tn = t | x1:n) < 1.

Lemma 13 Consider a partition-based mixture model. Let n > t ≥ 1, x1, . . . , xn ∈ X , and
c ∈ [0,∞). If cn(t) <∞ and ϕt(x1:n, c) > t/n, then

p(Tn = t | x1:n) ≤ Ct(x1:n, c)

1 + Ct(x1:n, c)
,

where Ct(x1:n, c) = t c cn(t)/(ϕt(x1:n, c)− t/n).

Proof To simplify notation, let us denote ϕ = ϕt(x1:n, c), C = Ct(x1:n, c), and SA =
SA(x1:n, c). Recall the definitions of RA and B(A, j) from the beginning of Section 3. For
A ∈ At(n), note that

|RA ∩ SA| ≥ |SA| − t ≥ nϕ− t > 0. (8)

Further, for any j ∈ RA ∩ SA, we have p(A) ≤ n cn(t) p(B(A, j)) (by the definition of cn(t),
in Equation 7), and m(xA`) ≤ cm(xA`rj)m(xj) where A` is the part containing j (by the
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definition of SA = SA(x1:n, c), in Section 3). Thus, for any A ∈ At(n), j ∈ RA ∩ SA, we
have (by Equation 6)

p(x1:n, A) = p(A)
t∏
i=1

m(xAi)

≤ n cn(t) p(B(A, j)) c

t+1∏
i=1

m(xBi(A,j)) = c n cn(t) p(x1:n, B(A, j)),

and hence, combining this with Equation 8,

p(x1:n, A) ≤ c n cn(t)

|RA ∩ SA|
∑

j∈RA∩SA

p(x1:n, B(A, j))

≤ c cn(t)

ϕ− t/n
∑

B∈At+1(n)

p(x1:n, B) I(B ∈ YA), (9)

where YA =
{
B(A, j) : j ∈ RA ∩ SA

}
. For any B ∈ At+1(n),

#
{
A ∈ At(n) : B ∈ YA

}
≤ t, (10)

since there are only t parts that Bt+1 could have come from. Therefore,

p(x1:n, Tn = t) =
∑

A∈At(n)

p(x1:n, A)

(a)

≤ c cn(t)

ϕ− t/n
∑

A∈At(n)

∑
B∈At+1(n)

p(x1:n, B) I(B ∈ YA)

=
c cn(t)

ϕ− t/n
∑

B∈At+1(n)

p(x1:n, B) #
{
A ∈ At(n) : B ∈ YA

}
(b)

≤ t c cn(t)

ϕ− t/n
∑

B∈At+1(n)

p(x1:n, B)

= C p(x1:n, Tn = t+ 1),

where (a) is by Equation 9, and (b) is by Equation 10.
If p(Tn = t | x1:n) = 0, then trivially p(Tn = t | x1:n) ≤ C/(C + 1). On the other hand,

if p(Tn = t | x1:n) > 0, then p(x1:n, Tn = t) > 0, and therefore

p(Tn = t | x1:n) =
p(x1:n, Tn = t)∑∞
t′=1 p(x1:n, Tn = t′)

≤ p(x1:n, Tn = t)

p(x1:n, Tn = t) + p(x1:n, Tn = t+ 1)
≤ C

C + 1
.
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Proof of Theorem 7 Suppose U ⊂ X satisfies (1) and (2), and let t ∈ {1, 2, . . . }. Define

c = sup
{pθ(x)
m(x) : x ∈ U, θ ∈ Θ

}
. Let n > t and x1, . . . , xn ∈ X . Now, for any x ∈ U and

θ ∈ Θ, we have pθ(x) ≤ cm(x). Hence, for any J ⊂ {1, . . . , n}, if j ∈ J and xj ∈ U then

m(xJ) =

∫
Θ
pθ(xj)

[ ∏
i∈Jrj

pθ(xi)
]
π(θ) dθ ≤ cm(xj)m(xJrj). (11)

Thus, letting R(x1:n) =
{
j ∈ {1, . . . , n} : xj ∈ U

}
, we have R(x1:n) ⊂ SA(x1:n, c) for any

A ∈ At(n), and hence, ϕt(x1:n, c) ≥ 1
n |R(x1:n)|.

Therefore, by (1), with probability 1,

lim inf
n→∞

ϕt(X1:n, c) ≥ lim inf
n→∞

1

n
|R(X1:n)| > 0.

8. Proof of the Application to Exponential Families

In this section, we prove Theorem 11. First, we need a few supporting results. Given
y1, . . . , yn ∈ R` (for some ` > 0), β ∈ (0, 1], and U ⊂ R`, define

Iβ(y1:n, U) =
∏

A⊂{1,...,n}:
|A|≥βn

I
( 1

|A|
∑
j∈A

yj ∈ U
)
, (12)

where as usual, I(E) is 1 if E is true, and 0 otherwise.

Lemma 14 (Capture lemma) Let V ⊂ Rk be open and convex. Let Q be a probability
measure on Rk such that:

(1) E|Y | <∞ when Y ∼ Q,

(2) Q(V ) = 1, and

(3) Q(L) = 0 for any hyperplane L that does not intersect V .

If Y1, Y2, . . .
iid∼ Q, then for any β ∈ (0, 1] there exists U ⊂ V compact such that

Iβ(Y1:n, U)
a.s.−−→ 1 as n→∞.

Proof The proof is rather long, but not terribly difficult. See Appendix D.

Proposition 15 Let Z1, Z2, . . . ∈ Rk be i.i.d.. If β ∈ (0, 1] and U ⊂ Rk such that P(Zj 6∈
U) < β/2, then Iβ(Y1:n, [

1
2 , 1])

a.s.−−→ 1 as n→∞, where Yj = I(Zj ∈ U).
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Proof By the law of large numbers, 1
n

∑n
j=1 I(Zj 6∈ U)

a.s.−−→ P(Zj 6∈ U) < β/2. Hence, with

probability 1, for all n sufficiently large, 1
n

∑n
j=1 I(Zj 6∈ U) ≤ β/2 holds. When it holds, we

have that for any A ⊂ {1, . . . , n} such that |A| ≥ βn,

1

|A|
∑
j∈A

I(Zj ∈ U) = 1− 1

|A|
∑
j∈A

I(Zj 6∈ U) ≥ 1− 1

βn

n∑
j=1

I(Zj 6∈ U) ≥ 1/2,

i.e., when it holds, we have Iβ(Y1:n, [
1
2 , 1]) = 1. Hence, Iβ(Y1:n, [

1
2 , 1])

a.s.−−→ 1.

Given a well-behaved exponential family with conjugate prior, define

µxA =
ξ +

∑
j∈A s(xj)

ν + |A|
(13)

(cf. Equation 14), where xA = (xj : j ∈ A), xj ∈ X . In particular, µx = (ξ + s(x))/(ν + 1)
for x ∈ X .

Proposition 16 Consider a well-behaved exponential family with conjugate prior. Let P be

a probability measure on X such that P(s(X) ∈M) = 1 when X ∼ P . Let X1, X2, . . .
iid∼ P .

Then for any β ∈ (0, 1] there exists U ⊂ M compact such that Iβ(Y1:n, [
1
2 , 1])

a.s.−−→ 1 as
n→∞, where Yj = I(µXj ∈ U).

Proof Since M is open and convex, then for any y ∈M, z ∈ M, and ρ ∈ (0, 1), we have
ρy + (1 − ρ)z ∈ M (by e.g., Rockafellar, 1970, 6.1). Taking z = ξ/ν and ρ = 1/(ν + 1),
this implies that the set U0 = {(ξ + y)/(ν + 1) : y ∈M} is contained in M. Note that U0

is closed and P(µX ∈ U0) = P(s(X) ∈M) = 1. Let β ∈ (0, 1], and choose r ∈ (0,∞) such
that P(|µX | > r) < β/2. Letting U = {y ∈ U0 : |y| ≤ r}, we have that U ⊂ M, and U
is compact. Further, P(µX 6∈ U) < β/2, so by applying Proposition 15 with Zj = µXj , we

have Iβ(Y1:n, [
1
2 , 1])

a.s.−−→ 1.

Proposition 17 (Splitting inequality) Consider a well-behaved exponential family with
conjugate prior. For any U ⊂ M compact there exists C ∈ (0,∞) such that we have the
following:

For any n ∈ {1, 2, . . . }, if A ⊂ {1, . . . , n} and B = {1, . . . , n} r A are nonempty, and
x1, . . . , xn ∈ X satisfy 1

|A|
∑

j∈A s(xj) ∈ U and µxB ∈ U , then

m(x1:n)

m(xA)m(xB)
≤ C

( ab

ν + n

)k/2
where a = ν + |A| and b = ν + |B|. (Recall that k is the dimension of s : X → Rk.)

Proof See Appendix B.

3352



Inconsistency for the Number of Components

Lemma 18 Consider a well-behaved exponential family with conjugate prior, and the re-
sulting collection of single-cluster marginals m(·). Let P be a probability measure on X
satisfying Condition 10 (for the s and M from the exponential family under consideration),

and let X1, X2, . . .
iid∼ P . Then for any β ∈ (0, 1] there exists c ∈ (0,∞) such that with proba-

bility 1, for all n sufficiently large, the following event holds: for every subset J ⊂ {1, . . . , n}
such that |J | ≥ βn, there exists K ⊂ J such that |K| ≥ 1

2 |J | and for any j ∈ K,

m(XJ) ≤ cm(XJrj)m(Xj).

Proof Let β ∈ (0, 1]. Since M is open and convex, and Condition 10 holds by as-
sumption, then by Lemma 14 (with V = M) there exists U1 ⊂ M compact such that
Iβ/2(s(X1:n), U1)

a.s.−−→ 1 as n→∞, where s(X1:n) = (s(X1), . . . , s(Xn)). By Proposition 16

above, there exists U2 ⊂ M compact such that Iβ(Y1:n, [
1
2 , 1])

a.s.−−→ 1 as n → ∞, where
Yj = I(µXj ∈ U2). Hence,

Iβ/2(s(X1:n), U1) Iβ(Y1:n, [
1
2 , 1])

a.s.−−−→
n→∞

1.

Choose C ∈ (0,∞) according to Proposition 17 applied to U := U1 ∪U2. We will prove the
result with c = (ν + 1)k/2C. (Recall that k is the dimension of s : X → Rk.)

Let n large enough that βn ≥ 2, and suppose that Iβ/2(s(X1:n), U1) = 1 and

Iβ(Y1:n, [
1
2 , 1]) = 1. Let J ⊂ {1, . . . , n} such that |J | ≥ βn. Then for any j ∈ J ,

1

|J r j|
∑
i∈Jrj

s(Xi) ∈ U1 ⊂ U

since Iβ/2(s(X1:n), U1) = 1 and |J r j| ≥ |J |/2 ≥ (β/2)n. Hence, for any j ∈ K, where
K = {j ∈ J : µXj ∈ U}, we have

m(XJ)

m(XJrj)m(Xj)
≤ C

((ν + |J | − 1)(ν + 1)

ν + |J |

)k/2
≤ C (ν + 1)k/2 = c

by our choice of C above, and

|K|
|J |
≥ 1

|J |
∑
j∈J

I(µXj ∈ U2) =
1

|J |
∑
j∈J

Yj ≥ 1/2

since Iβ(Y1:n, [
1
2 , 1]) = 1 and |J | ≥ βn.

Proof of Theorem 11 Let t ∈ {1, 2, . . . } and choose c according to Lemma 18 with
β = 1/t. We will show that for any n > t, if the event of Lemma 18 holds, then ϕt(X1:n, c) ≥
1/(2t). Since with probability 1, this event holds for all n sufficiently large, it will follow
that with probability 1, lim infn ϕt(X1:n, c) ≥ 1/(2t) > 0.

So, let n > t and x1, . . . , xn ∈ X , and assume the event of Lemma 18 holds. Let A ∈
At(n). There is at least one part A` such that |A`| ≥ n/t = βn. Then, by assumption there
exists KA ⊂ A` such that |KA| ≥ 1

2 |A`| and for any j ∈ KA, m(xA`) ≤ cm(xA`rj)m(xj).
Thus, KA ⊂ SA(x1:n, c), hence |SA(x1:n, c)| ≥ |KA| ≥ 1

2 |A`| ≥ n/(2t). Since A ∈ At(n) was
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arbitrary, ϕt(x1:n, c) ≥ 1/(2t).
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Appendix A. Exponential Family Properties

We note some well-known properties of exponential families satisfying Condition 8. For
a general reference on this material, see Hoffmann-Jørgensen (1994). Let Sλ(s) =
support(λs−1), that is,

Sλ(s) =
{
z ∈ Rk : λ(s−1(U)) 6= 0 for every neighborhood U of z

}
.

Let Cλ(s) be the closed convex hull of Sλ(s) (that is, the intersection of all closed convex
sets containing it). Given U ⊂ Rk, let U◦ denote its interior. Given a (sufficiently smooth)
function f : Rk → R, we use f ′ to denote its gradient, that is, f ′(x)i = ∂f

∂xi
(x), and f ′′(x)

to denote its Hessian matrix, that is, f ′′(x)ij = ∂2f
∂xi∂xj

(x).

Proposition 19 If Condition 8 is satisfied, then:

(1) κ is C∞ smooth and strictly convex on Θ,

(2) κ′(θ) = Es(X) and κ′′(θ) = Cov s(X) when θ ∈ Θ and X ∼ Pθ,

(3) κ′′(θ) is symmetric positive definite for all θ ∈ Θ,

(4) κ′ : Θ→M is a C∞ smooth bijection,

(5) κ′−1 :M→ Θ is C∞ smooth,

(6) Θ is open and convex,

(7) M is open and convex,

(8) M = Cλ(s)◦ andM = Cλ(s), and

(9) κ′−1(µ) = argmaxθ∈Θ(θTµ−κ(θ)) for all µ ∈M. The maximizing θ ∈ Θ always exists
and is unique.
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Proof These properties are all well-known. Let us abbreviate Hoffmann-Jørgensen (1994)
as HJ. For (1), see HJ 8.36(1) and HJ 12.7.5. For (6),(2),(3), and (4), see HJ 8.36, 8.36.2-3,
12.7(2), and 12.7.11, respectively. Item (5) and openness in (7) follow, using the inverse
function theorem (Knapp, 2005, 3.21). Item (8) and convexity in (7) follow, using HJ
8.36.15 and Rockafellar (1970) 6.2-3. Item (9) follows from HJ 8.36.15 and item (4).

Given an exponential family with conjugate prior as in Section 5.2, the joint density of
x1, . . . , xn ∈ X and θ ∈ Rk is

pθ(x1) · · · pθ(xn)πξ,ν(θ) (14)

= exp
(

(ν + n)
(
θTµx1:n − κ(θ)

))
exp(−ψ(ξ, ν)) I(θ ∈ Θ)

where µx1:n = (ξ +
∑n

j=1 s(xj))/(ν + n). The marginal density, defined as in Equation 5, is

m(x1:n) = exp
(
ψ
(
ξ +

∑
s(xj), ν + n

)
− ψ(ξ, ν)

)
(15)

when this quantity is well-defined.

Proposition 20 If Condition 8 is satisfied, then:

(1) ψ(ξ, ν) is finite and C∞ smooth on Ξ,

(2) if s(x1), . . . , s(xn) ∈ Sλ(s) and (ξ, ν) ∈ Ξ, then (ξ +
∑
s(xj), ν + n) ∈ Ξ,

(3) {πξ,ν : (ξ, ν) ∈ Ξ} is a conjugate family for {pθ : θ ∈ Θ}, and

(4) if s : X → Rk is continuous, (ξ, ν) ∈ Ξ, and λ(U) 6= 0 for any nonempty U ⊂ X that
is open in X , then m(x1:n) <∞ for any x1, . . . , xn ∈ X .

Proof (1) For finiteness, see Diaconis and Ylvisaker (1979), Theorem 1. Smoothness holds
for the same reason that κ is smooth; see Hoffmann-Jørgensen (1994, 8.36(1)). (Note that
Ξ is open in Rk+1, since M is open in Rk.)

(2) Since Cλ(s) is convex, 1
n

∑
s(xj) ∈ Cλ(s). Since Cλ(s) = M and M is open and

convex by 19(7) and (8), then (ξ+
∑
s(xj))/(ν+n) ∈M, as a (strict) convex combination

of 1
n

∑
s(xj) ∈M and ξ/ν ∈M (Rockafellar, 1970, 6.1).

(3) Let (ξ, ν) ∈ Ξ, θ ∈ Θ. If X1, . . . , Xn
iid∼ Pθ then s(X1), . . . , s(Xn) ∈ Sλ(s) almost

surely, and thus (ξ +
∑
s(Xj), ν + n) ∈ Ξ (a.s.) by (2). By Equations 14 and 15, the

posterior is πξ+
∑
s(Xj), ν+n.

(4) The assumptions imply {s(x) : x ∈ X} ⊂ Sλ(s), and therefore, for any x1, . . . , xn ∈
X , we have (ξ +

∑
s(xj), ν + n) ∈ Ξ by (2). Thus, by (1) and Equation 15, m(x1:n) <∞.

It is worth mentioning that while Ξ ⊂
{

(ξ, ν) ∈ Rk+1 : ψ(ξ, ν) <∞
}

, it may be a strict
subset—often, Ξ is not quite the full set of parameters on which πξ,ν can be defined.
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Proof of Proposition 12 (1) For any θ ∈ Θ and any j ∈ {1, . . . , k},∫
X
sj(x)2pθ(x) dλ(x) = exp(−κ(θ))

∂2

∂θ2
j

∫
X

exp(θTs(x)) dλ(x) <∞

(Hoffmann-Jørgensen, 1994, 8.36.1). Since P has density f =
∑
πipθ(i) with respect to λ,

then

Esj(X)2 =

∫
X
sj(x)2f(x) dλ(x) =

t∑
i=1

πi

∫
X
sj(x)2pθ(i)(x) dλ(x) <∞,

and hence
(E|s(X)|)2 ≤ E|s(X)|2 = Es1(X)2 + · · ·+ Esk(X)2 <∞.

(2) Note that SP (s) ⊂ Sλ(s) (in fact, they are equal since Pθ and λ are mutually
absolutely continuous for any θ ∈ Θ), and therefore

SP (s) ⊂ Sλ(s) ⊂ Cλ(s) =M

by Proposition 19(8). Hence,

P(s(X) ∈M) ≥ P(s(X) ∈ SP (s)) = Ps−1(support(Ps−1)) = 1.

(3) Suppose λ is absolutely continuous with respect to Lebesgue measure, X is open
and connected, and s is real analytic. Let L ⊂ Rk be a hyperplane, and write L = {z ∈
Rk : zTy = b} where y ∈ Rk r {0}, b ∈ R. Define g : X → R by g(x) = s(x)Ty − b. Then g
is real analytic on X , since a finite sum of real analytic functions is real analytic. Since X
is connected, it follows that either g is identically zero, or the set V = {x ∈ X : g(x) = 0}
has Lebesgue measure zero (Krantz, 1992). Now, g cannot be identically zero, since for any
θ ∈ Θ, letting Z ∼ Pθ, we have

0 < yTκ′′(θ)y = yT(Cov s(Z))y = Var(yTs(Z)) = Var g(Z)

by Proposition 19(2) and (3). Consequently, V must have Lebesgue measure zero. Hence,
P (V ) = 0, since P is absolutely continuous with respect to λ, and thus, with respect to
Lebesgue measure. Therefore,

P(s(X) ∈ L) = P(g(X) = 0) = P (V ) = 0.

Appendix B. Marginal Inequalities

In this section, we prove Proposition 17, which was used in the key lemma for the exponential
family case (Lemma 18).

Consider a well-behaved exponential family with conjugate prior (as in Definition 9).
The proof uses some simple bounds on the Laplace approximation (see Appendix C) to
obtain inequalities involving the marginal density m(x1:n) (cf. Equations 5 and 15) of
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x1:n = (x1, . . . , xn), where xj ∈ X . Of course, it is commonplace to apply the Laplace
approximation to m(X1:n) when X1, . . . , Xn are i.i.d. random variables and n is sufficiently
large. In contrast, our application of it is considerably more subtle. For our purposes, it is
necessary to show that for every n, even without assuming i.i.d. data, the approximation is
good enough as long as the sufficient statistics are not too extreme.

We make extensive use of the exponential family properties in Appendix A, often without
mention. We use f ′ to denote the gradient and f ′′ to denote the Hessian of a (sufficiently
smooth) function f : Rk → R. For µ ∈M, define

fµ(θ) = θTµ− κ(θ),

L(µ) = sup
θ∈Θ

(
θTµ− κ(θ)

)
,

θµ = argmax
θ∈Θ

(
θTµ− κ(θ)

)
,

and note that θµ = κ′−1(µ) (Proposition 19). L is known as the Legendre transform of
κ. Note that L(µ) = fµ(θµ), and L is C∞ smooth on M (since L(µ) = θTµµ − κ(θµ),
θµ = κ′−1(µ), and both κ and κ′−1 are C∞ smooth). As in Equation 13, define

µx1:n =
ξ +

∑n
j=1 s(xj)

ν + n
(16)

and given x1:n such that µx1:n ∈M, define

m̃(x1:n) = (ν + n)−k/2 exp
(
(ν + n)L(µx1:n)

)
,

where k is the dimension of the sufficient statistics function s : X → Rk. Proposition 21
below provides uniform bounds on m(x1:n)/m̃(x1:n). Here, m̃(x1:n) is only intended to
approximate m(x1:n) up to a multiplicative constant—a better approximation could always
be obtained via the usual asymptotic form of the Laplace approximation.

Proposition 21 Consider a well-behaved exponential family with conjugate prior. For any
U ⊂ M compact, there exist C1, C2 ∈ (0,∞) such that for any n ∈ {1, 2, . . . } and any
x1, . . . , xn ∈ X satisfying µx1:n ∈ U , we have

C1 ≤
m(x1:n)

m̃(x1:n)
≤ C2.

Proof Assume U 6= ∅, since otherwise the result is trivial. Let

V = κ′−1(U) = {θµ : µ ∈ U}.

It is straightforward to show that there exists ε ∈ (0, 1) such that Vε ⊂ Θ where

Vε = {θ ∈ Rk : d(θ, V ) ≤ ε}.

(Here, d(θ, V ) = infθ′∈V |θ − θ′|.) Note that Vε is compact, since κ′−1 is continuous. Given
a symmetric matrix A, define λ∗(A) and λ∗(A) to be the minimal and maximal eigenvalues,
respectively, and recall that λ∗, λ

∗ are continuous functions of the entries of A. Letting

α = min
θ∈Vε

λ∗(κ
′′(θ)) and β = max

θ∈Vε
λ∗(κ′′(θ)),
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we have 0 < α ≤ β < ∞ since Vε is compact and λ∗(κ
′′(·)), λ∗(κ′′(·)) are continuous and

positive on Θ. Letting

γ = sup
µ∈U

e−fµ(θµ)

∫
Θ

exp(fµ(θ))dθ = sup
µ∈U

e−L(µ)eψ(µ,1)

we have 0 < γ < ∞ since U is compact, and both L (as noted above) and ψ(µ, 1) (by
Proposition 20) are continuous on M. Define

h(µ, θ) = fµ(θµ)− fµ(θ) = L(µ)− θTµ+ κ(θ)

for µ ∈ M, θ ∈ Θ. For any µ ∈ M, we have that h(µ, θ) > 0 whenever θ ∈ Θ r {θµ}, and
that h(µ, θ) is strictly convex in θ. Letting Bε(θµ) = {θ ∈ Rk : |θ− θµ| ≤ ε}, it follows that

δ := inf
µ∈U

inf
θ∈ΘrBε(θµ)

h(µ, θ) = inf
µ∈U

inf
u∈Rk:|u|=1

h(µ, θµ + εu)

is positive, as the minimum of a positive continuous function on a compact set.
Now, applying the Laplace approximation bounds in Corollary 24 with α, β, γ, δ, ε as

just defined, we obtain c1, c2 ∈ (0,∞) such that for any µ ∈ U we have (taking E = Θ,
f = −fµ, x0 = θµ, A = αIk×k, B = βIk×k)

c1 ≤
∫

Θ exp(tfµ(θ))dθ

t−k/2 exp(tfµ(θµ))
≤ c2

for any t ≥ 1. We prove the result with Ci = ci e
−ψ(ξ,ν) for i = 1, 2.

Let n ∈ {1, 2, . . . } and x1, . . . , xn ∈ X such that µx1:n ∈ U . Choose t = ν + n. By
integrating Equation 14, we have

m(x1:n) = e−ψ(ξ,ν)

∫
Θ

exp
(
tfµx1:n (θ)

)
dθ,

and meanwhile,
m̃(x1:n) = t−k/2 exp

(
tfµx1:n (θµx1:n )

)
.

Thus, combining the preceding three displayed equations,

0 < C1 = c1e
−ψ(ξ,ν) ≤ m(x1:n)

m̃(x1:n)
≤ c2e

−ψ(ξ,ν) = C2 <∞.

Proof of Proposition 17 Let U ′ be the convex hull of U ∪ {ξ/ν}. Then U ′ is compact
(as the convex hull of a compact set in Rk) and U ′ ⊂M (since U ∪ {ξ/ν} ⊂ M and M is
convex). We show that the result holds with C = C2 exp(C0)/C2

1 , where C1, C2 ∈ (0,∞)
are obtained by applying Proposition 21 to U ′, and

C0 = ν sup
y∈U ′
|(ξ/ν − y)TL′(y)|+ ν sup

y∈U ′
|L(y)| <∞. (17)

3358



Inconsistency for the Number of Components

Since L is convex (being a Legendre transform) and smooth, then for any y, z ∈M we
have

inf
ρ∈(0,1)

1

ρ

(
L(y + ρ(z − y))− L(y)

)
= (z − y)TL′(y)

(by e.g., Rockafellar, 1970, 23.1) and therefore for any ρ ∈ (0, 1),

L(y) ≤ L((1− ρ)y + ρz)− ρ(z − y)TL′(y). (18)

Choosing y = µx1:n , z = ξ/ν, and ρ = ν/(n+ 2ν), we have

(1− ρ)y + ρz =
2ξ +

∑n
j=1 s(xj)

2ν + n
=
aµxA + bµxB

a+ b
. (19)

Note that µxA , µxB , µx1:n ∈ U ′, by taking various convex combinations of ξ/ν, 1
|A|
∑

j∈A s(xj),

µxB ∈ U ′. Thus,

(ν + n)L(µx1:n) = (a+ b)L(y)− νL(y)

(a)

≤ (a+ b)L((1− ρ)y + ρz)− (a+ b)ρ(z − y)TL′(y)− νL(y)

(b)

≤ (a+ b)L
(aµxA + bµxB

a+ b

)
+ C0

(c)

≤ aL(µxA) + bL(µxB ) + C0,

where (a) is by Equation 18, (b) is by Equations 17 and 19, and (c) is by the convexity of
L. Hence, (ν+n)k/2m̃(x1:n) ≤ (ab)k/2m̃(xA)m̃(xB) exp(C0), so by our choice of C1 and C2,

m(x1:n)

m(xA)m(xB)
≤ C2m̃(x1:n)

C2
1m̃(xA)m̃(xB)

≤ C2 exp(C0)

C2
1

( ab

n+ ν

)k/2
.

Appendix C. Bounds on the Laplace Approximation

Our proof uses the following simple bounds on the Laplace approximation. These bounds
are not fundamentally new, but the precise formulation we require does not seem to appear
in the literature, so we have included it for the reader’s convenience. Lemma 22 is simply
a multivariate version of the bounds given by De Bruijn (1970), and Corollary 24 is a
straightforward consequence, putting the lemma in a form most convenient for our purposes.

Given symmetric matrices A and B, let us write A�B to mean that B −A is positive
semidefinite. Given A ∈ Rk×k symmetric positive definite and ε, t ∈ (0,∞), define

C(t, ε, A) = P(|A−1/2Z| ≤ ε
√
t)

where Z ∼ Normal(0, Ik×k). Note that C(t, ε, A) → 1 as t → ∞. Let Bε(x0) = {x ∈ Rk :
|x− x0| ≤ ε} denote the closed ball of radius ε > 0 at x0 ∈ Rk.
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Lemma 22 Let E ⊂ Rk be open. Let f : E → R be C2 smooth with f ′(x0) = 0 for some
x0 ∈ E. Define

g(t) =

∫
E

exp(−tf(x)) dx

for t ∈ (0,∞). Suppose ε ∈ (0,∞) such that Bε(x0) ⊂ E, 0 < δ ≤ inf{f(x) − f(x0) : x ∈
E r Bε(x0)}, and A,B are symmetric positive definite matrices such that A � f ′′(x) � B
for all x ∈ Bε(x0). Then for any 0 < s ≤ t we have

C(t, ε, B)

|B|1/2
≤ g(t)

(2π/t)k/2e−tf(x0)
≤ C(t, ε, A)

|A|1/2
+
( t

2π

)k/2
e−(t−s)δesf(x0)g(s)

where |A| = |detA|.

Remark 23 In particular, these assumptions imply f is strictly convex on Bε(x0) with
unique global minimum at x0. Note that the upper bound is trivial unless g(s) <∞.

Proof By Taylor’s theorem, for any x ∈ Bε(x0) there exists zx on the line between x0 and
x such that, letting y = x− x0,

f(x) = f(x0) + yTf ′(x0) + 1
2y

Tf ′′(zx)y = f(x0) + 1
2y

Tf ′′(zx)y.

Since zx ∈ Bε(x0), and thus A� f ′′(zx) �B,

1
2y

TAy ≤ f(x)− f(x0) ≤ 1
2y

TBy.

Hence,

etf(x0)

∫
Bε(x0)

exp(−tf(x)) dx ≤
∫
Bε(x0)

exp(−1
2(x− x0)T(tA)(x− x0)) dx

= (2π)k/2|(tA)−1|1/2 P
(
|(tA)−1/2Z| ≤ ε

)
.

Along with a similar argument for the lower bound, this implies(2π

t

)k/2C(t, ε, B)

|B|1/2
≤ etf(x0)

∫
Bε(x0)

exp(−tf(x)) dx ≤
(2π

t

)k/2C(t, ε, A)

|A|1/2
.

Considering the rest of the integral, outside of Bε(x0), we have

0 ≤
∫
ErBε(x0)

exp(−tf(x)) dx ≤ exp
(
− (t− s)(f(x0) + δ)

)
g(s).

Combining the preceding four inequalities yields the result.

The following corollary tailors the lemma to our purposes. Given a symmetric positive
definite matrix A ∈ Rk×k, let λ∗(A) and λ∗(A) be the minimal and maximal eigenvalues,
respectively. By diagonalizing A, it is easy to check that λ∗(A)Ik×k � A � λ∗(A)Ik×k and
λ∗(A)k ≤ |A| ≤ λ∗(A)k.
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Corollary 24 For any α, β, γ, δ, ε ∈ (0,∞) there exist c1 = c1(β, ε) ∈ (0,∞) and c2 =
c2(α, γ, δ) ∈ (0,∞) such that if E, f, x0, A,B satisfy all the conditions of Lemma 22 (for
this choice of δ, ε) and additionally, α ≤ λ∗(A), β ≥ λ∗(B), and γ ≥ ef(x0)g(1), then

c1 ≤
∫
E exp(−tf(x)) dx

t−k/2 exp(−tf(x0))
≤ c2

for all t ≥ 1.

Proof The first term in the upper bound of the lemma is C(t, ε, A)/|A|1/2 ≤ 1/αk/2, and
with s = 1 the second term is less or equal to (t/2π)k/2e−(t−1)δγ, which is bounded above for
t ∈ [1,∞). For the lower bound, a straightforward calculation (using zTBz ≤ λ∗(B)zTz ≤
βzTz in the exponent inside the integral) shows that C(t, ε, B)/|B|1/2 ≥ P(|Z| ≤ ε

√
β)/βk/2

for t ≥ 1.

Although we do not need it (and thus, we omit the proof), the following corollary gives
the well-known asymptotic form of the Laplace approximation. (As usual, g(t) ∼ h(t) as
t→∞ means that g(t)/h(t)→ 1.)

Corollary 25 Let E ⊂ Rk be open. Let f : E → R be C2 smooth such that for some x0 ∈ E
we have that f ′(x0) = 0, f ′′(x0) is positive definite, and f(x) > f(x0) for all x ∈ E r {x0}.
Suppose there exists ε > 0 such that Bε(x0) ⊂ E and inf{f(x)− f(x0) : x ∈ E rBε(x0)} is
positive, and suppose there is some s > 0 such that

∫
E e
−sf(x) dx <∞. Then∫

E
exp(−tf(x)) dx ∼

(2π

t

)k/2 exp(−tf(x0))

|f ′′(x0)|1/2

as t→∞.

Appendix D. Capture Lemma

In this section, we prove Lemma 14, which is restated here for the reader’s convenience.
The following definitions are standard. Let S denote the unit sphere in Rk, that is,

S = {x ∈ Rk : |x| = 1}. We say that H ⊂ Rk is a halfspace if H = {x ∈ Rk : xTu ≺ b},
where ≺ is either < or ≤, for some u ∈ S, b ∈ R. We say that L ⊂ Rk is a hyperplane if
L = {x ∈ Rk : xTu = b} for some u ∈ S, b ∈ R. Given U ⊂ Rk, let ∂U denote the boundary
of U , that is, ∂U = U rU◦. So, for example, if H is a halfspace, then ∂H is a hyperplane.
The following notation is also useful: given x ∈ Rk, we call the set Rx = {ax : a > 0} the
ray through x.

We give the central part of the proof first, postponing some plausible intermediate results
for the moment. Recall the definition of Iβ(x1:n, U) from Equation 12.

Lemma 26 (Capture lemma) Let V ⊂ Rk be open and convex. Let P be a probability
measure on Rk such that:

(1) E|X| <∞ when X ∼ P ,

(2) P (V ) = 1, and
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(3) P (L) = 0 for any hyperplane L that does not intersect V .

If X1, X2, . . .
iid∼ P , then for any β ∈ (0, 1] there exists U ⊂ V compact such that

Iβ(X1:n, U)
a.s.−−→ 1 as n→∞.

Proof Without loss of generality, we may assume 0 ∈ V (since otherwise we can translate
to make it so, obtain U , and translate back). Let β ∈ (0, 1]. By Proposition 28 below, for
each u ∈ S there is a closed halfspace Hu such that 0 ∈ H◦u, Ru intersects V ∩ ∂Hu, and
Iβ(X1:n, Hu)

a.s.−−→ 1 as n → ∞. By Proposition 30 below, there exist u1, . . . , ur ∈ S (for
some r > 0) such that the set U =

⋂r
i=1Hui is compact and U ⊂ V . Finally,

Iβ(X1:n, U) =
r∏
i=1

Iβ(X1:n, Hui)
a.s.−−−→
n→∞

1.

The main idea of the lemma is exhibited in the following simpler case, which we will use
to prove Proposition 28.

Proposition 27 Let V = (−∞, c), where −∞ < c ≤ ∞. Let P be a probability measure
on R such that:

(1) E|X| <∞ when X ∼ P , and

(2) P (V ) = 1.

If X1, X2, . . .
iid∼ P , then for any β ∈ (0, 1] there exists b < c such that Iβ(X1:n, (−∞, b])

a.s.−−→
1 as n→∞.

Proof Let β ∈ (0, 1]. By continuity from above, there exists a < c such that P(X > a) < β.
If P(X > a) = 0 then the result is trivial, taking b = a. Suppose P(X > a) > 0. Let b such
that E(X | X > a) < b < c, which is always possible, by a straightforward argument (using
E|X| < ∞ in the c = ∞ case). Let Bn = Bn(X1, . . . , Xn) = {i ∈ {1, . . . , n} : Xi > a}.
Then

1

|Bn|
∑
i∈Bn

Xi =
1

1
n |Bn|

1

n

n∑
i=1

Xi I(Xi > a)

a.s.−−−→
n→∞

E(X I(X > a))

P(X > a)
= E(X | X > a) < b.

Now, fix n ∈ {1, 2, . . . }, and suppose 0 < |Bn| < βn and 1
|Bn|

∑
i∈Bn Xi < b, noting that

with probability 1, this happens for all n sufficiently large. We show that this implies
Iβ(X1:n, (−∞, b]) = 1. This will prove the result.

Let A ⊂ {1, . . . , n} such that |A| ≥ βn. Let M = {π1, . . . , π|A|} where π is a permutation
of {1, . . . , n} such that Xπ1 ≥ · · · ≥ Xπn (that is, M ⊂ {1, . . . , n} consists of the indices of
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|A| of the largest entries of (X1, . . . , Xn)). Then |M | = |A| ≥ βn ≥ |Bn|, and it follows that
Bn ⊂M . Therefore,

1

|A|
∑
i∈A

Xi ≤
1

|M |
∑
i∈M

Xi ≤
1

|Bn|
∑
i∈Bn

Xi ≤ b,

as desired.

The first of the two propositions used in Lemma 26 is the following.

Proposition 28 Let V and P satisfy the conditions of Lemma 26, and also assume 0 ∈ V .

If X1, X2, . . .
iid∼ P then for any β ∈ (0, 1] and any u ∈ S there is a closed halfspace H ⊂ Rk

such that

(1) 0 ∈ H◦,

(2) Ru intersects V ∩ ∂H, and

(3) Iβ(X1:n, H)
a.s.−−→ 1 as n→∞.

Proof Let β ∈ (0, 1] and u ∈ S. Either (a) Ru ⊂ V , or (b) Ru intersects ∂V .
Case (a): Suppose Ru ⊂ V . Let Yi = XT

i u for i = 1, 2, . . . . Then E|Yi| ≤ E|Xi||u| =
E|Xi| < ∞, and thus, by Proposition 27 (with c = ∞) there exists b ∈ R such that
Iβ(Y1:n, (−∞, b])

a.s.−−→ 1. Let us choose this b to be positive, which is always possible since
Iβ(Y1:n, (−∞, b]) is nondecreasing as a function of b. Let H = {x ∈ Rk : xTu ≤ b}. Then
0 ∈ H◦, since b > 0, and Ru intersects V ∩ ∂H at bu, since Ru ⊂ V and buTu = b. And
since 1

|A|
∑

i∈A Yi ≤ b if and only if 1
|A|
∑

i∈AXi ∈ H, we have Iβ(X1:n, H)
a.s.−−→ 1.

Case (b): Suppose Ru intersects ∂V at some point z ∈ Rk. Note that z 6= 0 since
0 6∈ Ru. Since V is convex, it has a supporting hyperplane at z, and thus, there exist v ∈ S
and c ∈ R such that G = {x ∈ Rk : xTv ≤ c} satisfies V ⊂ G and z ∈ ∂G (Rockafellar,
1970, 11.2). Note that c > 0 and V ∩∂G = ∅ since 0 ∈ V and V is open. Letting Yi = XT

i v
for i = 1, 2, . . . , we have

P(Yi ≤ c) = P(XT
i v ≤ c) = P(Xi ∈ G) ≥ P(Xi ∈ V ) = P (V ) = 1,

and hence,

P(Yi ≥ c) = P(Yi = c) = P(XT
i v = c) = P(Xi ∈ ∂G) = P (∂G) = 0,

by our assumptions on P , since ∂G is a hyperplane that does not intersect V . Consequently,
P(Yi < c) = 1. Also, as before, E|Yi| <∞. Thus, by Proposition 27, there exists b < c such
that Iβ(Y1:n, (−∞, b])

a.s.−−→ 1. Since c > 0, we may choose this b to be positive (as before).

Letting H = {x ∈ Rk : xTv ≤ b}, we have Iβ(X1:n, H)
a.s.−−→ 1. Also, 0 ∈ H◦ since b > 0.

Now, we must show that Ru intersects V ∩ ∂H. First, since z ∈ Ru means z = au for
some a > 0, and since z ∈ ∂G means zTv = c > 0, we find that uTv > 0 and z = cu/uTv.
Therefore, letting y = bu/uTv, we have y ∈ Ru ∩ V ∩ ∂H, since

(i) b/uTv > 0, and thus y ∈ Ru,
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(ii) yTv = b, and thus y ∈ ∂H,

(iii) 0 < b/uTv < c/uTv, and thus y is a (strict) convex combination of 0 ∈ V and z ∈ V ,
hence y ∈ V (Rockafellar, 1970, 6.1).

To prove Proposition 30, we need the following geometrically intuitive facts.

Proposition 29 Let V ⊂ Rk be open and convex, with 0 ∈ V . Let H be a closed halfspace
such that 0 ∈ H◦. Let T = {x/|x| : x ∈ V ∩ ∂H}. Then

(1) T is open in S,

(2) T = {u ∈ S : Ru intersects V ∩ ∂H}, and

(3) if x ∈ H, x 6= 0, and x/|x| ∈ T , then x ∈ V .

Proof Write H = {x ∈ Rk : xTv ≤ b}, with v ∈ S, b > 0. Let S+ = {u ∈ S : uTv > 0}.
(1) Define f : ∂H → S+ by f(x) = x/|x|, noting that 0 6∈ ∂H. It is easy to see that f is a
homeomorphism. Since V is open in Rk, then V ∩∂H is open in ∂H. Hence, T = f(V ∩∂H)
is open in S+, and since S+ is open in S, then T is also open in S. Items (2) and (3) are
easily checked.

Proposition 30 Let V ⊂ Rk be open and convex, with 0 ∈ V . If (Hu : u ∈ S) is a
collection of closed halfspaces such that for all u ∈ S,

(1) 0 ∈ H◦u and

(2) Ru intersects V ∩ ∂Hu,

then there exist u1, . . . , ur ∈ S (for some r > 0) such that the set U =
⋂r
i=1Hui is compact

and U ⊂ V .

Proof For u ∈ S, define Tu = {x/|x| : x ∈ V ∩ ∂Hu}. By part (1) of Proposition 29, Tu is
open in S, and by part (2), u ∈ Tu, since Ru intersects V ∩ ∂Hu. Thus, (Tu : u ∈ S) is an
open cover of S. Since S is compact, there is a finite subcover: there exist u1, . . . , ur ∈ S
(for some r > 0) such that

⋃r
i=1 Tui ⊃ S, and in fact,

⋃r
i=1 Tui = S. Let U =

⋂r
i=1Hui .

Then U is closed and convex (as an intersection of closed, convex sets). Further, U ⊂ V
since for any x ∈ U , if x = 0 then x ∈ V by assumption, while if x 6= 0 then x/|x| ∈ Tui for
some i ∈ {1, . . . , r} and x ∈ U ⊂ Hui , so x ∈ V by Proposition 29(3).

In order to show that U is compact, we just need to show it is bounded, since we already
know it is closed. Suppose not, and let x1, x2, . . . ∈ U r {0} such that |xn| → ∞ as n→∞.
Let vn = xn/|xn|. Since S is compact, then (vn) has a convergent subsequence such that
vni → u for some u ∈ S. Then for any a > 0, we have avni ∈ U for all i sufficiently large
(since avni is a convex combination of 0 ∈ U and |xni |vni = xni ∈ U whenever |xni | ≥ a).
Since avni → au, and U is closed, then au ∈ U . Thus, au ∈ U for all a > 0, i.e., Ru ⊂ U .
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But u ∈ Tuj for some j ∈ {1, . . . , r}, so Ru intersects ∂Huj (by Proposition 29(2)), and
thus au 6∈ Huj ⊃ U for all a > 0 sufficiently large. This is a contradiction. Therefore, U is
bounded.
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