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1 Introduction
The family of Dirichlet distributions is the default choice when modeling probability
vectors, due to its flexibility and analytical tractability. As a conjugate prior for the
parameters of a multinomial distribution, the Dirichlet plays a central role in many
Bayesian models such as latent Dirichlet allocation (Blei et al., 2003), finite and infinite
mixture models (Rousseau and Mengersen, 2011; Richardson and Green, 1997; Miller
and Harrison, 2018), admixture models (Pritchard et al., 2000), non-negative matrix
factorization (Zito and Miller, 2024), and variable selection with global-local shrinkage
(Bhattacharya et al., 2015; Zhang and Bondell, 2018).

When specifying the parameters of a Dirichlet(αu1, . . . , αuK) distribution, where∑K
i=1 ui = 1 and α > 0, the standard approach is to set the mean (u1, . . . , uK) equal

to the location where one would like the distribution to be centered and adjust the
concentration parameter α to control the scale. Unfortunately, if the mean is close to
the boundary of the probability simplex—that is, if one or more entries is near zero—
then this approach exhibits serious problems. First, if the mean is near the boundary,
then α provides little control over the scale of the distribution. Naturally, for large
values of α, the distribution is highly concentrated around the mean. Intuitively, one
might expect that using a smaller concentration would lead to a less informative prior.
However, as α decreases, the distribution does not become much more spread out – and,
in fact, the bulk of the mass just moves even farther towards the boundary, becoming
concentrated extremely close to it. As a result, the mean ends up being so far in the
tail that it is no longer a useful representation of the center of the distribution. Figure 1
illustrates this behavior in the case of a Beta distribution, which is representative of the
general Dirichlet case since the marginals of a Dirichlet are Beta-distributed. Thus, the
mean and concentration parameter are not useful for controlling the location and scale
of Dirichlet distributions near the boundary.

This pathological behavior may have severe consequences. Some Bayesian models
using Beta or Dirichlet priors may unintentionally be forcing probabilities to be essen-
tially zero, even when the prior mean is not that close to zero. Metropolis–Hastings
proposals using Beta or Dirichlet distributions may lead to very poor mixing because
the proposals are extremely close to the boundary with high probability, rather than be-
ing near the current state. Furthermore, the problem is exacerbated in high dimensions:
In a high-dimensional probability simplex, every point is near the boundary because
the sum-to-one constraint forces many entries to be close to zero.

In this paper, we propose a novel method for specifying the parameters of a Dirichlet
distribution in a way that provides better control over the location and scale. Specifically,
given a target location c = (c1, . . . , cK) and a scale parameter s, we maximize the density
at c subject to the constraint that a specified measure of scale is equal to s. For instance,
the choice of scale may be the concentration parameter, the sum of the variances, the
mean cosine error, or some other value quantifying the spread of the distribution. This
maximum density approach has several attractive features. First, it provides greater
control over the scale of the distribution. Additionally, it tends to put more probability
mass near the target location c, because it maximizes the density at c by construction.
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Figure 1: Setting the mean equal to the desired location is problematic near the bound-
ary. (Top) Cumulative distribution functions (CDFs) of Beta distributions with means
0.2 and 0.001, for a range of concentration parameters α. The mean of Beta(a, b) is
a/(a + b) and the concentration parameter is α = a + b. (Bottom) Percentiles of the
same distributions, as a function of α. Even when the mean is not close to the boundary
(such as 0.2), most of the mass just shifts from the mean to the boundary as α goes from
high to low. When the mean is close to the boundary (such as 0.001), the distribution
is quite concentrated for all α, and α provides very little control over the scale.
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Furthermore, it can be computed using a fast and simple algorithm for performing the
constrained optimization.

The rest of the article is organized as follows. In Section 2, we describe our pro-
posed methodology. In Section 3, we illustrate the method’s utility for (i) Metropolis–
Hastings proposals with improved mixing near the boundary, (ii) Bayesian inference
for the probability of rare events, and (iii) generating random probability vectors for
mutational signatures analysis in cancer genomics. We conclude with a brief discussion
in Section 4.

2 Methodology
In this section, we introduce the maximum density method. We first consider the spe-
cial case of Beta distributions (Section 2.1), then generalize to Dirichlet distributions
(Section 2.2), and provide a step-by-step algorithm (Section 2.3).

2.1 Maximum density method for specifying Beta distributions
The Beta distribution with parameters a > 0 and b > 0, denoted Beta(a, b), has density
Beta(x | a, b) = xa−1(1−x)b−1/B(a, b) for x ∈ (0, 1), where B(a, b) is the beta function.
Given a target location c ∈ (0, 1), we propose to set a and b via the optimization:

arg max
a,b>0

Beta(c | a, b) subject to h(a, b) = 0, (1)

where h(a, b) = 0 represents a desired scale constraint. In the Beta case, we focus partic-
ularly on constraining the variance to a given value v by defining h(a, b) = V (a, b)/v−1,
where V (a, b) = ab/

(
(a + b)2(a + b + 1)

)
is the variance of Beta(a, b). In other words,

out of all the Beta distributions with variance v, we choose the one with highest density
at the target location c. We refer to this as the maximum density method.

For v ∈ (0, 1/4), the solution to this optimization always exists and is finite, as
we show in Theorem 1. To compute the solution, we develop an algorithm based on
Newton’s method with equality constraints; see Section 2.3. This algorithm reliably
converges to the constrained maximum for any c ∈ (0, 1), v ∈ (0, 1/4). The convergence
is rapid for v < 0.2, and becomes slower as v approaches 1/4.
Theorem 1. For all c ∈ (0, 1) and v ∈ (0, 1/4), there exists a finite solution to:

arg max
a,b>0

Beta(c | a, b) subject to V (a, b) = v,

where V (a, b) = ab/
(
(a+ b)2(a+ b+ 1)

)
.

All proofs are provided in Section S1 of the Supplementary Material. In Theorem 1,
the restriction to v ∈ (0, 1/4) is necessary since there do not exist Beta distributions
with variance greater or equal to 1/4, as we show in Theorem 2.
Theorem 2. There is a Beta distribution with mean u and variance v if and only if
0 < v < 1/4 and |u− 1/2| < (1/2)

√
1− 4v.
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Fixing the concentration parameter instead of the variance

In some situations, it may be preferable to constrain the concentration α = a+b instead
of the variance. In this case, the maximum density method is to set a and b via:

arg max
a,b>0

Beta(c | a, b) subject to a+ b = α, (2)

given c ∈ (0, 1) and α > 0. Theorem 1 extends to this case as well, that is, for all
c ∈ (0, 1) and α ∈ (0,∞) there is a finite solution to Equation 2; see Theorem S1. A
slightly different version of the Newton’s method algorithm can be used to solve this; see
Section 2.3. In Figures 2 and 3, we use this fixed α version (rather than fixed variance)
to facilitate comparisons with the mean method with fixed α.

Comparison of the distributions attained by each method

The maximum density method resolves the issues with the mean method seen in Fig-
ure 1. As shown in Figure 2, the maximum density method exhibits a greater range of
control over the scale of the distribution, while keeping the distribution more centered
at the target location in terms of percentiles.

To quantify how far the mass of the distribution is from the target location c, we
consider Y = |logit(X)− logit(c)|, where logit(x) = log(x/(1− x)) and X ∼ Beta(a, b).
Small values of Y mean that X is close to c on the logit scale. Transforming to the
logit scale makes it possible to evaluate differences in magnitude close to the boundary.
Figure 3 shows the density of Y when using (i) the mean method and (ii) our maximum
density method; for both methods we compare results when using c ∈ {0.001, 0.2} and
α ∈ {0.1, 1, 10}. More precisely, the mean method chooses a = αc and b = α(1− c). For
the maximum density method, we use target location c and concentration α. We derive
a closed-form expression for the density of Y in Section S2.

Figure 3 demonstrates that the maximum density method puts more probability
mass near the target location c, compared to the mean method. Specifically, we see that
the distribution of Y has more probability mass near 0 under the maximum density
method, meaning that X is closer to c with high probability. The difference is especially
stark near the boundary, for instance when c = 0.001.

Median method: An alternative approach

An alternative to our maximum density approach would be to choose a Beta distribution
with median equal to the target location c and variance equal to v (or concentration
parameter equal to α). In the case of Beta distributions, this works reasonably well.
However, the maximum density approach has three advantages: (1) it tends to put
more mass near the target location c, (2) optimization is more tractable and stable,
and (3) it extends more naturally to the general Dirichlet case. See Section S4 for more
details on this median-based approach.
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Figure 2: Maximum density provides better control of location and scale near the bound-
ary. (Top) CDFs of Beta distributions determined by the maximum density method with
target locations c = 0.2 and c = 0.001, for the same range of concentration parame-
ters α as in Figure 1; here, we maximize Beta(c | a, b) subject to a + b = α to enable
comparison with Figure 1, see Section 2.3 for details. (Bottom) Percentiles of the same
distributions, as a function of α. A wide range of scales can be attained by varying α
(or correspondingly, varying v) when using the maximum density method, regardless
of whether the target location c is near the boundary. Furthermore, c remains between
the first quartile and the median of the distribution as α decreases, rather than moving
into the upper tail as in Figure 1.
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Figure 3: For Beta distributions, the maximum density method puts more probability
mass near the target location, compared to the mean method. The plots show the
density of Y = |logit(X)− logit(c)| when X is Beta distributed with parameters chosen
by either (i) setting the mean equal to c (solid line), or (ii) using the maximum density
method with target location c (dashed line). For both methods, we use concentration
parameters of α = 10, α = 1, and α = 0.1.

2.2 Maximum density method for specifying Dirichlet distributions

The Dirichlet distribution with parameters a1, . . . , aK > 0 has density

Dirichlet(x | a1, . . . , aK) =
Γ

( ∑K
i=1 ai

)∏K
i=1 Γ(ai)

xa1−1
1 · · ·xaK−1

K (3)

for x = (x1, . . . , xK) ∈ ∆K , where ∆K :=
{
x ∈ RK : x1, . . . , xK > 0,

∑K
i=1 xi = 1

}
is

the probability simplex. Here, Γ(x) denotes the gamma function.

LettingX ∼ Dirichlet(a1, . . . , aK), it can be shown that the ith coordinateXi follows
a Beta distribution, specifically, Xi ∼ Beta(ai,

∑
j ̸=i aj). Thus, the Beta distribution

can essentially be thought of as the special case of a Dirichlet with K = 2, although
technically the Beta corresponds to one coordinate of a Dirichlet. The mean of the ith
coordinate is E(Xi) = ai/

∑K
j=1 aj and the scale of the Dirichlet distribution around

its mean is traditionally thought to be controlled by the concentration parameter, α =∑K
i=1 ai. However, when the mean of Xi is near zero or one, the distribution of Xi

exhibits the same pathologies as in the case of a Beta distribution. This follows simply
because Xi is, in fact, Beta distributed. In particular, the concentration parameter α
exhibits little control over the scale, and the distribution of Xi concentrates near the
boundary as α decreases.

We extend our maximum density method to the general case of a K-dimensional
Dirichlet distribution as follows. Suppose c = (c1, . . . , cK) ∈ ∆K is a target location in
the probability simplex. We propose to choose the Dirichlet parameters a1, . . . , aK via:

arg max
a1,...,aK >0

Dirichlet(c | a1, . . . , aK) subject to h(a1, . . . , aK) = 0, (4)
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Figure 4: For Dirichlet distributions, the maximum density method puts more probabil-
ity mass closer the target location. The plots show the density of Y =

∑K
i=1 |logit(Xi)−

logit(ci)| when X ∼ Dirichlet(a1, . . . , aK) with a1, . . . , aK chosen by either (i) setting
the mean equal to c (red line), or (ii) using the maximum density method with target
location c (blue line). The concentration parameter is α = 1 for both methods. (Left)
c = (0.01, 0.1, 0.2, 0.3, 0.39); (Right) c = (1, 2, 3, . . . , 30)/

∑30
i=1 i.

where h represents a desired constraint. This is a direct generalization of Equation 1.
We provide an algorithm for solving this optimization problem in Algorithm 1. One
simple choice of constraint is to fix the concentration parameter to a given value α;
we do this by defining h(a1, . . . , aK) = (

∑K
i=1 ai)/α − 1. Another option would be to

control the variances, however, in the multivariate case we have to summarize the scale
of the distribution with a single number. Motivated by an application to mutational
signatures, we consider controlling the mean cosine error between X and E(X); see
Sections 3.3 and S3 for details.

Figure 4 shows that for Dirichlet distributions, the maximum density method puts
more mass near c compared to setting the mean equal to c; compare with Figure 3 in
the Beta case. Here, we constrain α to enable direct comparison with the mean method.

2.3 Optimization algorithm for the maximum density method

To solve the constrained optimization problem for the maximum density method (Equa-
tions 1 and 4), we use an algorithm based on Newton’s method with equality constraints
(Boyd and Vandenberghe, 2004). This generalization of Newton’s method is a second-
order optimization technique for problems of the form

arg min
x

f(x) subject to h(x) = 0,

where f is a strictly convex, twice-differentiable function and h is differentiable. We
provide versions of this algorithm for implementing the maximum density method with
various choices of constraint function; see Section S3 for the derivation.

Algorithm 1 provides a step-by-step procedure for the general case of Dirichlet distri-
butions; see Algorithm S1 for the special case of Beta distributions. As default settings,



C. Xue, A. Zito, and J. W. Miller 9

Algorithm 1 Maximum density method for Dirichlet distributions
Input: target location c ∈ ∆K , step size ρ ∈ (0, 1], maximum number of iterations

maxiter > 0, and convergence tolerance tol > 0.
1: ai ← 10(ci + 1)/2 for i ∈ {1, . . . ,K} ▷ Initialization
2: for iter = 1, . . . , maxiter do
3: s← a1 + · · ·+ aK

4: gi ← ψ(ai)− ψ(s)− log(ci) for i ∈ {1, . . . ,K} ▷ Compute gradient
5: Hij ← ψ′(ai)1(i = j)− ψ′(s) for i, j ∈ {1, . . . ,K} ▷ Compute Hessian matrix
6: h← h(a) ▷ Value of constraint
7: Ji ← ∂h/∂ai for i ∈ {1, . . . ,K} ▷ Jacobian of constraint
8: Solve for δ ∈ RK and λ ∈ R in the linear system: ▷ Compute Newton step[

H JT

J 0

] [
δ
λ

]
=

[
−g
−h

]
where H = [Hij ] ∈ RK×K , J = [J1, . . . , JK ] ∈ R1×K , and g = [gi] ∈ RK×1.

9: a′ ← a ▷ Store current values
10: a← a′ + ρ δ ▷ Update values
11: for i ∈ {1, . . . ,K}, if ai ≤ 0 then ai ← a′

i/2 ▷ Enforce boundary constraints
12: if |h|+

∑K
i=1 |ai/a

′
i − 1| < tol then ▷ Check for convergence

13: output a ▷ Return output
14: end if
15: end for
Output: Dirichlet parameters a = (a1, . . . , aK).

we use ρ = 1/2, maxiter = 100, and tol = 10−8. If Algorithm 1 reaches maxiter
iterations without converging, then we set ρ ← ρ/5 and maxiter ← 5 maxiter, and
run the algorithm again; if it still fails to converge after 5 such restarts, we stop. In
Algorithm 1, ψ(x) and ψ′(x) are the digamma and trigamma functions, that is, the first
and second derivatives of log Γ(x). Also, 1(·) is the indicator function, that is, 1(E) = 1
if E is true, and 1(E) = 0 otherwise.

In lines 6–7 of Algorithm 1, h(a) = h(a1, . . . , aK) is the chosen constraint function
in Equation 4 and ∂h/∂ai is its partial derivative with respect to ai. For example, to
constrain the concentration parameter to equal α, line 6 becomes h← s/α− 1 and line
7 becomes Ji ← 1/α for i ∈ {1, . . . ,K}. See Section S3 for more details and formulas
for handling other constraints.

3 Examples
3.1 Metropolis–Hastings proposals for probabilities

Markov chain Monte Carlo (MCMC) is commonly used for posterior inference in Bayesian
models. For models containing a latent vector of probabilities, say x = (x1, . . . , xK), it is
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necessary to construct MCMC moves on the probability simplex. Except in cases where
the prior on x is Dirichlet and the corresponding likelihood is multinomial, the full
conditional distribution of x will rarely have a closed form that can be sampled from.
In such cases, a typical approach is to use the Metropolis–Hastings (MH) algorithm to
perform an MCMC move that preserves the full conditional distribution of x. A natural
choice of MH proposal distribution on the probability simplex is a Dirichlet with mean
equal to the current state of x.

However, when the target distribution of x (for instance, the full conditional) places
non-negligible mass near the boundary of the simplex, this is highly suboptimal due to
the issues illustrated in Figure 1. Specifically, when the current state of x has one or
more entries xi that are near 0, a Dirichlet proposal with mean x will be concentrated
either (i) very near x itself or (ii) extremely close to the boundary. In case (i) any moves
will be very small, and in case (ii) there will be a very small probability of moving closer
to the center of the simplex relative to x. As a result, the MCMC sampler will have
difficulty moving around the space efficiently.

The maximum density method can be used to construct MH proposal distributions
that yield better MCMC mixing. Specifically, we propose to set the target location c
to be the current state of x in the MCMC sampler, set the scale s to a preselected
value (for instance, based on pilot runs of the sampler to tune s for good perfor-
mance), use Algorithm 1 to choose the Dirichlet parameters a1, . . . , aK , and then use
Dirichlet(a1, . . . , aK) as the MH proposal distribution. The numerator of the MH ac-
ceptance ratio can be computed by using the same procedure to define the proposal
distribution at the proposed value; see Section S5 for details. This provides better con-
trol over the location and scale of the proposals, improving MCMC performance.

To illustrate, we compare several methods for constructing Beta-distributed MH
proposals on the unit interval (0, 1). Consider the following four target distributions:

(A) Uniform: Beta(1, 1)

(B) Unimodal at zero: Beta(1, 1000)

(C) Bimodal mixture: 0.75 Beta(2, 5) + 0.25 Beta(10, 2)

(D) Bimodal at zero and one: Beta(1/2, 1/2).

We compare the performance of the following methods. Letting x denote the current
state, consider using an MH proposal consisting of a Beta distribution with:

(I) maximum density for target location x and fixed variance v = 0.1,

(II) mean x and fixed concentration parameter α = 5,

(III) mean x and fixed variance v = 0.1, or

(IV) mean x and standard deviation σ = min{x, 1− x,
√

0.1}.
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The choices of v = 0.1 and α = 5 are based on pilot runs with a range of values to
determine choices that perform well; see Figures S4 and S5. Method IV is motivated
by the observation that if x is close to 0, then choosing mean x and σ ≈ x keeps the
mass of the distribution relatively near x; likewise for σ ≈ 1 − x when x is close to
1. Keeping σ ≤

√
0.1 avoids issues with non-existence of Beta distributions with large

variance, as characterized by Theorem 2. We refer to method IV as using “adaptive
variance.” Method III appears to be reasonable at first, but is fundamentally flawed
since by Theorem 2 there does not always exist a Beta distribution with mean x ∈ (0, 1)
and variance v = 0.1. To make Method III well defined, we reject any proposal to a value
of x for which a return is impossible due to non-existence of the proposal distribution.

For each target distribution, we run each MCMC sampler for 10,000 iterations after
a burn-in of 100 iterations; see Section S5 for a detailed description of the sampler. This
is repeated 100 times for each combination of target distribution (A-D) and method (I-
IV). To evaluate performance, we consider (i) the autocorrelation function, to quantify
mixing performance, and (ii) the Kolmogorov–Smirnov distance between the posterior
samples and the target distribution, to verify convergence to the target.

Figure 5 shows the estimated autocorrelation functions (ACFs) for each combination
of target distribution (A-D) and method (I-IV). Compared to the ACFs for the mean-
based methods, the ACF for our maximum density method decays significantly faster,
indicating that the sampler is more efficiently traversing the target distribution. In
Figure 5, method III (mean x, variance 0.1) appears to perform reasonably well on
target distributions A, C, and D, but this is misleading. In fact, method III is not even
converging to the target distribution, as we demonstrate next.

Figure 6 shows the Kolmogorov–Smirnov (KS) distances between the target dis-
tribution and the MCMC approximation based on samplers. For each combination of
target distribution and method, the figure shows the distribution of KS distances over
100 replicate runs of the MCMC sampler. For the Beta(1, 1) target distribution, all
methods except III appear to successfully converge to the target distribution. The rea-
son why method III (mean x, variance 0.1) fails to converge to the target distribution
is because by Theorem 2, there exists a Beta with mean x and variance v if and only if
|x− 1/2| < (1/2)

√
1− 4v. Consequently, the sampler for Method III cannot reach any

point outside this interval.

For the Beta(1, 1000) target distribution, which is more challenging since it is con-
centrated near 0, Figure 6 indicates that only methods I (maximum density) and IV
(mean x with adaptive variance) successfully converge to the target distribution. Here,
even method II (mean x, fixed α = 5) fails to converge within the allotted number of
MCMC iterations. Since method II is valid, it should eventually converge, but it may
take a very large number of iterations. Method III fails again since it is invalid.

Overall, these results show that our maximum density method yields MH samplers
that successfully converge to the target distribution (Figure 6) and do so much more
rapidly than the mean-based methods (Figure 5).
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Figure 5: The maximum density method yields MH proposals with improved MCMC
mixing compared to the mean method. Each plot shows the autocorrelation functions
(ACFs) for one of the four target distributions (A-D). ACFs are shown for each method
of proposal distribution specification (I-IV). Maximum density has lower autocorrelation
than the mean methods, indicating that the sampler exhibits better performance.
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Figure 6: Histograms of the Kolmogorov–Smirnov distance between the target distribu-
tion and the MCMC approximation to it. The blue histograms in the left column are
for the Beta(1, 1) target distribution (case A); the red histograms in the right column
are for the Beta(1, 1000) target distribution (case B). Samplers using maximum density
proposals (method I) or the mean method with adaptive variance (method IV) converge
reliably to the target distribution. Method III fails even for simple target distributions.
Method II fails when the target distribution puts significant mass near the boundary.
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3.2 Bayesian modeling of rare events

Using a good choice of prior is particularly important when performing Bayesian infer-
ence for the probability of rare events. Suppose the true probability of the events is on
the order of 1/n or smaller, where n is the number of observations. In such situations,
the prior distribution can have a strong influence on posterior inferences.

Consider a simple Bernoulli model: Y1, . . . , Yn i.i.d. ∼ Bernoulli(θ), where Yi is the
observed binary outcome of event i and θ is unknown. A typical choice of prior on θ

would be a Beta distribution with mean equal to a location c ∈ (0, 1) that one expects
θ to be near, a priori. To illustrate, suppose we expect θ to be around c = 10−3, and
we use a prior of θ ∼ Beta(αc, α(1− c)) with concentration parameter α = 10, so that
the prior mean is c. Now, suppose the true parameter value is θ0 and the true data
generating process is Y1, . . . , Yn i.i.d. ∼ Bernoulli(θ0), where n = 100.

One might hope that θ0 would be a typical value under the posterior distribution of
θ. For instance, if the posterior is appropriately quantifying uncertainty about the true
value, then 95% credible intervals should contain θ0 most of the time – ideally, around
95% of the time for correct frequentist calibration. However, Figure 7 (left) shows that
this is not the case for the mean method. The coverage of 95% highest posterior density
(HPD) intervals is very low for a substantial range of θ0 values. Even at θ0 = c = 10−3

(dotted line), where the true parameter equals the mean of the prior distribution, the
coverage is only around 10%. The reason is that the prior is concentrated near 0 rather
than around c, as illustrated in Figure 1. This also explains why the coverage jumps
up to 100% for very small values of θ0 (less than ≈ 10−4.5). Thus, the mean method
performs worst in the range of θ0 values where we want it to perform the best (near c).

We propose to instead use our maximum density method to choose the prior on θ.
Specifically, we consider using a Beta(a, b) prior with a and b obtained via Equation 2
with target location c = 10−3 and concentration parameter α = 10. Figure 7 (left)
shows that the resulting posteriors are better calibrated, in the sense that θ0 tends to
fall within the 95% HPD interval over a very wide range of θ0 values, even when the
true parameter θ0 is not particularly close to the prior target location c = 10−3. The
coverage for both methods drops as θ0 approaches 1, which makes sense since the prior
location of c = 10−3 is badly misspecified when θ0 is close to 1.

Even when the prior is centered at the true parameter, the mean method fails.
Suppose the prior is θ ∼ Beta(αθ0, α(1 − θ0)), so that the prior mean equals the true
parameter θ0. Figure 7 (right) shows that the resulting coverage is low for all values of
θ0 less than around 10−2. Meanwhile, specifying the prior using our maximum density
approach with target location c = θ0 and concentration parameter α yields high coverage
for all values of θ0; see Figure 7 (right). We use α = 10 for both methods. Of course, it
is unrealistic to make the prior centered at the true value; the point is that even in this
ideal situation, the mean method still fails. In contrast, the maximum density method
works well—not only in this ideal situation—but also in the realistic situation with a
fixed prior that does not depend on θ0, as shown in Figure 7 (left).
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Figure 7: (Left) Coverage of 95% highest posterior density intervals as a function of
the true parameter θ0, using Beta priors with concentration α = 10 and target location
c = 10−3 (vertical dotted line). Note: The jagged nature of these lines is due to the
discreteness of the distribution, not due to approximation error; the plots show the
exact coverage. (Right) Same as left, but using Beta priors with target location equal to
the true parameter (c = θ0). The mean method performs very poorly for a wide range of
small θ0 values, whereas our maximum density method performs well across the board.

3.3 Simulating random mutational signatures in cancer genomics

The set of mutations in a cancer genome represents the cumulative effect of numerous
mutational processes such as environmental exposures and dysregulated cellular mecha-
nisms. It turns out that each mutational process tends to produce each type of mutation
at a relatively constant rate, and these rates can be represented as a probability vector
c = (c1, . . . , cK) referred to the corresponding “mutational signature” (Nik-Zainal et al.,
2012, 2016; Alexandrov et al., 2013, 2020). Here, ci represents the rate at which muta-
tion type i occurs for the mutational process under consideration. Usually, one considers
the K = 96 types of single-base substitution (SBS) mutations; see Figure 8 (left) for ex-
amples. The study of mutational signatures has been instrumental in advancing cancer
research (Koh et al., 2021; Aguirre et al., 2018; Rubanova et al., 2020).

The Catalogue of Somatic Mutations in Cancer (COSMIC; Alexandrov et al., 2020)
provides a curated collection of signatures based on thousands of cancer genomes from
a wide range of cancer types. COSMIC signatures are widely used in cancer genome
analysis, but it can be important to allow for departures from the COSMIC signatures
due to cancer-specific or subject-specific variation (Degasperi et al., 2020; Zou et al.,
2021). This variation can be represented by a Dirichlet distribution centered at the sig-
nature of interest c (Zito and Miller, 2024). However, if one uses Dirichlet(αc1, . . . , αcK)
where α > 0 is the concentration, then the variability around c depends strongly on
the sparsity of c. The standard measure of the discrepancy between two mutational
signatures, say x and c, is the cosine error,

CosErr(x, c) = 1− xTc

∥x∥∥c∥
(5)
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Figure 8: (Left) Three examples of single-base substitution signatures in COSMIC v3.4:
SBS26 is associated with defective DNA mismatch repair, SBS3 with homologous re-
combination deficiencies, and SBS7a with UV light exposure. (Right) 25th and 75th per-
centiles of the empirical distribution of mean cosine errors across all 86 COSMIC v3.4
signatures. For each signature c, we compute the mean cosine error E(CosErr(X,E(X)))
when X follows a Dirichlet specified by the mean method as α varies (red lines) or max-
imum density method as κ varies (blue lines) with target location c. The lines show the
percentiles of the empirical distribution of these values across COSMIC signatures c, as
a function of the average of this empirical distribution at any given value of α or κ.

for x, c ∈ ∆K , where ∥x∥ =
√∑

i x
2
i is the Euclidean norm. Figure 8 (right) shows

that α provides poor control over the mean cosine error between a random signature
X ∼ Dirichlet(αc1, . . . , αcK) and its mean c. For any given value of α, the mean cosine
error can take a very wide range of values depending on the signature c. Consequently,
α does not represent the scale of variability around COSMIC signatures in a consistent
way across signatures, when using the mean method.

We propose to instead use our maximum density method to specify Dirichlet dis-
tributions for representing variability around mutational signatures. Specifically, for a
given COSMIC signature c and a desired mean cosine error κ, we aim to maximize
Dirichlet(c | a1, . . . , aK) subject to the constraint that E(CosErr(X,E(X))) = κ, where
X ∼ Dirichlet(a1, . . . , aK). Since the mean cosine error E(CosErr(X,E(X))) is not
mathematically tractable, we use the expected value of a second-order Taylor approx-
imation to the cosine error; see Section S6 for details. We then use Algorithm 1 to
maximize Dirichlet(c | a1, . . . , aK) subject to constraining this approximation to the
mean cosine error; see Section S3 for the precise formulas we use for the constraint
function h(a) and its Jacobian matrix J . We find that this algorithm converges reliably
in all of the settings we have tried.
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Figure 8 (right) shows that our maximum density method provides much better
control over the mean cosine error. More precisely, the distribution of mean cosine errors
across COSMIC signatures is much tighter, indicating that mean cosine error is being
more effectively controlled. This is shown by having a smaller gap between 25th and 75th
percentiles of the distribution of mean cosine errors across COSMIC signatures. This
demonstrates that the maximum density method provides better control over the scale
of Dirichlet distributions in this real world application. This example also illustrates
the flexibility of the maximum density method, since one can choose a measure of scale
that is relevant for the application at hand.

4 Discussion
The usual way of specifying Beta and Dirichlet distributions, by setting the mean equal
to the target location, is prone to exhibit pathological behavior near the boundary.
This underappreciated problem may lead to poorly performing MCMC algorithms or
unintentionally strong priors that induce significant bias. We introduce a novel approach
that provides better control over the location and scale of these distributions.

This issue—and our proposed solution—may be relevant in a wide range of applica-
tions in which Dirichlet distributions play a central role, including mutational signatures
analysis (Zito and Miller, 2024), microbiome analysis of compositional count matrices
(Chen and Li, 2013), species abundance data (Bersson and Hoff, 2024), document anal-
ysis with topic models (Blei et al., 2003), population structure analysis with admixture
models (Pritchard et al., 2000), and applications of mixture models (Miller and Harri-
son, 2018).

Another application of particular interest is variable selection with global-local shrink-
age priors. Dirichlet–Laplace priors (Bhattacharya et al., 2015; Zhang and Bondell, 2018)
are used to model the local shrinkage parameters of the mean of each observation using
a Dirichlet distribution, while the global variance is assigned a gamma prior. With cur-
rent methods, inference is only feasible using Gibbs sampling for very specific choices of
the gamma hyperparameters. Our maximum density method may facilitate the design
of efficient proposals for the local parameters when they are close to zero.

Finally, the maximum density method could be applied to other distributions, be-
yond the Beta and Dirichlet. The technique of maximizing the density at a target
location, subject to a scale constraint, makes sense for many families of distributions.
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Supplementary Material
The Supplementary Material includes further results and analyses. Code implementing
the method and examples in the paper is publicly available at https://github.com/
casxue/ImprovedDirichlet.
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boundary”

S1 Proofs
This section provides the proofs of the results in the paper.

Proof of Theorem 1. Let Θ = (0,∞)2 ⊆ R2. Define f : Θ → R by f(a, b) =
− log Beta(c | a, b) and define S = {(a, b) ∈ Θ : V (a, b) = v}. In terms of f and S,
the optimization problem in Theorem 1 is

arg min
a,b>0

f(a, b) subject to (a, b) ∈ S. (6)

First, S is nonempty since by Theorem 2 there exists a Beta distribution with variance
v whenever 0 < v < 1/4. Furthermore, S is bounded, since

min{1/a, 1/b} > 1
a+ b+ 1 ≥

a

a+ b

b

a+ b

1
a+ b+ 1 = V (a, b) = v > 0

for all (a, b) ∈ S, and therefore max{a, b} < 1/v for all (a, b) ∈ S. Now, for all a, b ∈
(0, 1], we have B(a, b) ≥ (a + b − ab)/(ab) = 1/a + 1/b − 1, by Ivády (2016); also see
Zhao and Wang (2023). Therefore, for a, b ∈ (0, 1),

f(a, b) = −(a− 1) log(c)− (b− 1) log(1− c) + log B(a, b)
≥ log(c) + log(1− c) + log(1/a+ 1/b− 1). (7)

Let (a′, b′) be any point in S. By Equation 7, we can choose ε ∈ (0, 1) small enough
that f(a, b) > f(a′, b′) + 1 for all (a, b) such that a < ε or b < ϵ. Define A = [ε,∞)2.
It follows that (a′, b′) ∈ A ∩ S and f(a′, b′) < inf{f(a, b) : (a, b) ∈ Θ \ A}. Thus, no
point of Θ \A can be a solution, so minimizing over S is equivalent to minimizing over
A ∩ S. To complete the proof, we just need to show that the minimum of f over A ∩ S
is attained at some point; any such point will be a solution to Equation 6.

Let V |A denote the restriction of V to A. Then V |A is a continuous function, so the
pre-image of {v} is closed, that is, {(a, b) ∈ A : V (a, b) = v} = A ∩ S is a closed subset
of A, and hence, a closed subset of R2. Since A ∩ S is also bounded (as a subset of the
bounded set S), it is a compact set. Therefore, the continuous function f attains its
minimum on A ∩ S.

Theorem S1. For all c ∈ (0, 1) and α ∈ (0,∞), there exists a finite solution to:

arg max
a,b>0

Beta(c | a, b) subject to a+ b = α.

Proof. The proof is essentially the same as the proof of Theorem 1, except that S =
{(a, b) ∈ Θ : a+b = α}. All that is needed is to recognize that S is a nonempty, bounded
set, and the rest of the proof is the same.
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Proof of Theorem 2. Reparametrize the Beta(a, b) distribution in terms of the mean
u = a/(a + b) and concentration α = a + b, so that a = αu and b = α(1 − u). The
variance v of Beta(a, b) is related to u and α via

v = ab

(a+ b)2(a+ b+ 1) = u(1− u)
α+ 1 . (8)

Thus, solving for α as a function of u and v yields that α = u(1 − u)/v − 1. For any
v > 0, define

fv(u) = u(1− u)
v

− 1.

Since α must be positive to be the concentration of a Beta distribution, only a subset
of u and v values can be the mean and variance of a Beta distribution. More precisely,
for any u ∈ (0, 1) and v > 0, there is a Beta distribution with mean u and variance v if
and only if fv(u) > 0.

Note that u 7→ u(1−u) is a quadratic function with a maximum of u(1−u) = 1/4 at
u = 1/2. Along with Equation 8, this implies that the variance must satisfy 0 < v < 1/4
since α > 0. To find the feasible range of u values for any given v, we set

0 = fv(u) = u(1− u)
v

− 1 = −u2/v + u/v − 1

and solve using the quadratic formula to find

u∗ =
−1/v +

√
1/v2 − 4/v

−2/v = 1/2− (1/2)
√

1− 4v (9)

u∗ =
−1/v −

√
1/v2 − 4/v

−2/v = 1/2 + (1/2)
√

1− 4v. (10)

Thus, for any v ∈ (0, 1/4), we have fv(u) > 0 if and only if u∗ < u < u∗, where u∗ and
u∗ given by Equations 9 and 10. Therefore, there is a Beta distribution with mean u
and variance v if and only if 0 < v < 1/4 and |u− 1/2| < (1/2)

√
1− 4v.

S2 Distance between logit-transformed values
In this section, we derive the density of the distance between a Beta random variable
and a given point, after logit transformation. Furthermore, we describe how to compute
this density in a numerically stable way.

Fix a > 0, b > 0, and c ∈ (0, 1). Let X ∼ Beta(a, b) and define

Y =
∣∣logit(X)− logit(c)

∣∣,
where logit(x) = log(x/(1− x)) for x ∈ (0, 1). Let fX(x) denote the probability density
function of X, namely,

fX(x) = 1
B(a, b)x

a−1(1− x)b−11(0 < x < 1).

S2



In Section S2.2, we show that the probability density function of Y is

fY (y) = fX

(
1

1 + ey−ℓ

)
ey−ℓ

(1 + ey−ℓ)2 + fX

(
1

1 + e−y−ℓ

)
e−y−ℓ

(1 + e−y−ℓ)2 (11)

for y ∈ (0,∞), and fY (y) = 0 otherwise.

S2.1 Numerically stable computation of the density of Y

Computing fY (y) requires careful handling of the exponentials in order to avoid numer-
ical underflow or overflow issues. The first point to note is that one should work with
logarithms rather than the values themselves. Specifically, compute the log of each term
in Equation 11, and combine them using the “logsumexp” trick to obtain log fY (y), that
is, log(exp(r) + exp(s)) = log(exp(r−m) + exp(s−m)) +m where m = max{r, s}. The
next point is that computing log(1 + ex) is prone to numerical issues: When x ≪ 0, it
rounds off to 0, whereas when x≫ 0, it overflows to ∞. This can be fixed by (i) using
a log1p function, which computes log(1 + t) in a numerically accurate way for small t,
along with (ii) a conditional to avoid cases where ex would overflow, for instance:

log(1 + ex) ≈
{

log1p(exp(x)) if x < 0
log1p(exp(−x)) + x if x ≥ 0.

S2.2 Derivation of the density of Y

To derive Equation 11, we use Jacobi’s formula for transformation of continuous random
random variables to derive the probability density function of Y , as follows. Let A0 =
{c}, A1 = (0, c), and A2 = (c, 1), noting that {A0, A1, A2} is a partition of X := {x :
fX(x) > 0} = (0, 1) such that P (X ∈ A0) = 0. Define g(x) = |logit(x) − logit(c)|,
and observe that g is strictly monotone on each of A1 and A2, separately. Furthermore,
letting g1 and g2 be the restrictions of g to A1 and A2, respectively, it holds that the
inverse g−1

i exists and is continuously differentiable on g(Ai) = {g(x) : x ∈ Ai}, for
i = 1, 2. Thus, by Jacobi’s transformation formula (Casella and Berger, 2024; Jacod
and Protter, 2012), the probability density of Y is

fY (y) =
2∑

i=1
fX(g−1

i (y))
∣∣∣ d
dy
g−1

i (y)
∣∣∣1(y ∈ g(Ai)). (12)

To use this formula, we just need to derive g−1
i and its derivative for i = 1, 2. To this

end, observe that

g1(x) = log
( c

1− c

)
− log

( x

1− x

)
x ∈ (0, c),

g2(x) = log
( x

1− x

)
− log

( c

1− c

)
x ∈ (c, 1).

Define ℓ = log(c/(1− c)) to simplify the notation. Solving for the inverses, we obtain

g−1
1 (y) = 1

1 + ey−ℓ
y ∈ (0,∞), (13)
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g−1
2 (y) = 1

1 + e−y−ℓ
y ∈ (0,∞), (14)

and differentiating, we have

d

dy
g−1

1 (y) = −ey−ℓ

(1 + ey−ℓ)2 y ∈ (0,∞), (15)

d

dy
g−1

2 (y) = e−y−ℓ

(1 + e−y−ℓ)2 y ∈ (0,∞). (16)

Plugging Equations 13 to 16 into Equation 12 yields

fY (y) = fX

(
1

1 + ey−ℓ

)
ey−ℓ

(1 + ey−ℓ)2 + fX

(
1

1 + e−y−ℓ

)
e−y−ℓ

(1 + e−y−ℓ)2 (17)

for y ∈ (0,∞), and fY (y) = 0 otherwise.

S3 Derivation of the optimization algorithm
In this section, we derive Algorithm 1 based on Newton’s method with equality con-
straints (Boyd and Vandenberghe, 2004). This technique provides a second-order opti-
mization algorithm for solving problems of the form

arg min
x
f(x) subject to h(x) = 0,

where f is a strictly convex, twice-differentiable function and h is differentiable. Let
g(x) = ∇f(x) = (∂f/∂xi) denote the gradient of f , let H(x) = ∇2f(x) = (∂2f/∂xi∂xj)
denote the Hessian matrix of f , and let J(x) = (∂hi/∂xj) denote the Jacobian matrix
of h. After initializing x to an appropriate value, each iteration proceeds by updating

x← x+ δ (18)

where the vector δ is defined by solving the linear system[
H(x) J(x)T

J(x) 0

] [
δ
λ

]
=

[
−g(x)
−h(x)

]
. (19)

Here, λ is a vector of multipliers that we will not use in our algorithm.

S3.1 Applying Newton’s method to the maximum density method

To apply this to implement the maximum density method as in Equation 4, we define
x = a = (a1, . . . , aK) and

f(a) = − log Dirichlet(c | a) =
K∑

i=1
log Γ(ai)− log Γ

(∑K
i=1ai

)
−

K∑
i=1

(ai − 1) log(ci).
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Then f is smooth and strictly convex on (0,∞)K by Miller and Harrison (2014, Propo-
sition 19). For the constraint in the Dirichlet case, we consider two options: (i) fixed
concentration α, and (ii) fixed mean cosine error κ. For the special case of Beta distri-
butions, see Section S3.3. We show how to handle each of these constraints below.

The gradient and Hessian of f(a) are obtained by differentiating:

∂f

∂ai
(a) = ψ(ai)− ψ

(∑
iai

)
− log(ci),

∂2f

∂ai∂aj
(a) = ψ′(ai)1(i = j)− ψ′(∑

iai

)
.

Thus, the functions g and H take the following forms, where s =
∑

i ai:

g(a) = ∇f(a) =
[
ψ(ai)− ψ(s)− log(ci)

]
∈ RK×1

H(a) = ∇2f(a) =
[
ψ′(ai)1(i = j)− ψ′(s)

]
∈ RK×K

where ψ(x) = (d/dx) log Γ(x) is the digamma function and ψ′(x) = (d/dx)ψ(x) is the
trigamma function.

Constraining the concentration parameter

First, we consider constraining the concentration parameter α, in which case we define

h(a) =
∑K

i=1 ai

α
− 1. (20)

Note that h(a) = 0 if and only if α =
∑K

i=1 ai. In this case, h is a linear function of a,
which is conducive for convergence since we are optimizing a strictly convex function
over a convex set. The rationale for defining h using the ratio (

∑
i ai)/α rather than the

difference (
∑

i ai) − α is so that the convergence tolerance can be relatively invariant
to the magnitude of α; when using the ratio, the number of significant digits is what
matters. The Jacobian matrix is obtained by differentiating Equation 20,

∂h

∂ai
= ∂

∂ai

(∑K
i=1 ai

α
− 1

)
= 1
α
,

and thus,

J(a) =
[
1/α · · · 1/α

]
.

Constraining the mean cosine error

For the case of mean cosine error, we use the following approximation to the mean
cosine error between X ∼ Dirichlet(a1, . . . , aK) and E(X),

E(CosErr(X,E(X))) ≈
∑

i ai

2(1 +
∑

i ai)(
∑

i a
2
i )

(∑
iai −

∑
i a

3
i∑

i a
2
i

)
(21)
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where each sum is over i = 1, . . . ,K; see Section S6 for the derivation. For the constraint
function h, we work with the logarithm, defining

h(a) =− log(2) + log(
∑

iai)− log(1 +
∑

iai)− log(
∑

ia
2
i )

+ log
(∑

iai −
∑

i a
3
i∑

i a
2
i

)
− log(κ)

where κ > 0 is the desired mean cosine error. The rationale for defining h using the
logarithm is so that the derivatives take mathematically simple forms. Additionally,
this expresses the constraint in terms of the ratio rather than the difference, which
is advantageous for the same reasons discussed in the concentration parameter case.
Differentiating, we have

∂h

∂aj
= 1∑

i ai
− 1

1 +
∑

i ai
− 2aj∑

i a
2
i

+
1−

(
3a2

j (
∑

i a
2
i )− 2aj(

∑
i a

3
i )

)
/(

∑
i a

2
i )2

(
∑

i ai)− (
∑

i a
3
i )/(

∑
i a

2
i ) .

Defining sk =
∑

i a
k
i for k ∈ {1, 2, 3}, the formulas can be expressed more compactly as

h(a) = − log(2) + log(s1)− log(1 + s1)− log(s2) + log(s1 − s3/s2)− log(κ)
∂h

∂aj
= 1
s1
− 1

1 + s1
− 2aj

s2
+

1− (3a2
js2 − 2ajs3)/s2

2

s1 − s3/s2
.

Even though h is a nonlinear function of a, we find that the algorithm still successfully
converges once some implementation details have been addressed; we discuss this next.

S3.2 Implementation details

To implement the basic version of the algorithm described above, at each iteration we
would compute the expressions for g(a), H(a), and J(a), plug them into Equation 19,
use a linear solver to obtain δ, and update a as in Equation 18. In practice, we modify
the algorithm to improve its numerical stability. First, we modify Equation 18 to use a
step size of ρ ∈ (0, 1), so that the update is

a← a+ ρ δ. (22)

Second, we enforce the boundary constraint that a1, . . . , aK must be positive numbers
as follows: for each i = 1, . . . ,K, if ai would be less than or equal to zero after the
update in Equation 22, then we instead update ai ← ai/2 for that i. This maintains
positivity, but still moves ai in the direction of the full Newton step.

We begin with an initial step size of ρ = 1/2, and we initialize the algorithm at
a = 10(c + 1)/2, that is, ai = 10(ci + 1)/2 for i = 1, . . . ,K. As a stopping criterion,
we halt the algorithm after either (i) a maximum number of iterations maxiter has
been reached (default: maxiter = 100), or (ii) |h(a)| +

∑K
i=1 |ai/a

′
i − 1| < tol, where

a′
1, . . . , a

′
K are the values of a1, . . . , aK from the previous iteration and tol > 0 is a

convergence tolerance (default: tol = 10−8).
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If the algorithm reaches the maximum number of iterations without converging to
within the specified tolerance, we restart the algorithm with ρ ← ρ/5 and maxiter ←
5 maxiter. If the algorithm still fails after 5 adaptive restarts of this form, we stop and
report that the procedure has failed. We find that this adaptive procedure reliably yields
successful convergence for a wide range of values.

S3.3 Algorithm in the special case of Beta distributions

For concreteness, Algorithm S1 provides a version of Algorithm 1 that is specialized
to Beta distributions. To constrain the concentration to some value α, lines 8–10 of
Algorithm S1 become h ← (a + b)/α − 1, J1 ← 1/α, and J2 ← 1/α. Meanwhile, to
constrain the variance to some value v ∈ (0, 1/4), lines 8–10 become

h← log(a) + log(b)− 2 log(a+ b)− log(a+ b+ 1)− log(v)
J1 ← 1/a− 2/(a+ b)− 1/(a+ b+ 1)
J2 ← 1/b− 2/(a+ b)− 1/(a+ b+ 1).

S4 Additional details on the median method
As discussed in Section 2, an alternative approach is to choose a Beta distribution with
median equal to the target location c, and with either a given variance v or a given
concentration parameter α. Figure S1 shows the plots of CDFs and percentiles for the
median method with c ∈ {0.001, 0.2}, for a range of α values (compare with Figures 1
and 2). Like maximum density, the median method provides better control over the
location and scale of Beta distributions than the mean method. The median method
has the further advantage of directly centering the distribution at c (in terms of the
median) by construction.

However, as shown in Figure S2, the median method puts somewhat less mass near
the target location c, compared to the maximum density method. The objective function
for median method is also more complicated to optimize, compared to maximizing the
density as in our proposed method. Furthermore, importantly, the median method is
not as straightforward to extend to the general Dirichlet case.

On the Metropolis–Hastings example in Section 3.1, the median method performs
similarly to the maximum density method as a technique for constructing MH proposal
distributions. Figure S3 shows the autocorrelation functions for the mean, median, and
maximum density methods for a range of parameter settings. To facilitate comparison
with the other methods, we consider proposals with median c and (i) fixed concentration
α = 5, (ii) fixed variance v = 0.1, and (iii) adaptive variance, in other words, σ =
min{x, 1− x,

√
0.1}.
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Algorithm S1 Maximum density method for Beta distributions
Input: target location c ∈ (0, 1), step size ρ ∈ (0, 1], maximum number of iterations

maxiter > 0, and convergence tolerance tol > 0.
1: a← c and b← 1− c ▷ Initialization
2: for i = 1, . . . , maxiter do
3: g1 ← − log(c)− ψ(a+ b) + ψ(a) ▷ Compute gradient
4: g2 ← − log(1− c)− ψ(a+ b) + ψ(b)
5: H11 ← −ψ′(a+ b) + ψ′(a) ▷ Compute Hessian matrix
6: H22 ← −ψ′(a+ b) + ψ′(b)
7: H12 ← −ψ′(a+ b)
8: h← h(a, b) ▷ Constraint
9: J1 ← ∂h/∂a ▷ Jacobian of constraint

10: J2 ← ∂h/∂b
11: Solve for δ1 and δ2 in the linear system: ▷ Compute Newton stepH11 H12 J1

H12 H22 J2
J1 J2 0

 δ1
δ2
λ

 =

−g1
−g2
−h


12: a′ ← a and b′ ← b ▷ Store current values
13: a← a′ + ρ δ1 and b← b′ + ρ δ2 ▷ Update values
14: if a ≤ 0 then a← a′/2 ▷ Enforce boundary constraints
15: if b ≤ 0 then b← b′/2
16: if |h|+ |a/a′ − 1|+ |b/b′ − 1| < tol then ▷ Check for convergence
17: output a and b ▷ Return output
18: end if
19: end for
Output: Beta parameters a and b.
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Figure S1: The median method performs similarly to our maximum density method in
terms of providing improved control over the scale. See the captions of Figures 1 and 2
for description of the plots.
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Figure S2: The maximum density method (dashed lines) puts more probability mass
near the target location, compared to both the mean method (solid lines) and median
method (dotted lines). See the caption of Figure 3 for description of the plots. The
concentration α is the same for all three methods. The median and maximum density
curves are nearly indistinguishable in the case of c = 0.2.

S5 Metropolis–Hastings example details
This section provides more detail on the MCMC example in Section 3.1. For x ∈ (0, 1),
define ax and bx to be the values of a and b obtained via a given method. For example,
for method II (mean at current value x and concentration parameter α), we have ax =
αx and bx = α(1 − x). For method I (maximum density with target location x and
fixed variance v), ax and bx are the solution to Equation 1 with c = x and h(a, b) =
V (a, b)/v − 1.

The Metropolis–Hastings algorithm then proceeds as follows. Let π(x) denote the
density of the target distribution, and suppose the current state is x. Sample a proposed
value x′ ∼ Beta(ax, bx). Compute the acceptance probability

p = min
{

1, π(x′) Beta(x | ax′ , bx′)
π(x) Beta(x′ | ax, bx)

}
.

With probability p, accept the proposal (so the state becomes x′), and otherwise, reject
the proposal (so the state remains x). We initialize the sampler by setting the initial
state to be 0.25, and then each iteration of the MCMC algorithm consists of one MH
move as described above.

Figures S4 and S5 show the results of tuning the parameters of each proposal dis-
tribution to optimize their performance in the MH example in Section 3.1. The plots
show the autocorrelation functions (ACFs) for a range of values of α (for method II)
and v (for method I).
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Figure S3: Autocorrelation functions for the mean, median, and maximum density meth-
ods of specifying a proposal distribution in the MH example in Section 3.1. Compare
with Figure 5.
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Figure S4: Tuning the concentration parameter of the mean method. Autocorrelation
functions for Metropolis–Hasting samplers using proposal distribution II (mean equal
to the current state x and fixed concentration parameter α) as in Section 3.1.
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Figure S5: Tuning the variance parameter of the maximum density method. Autocorrela-
tion functions for Metropolis–Hasting samplers using proposal distribution I (maximum
density method with target location equal to the current state x and fixed variance v)
as in Section 3.1.
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Figure S6: Histograms of the Kolmogorov–Smirnov distance between the target distri-
bution and the MCMC approximation to it. The green histograms in the left column
are for the 0.75Beta(2, 5) + 0.25Beta(10, 2) target distribution (case C); the cyan his-
tograms in the right column are for the Beta(0.5, 0.5) target distribution (case D). As in
Figure 6, samplers using maximum density proposals (method I) or the mean method
with adaptive variance (method IV) converge reliably to the target distribution, while
Methods II and III are less reliable depending on the specific target distribution.
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S6 Taylor approximation to cosine error
The cosine error between points x and u in the probability simplex ∆K is

CosErr(x, u) = 1− uTx

∥u∥∥x∥
= 1−

∑
i uixi√∑

i u
2
i

∑
i x

2
i

. (23)

To make this expression more tractable when taking its expectation over x, we employ
a Taylor approximation to the cosine error as a function of x. To this end, fix u ∈ ∆K

and define f(x) = CosErr(x, u). Since f is uniquely minimized at x = u by the Cauchy–
Schwarz inequality, we use the second-order Taylor approximation. To derive this, we
compute the first and second derivatives of f , which after simplifying are equal to

∂f

∂xi
= − ui

∥u∥∥x∥
+ (uTx)xi

∥u∥∥x∥3 (24)

∂2f

∂xi ∂xj
= uixj + ujxi + (uTx)1(i = j)

∥u∥∥x∥3 − 3(uTx)xixj

∥u∥∥x∥5 . (25)

Let H = (Hij) ∈ RK×K denote the Hessian matrix at x = u, that is,

Hij = ∂2f

∂xi ∂xj
(u) = 1(i = j)

∥u∥2 − uiuj

∥u∥4

after plugging x = u into Equation 25 and simplifying. Note that H is symmetric and
positive semi-definite since f is minimized at x = u. Also, f(u) = 0 and ∂f/∂xi = 0
at x = u by Equations 23 and 24. The second-order Taylor approximation around u is
therefore

f(x) ≈ f(u) + 1
2(x− u)TH(x− u)

= 1
2

K∑
i=1

K∑
j=1

(xi − ui)Hij(xj − uj) (26)

= 1
2

K∑
i=1

(xi − ui)2 1
∥u∥2 −

1
2

K∑
i=1

K∑
j=1

(xi − ui)(xj − uj) uiuj

∥u∥4 .

Now, suppose X = (X1, . . . , XK) ∼ Dirichlet(αu1, . . . , αuK) where α > 0. Then
u = E(X) is the mean of X, so taking the expectation of Equation 26 over X yields

E
(
f(X)

)
≈ 1

2∥u∥2

K∑
i=1

Var(Xi)−
1

2∥u∥4

K∑
i=1

K∑
j=1

uiujCov(Xi, Xj). (27)

Plugging in the formulas for the variances and covariances of the entries of a Dirichlet
distributed random vector and simplifying, Equation 27 becomes

E
(
f(X)

)
≈ 1

2(1 + α)∥u∥2

(
1−

∑
i u

3
i∑

i u
2
i

)
. (28)
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Finally, letting ai = αui for i = 1, . . . ,K, Equation 28 can be written as

E(CosErr(X,E(X))) = E(f(X)) ≈ 1
2(1 + α)∥a/α∥2

(
1−

∑
i(ai/α)3∑
i(ai/α)2

)
=

∑
i ai

2(1 +
∑

i ai)(
∑

i a
2
i )

(∑
iai −

∑
i a

3
i∑

i a
2
i

)
.

(29)
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