
Fast and Accurate Approximation of the Full
Conditional for Gamma Shape Parameters

Jeffrey W. Miller∗

Harvard University, Department of Biostatistics

July 30, 2018

Abstract

The gamma distribution arises frequently in Bayesian models, but there is not an
easy-to-use conjugate prior for the shape parameter of a gamma. This inconvenience
is usually dealt with by using either Metropolis–Hastings moves, rejection sampling
methods, or numerical integration. However, in models with a large number of shape
parameters, these existing methods are slower or more complicated than one would
like, making them burdensome in practice. It turns out that the full conditional
distribution of the gamma shape parameter is well approximated by a gamma distri-
bution, even for small sample sizes, when the prior on the shape parameter is also a
gamma distribution. This article introduces a quick and easy algorithm for finding a
gamma distribution that approximates the full conditional distribution of the shape
parameter. We empirically demonstrate the speed and accuracy of the approximation
across a wide range of conditions. If exactness is required, the approximation can be
used as a proposal distribution for Metropolis–Hastings.

Keywords: Bayesian, Generalized Newton, Hierarchical models, Markov chain Monte Carlo,
Sampling.

∗Contact: jwmiller@hsph.harvard.edu. Department of Biostatistics, Harvard School of Public Health,
655 Huntington Ave 1-419, Boston MA, 02115.

1

jwmiller@hsph.harvard.edu

1 Introduction

The lack of a nice conjugate prior for the shape parameter of the gamma distribution

is a commonly occurring nuisance in many Bayesian models. Conjugate priors for the

shape parameter do exist, but unfortunately, they are not analytically tractable (Damsleth,

1975; Miller, 1980). In Markov chain Monte Carlo (MCMC) algorithms, one can easily

use Metropolis–Hastings (MH) moves to update the shape parameter, but mixing can

be slow if the proposal distribution is not well-calibrated. Rejection sampling schemes

can also be used for sampling the shape parameter (Son and Oh, 2006; Pradhan and

Kundu, 2011), however, the more efficient schemes such as adaptive rejection sampling

(Gilks and Wild, 1992) are complicated and require log-concavity, which does not always

hold under some important choices of prior. Modern applications involve models with a

large number of parameters, necessitating fast inference algorithms that work very generally

with minimal tuning. Indeed, our motivation for developing the approach in this article is

a gene expression model involving tens of thousands of gamma shape parameters.

In this article, we introduce a fast and simple algorithm for finding a gamma distribution

that approximates the full conditional distribution of the gamma shape parameter, when

the prior on the shape parameter is also a gamma distribution. This algorithm can be

used to perform approximate Gibbs updates by sampling from the approximating gamma

distribution. Alternatively, the approximation can be used as an MH proposal distribution

to make a move that exactly preserves the full conditional and has high acceptance rate.

The basic idea of the algorithm is to approximate the full conditional density f by a

gamma density g chosen such that the first and second derivatives of log g match those of

log f at a point near the mean of f . Since the mean of f is not known in closed form, the

approximation is iteratively refined by matching derivatives at the mean of the current g.

The article is organized as follows. Section 2 describes the algorithm, and Section 3

contains an empirical assessment of the accuracy and speed of the algorithm. Section 4

discusses previous work, and Section 5 provides mathematical details on the derivation of

the algorithm. The supplementary material contains a characterization of the fixed points

of the algorithm, additional derivations, and additional empirical results.

2

2 Algorithm

Consider the model X1, . . . , Xn|a, µ ∼ Gamma(shape = a, rate = a/µ) i.i.d., where a, µ >

0, and note that this makes µ = E(Xi | a, µ). This parametrization is convenient, since

a controls the concentration and µ controls the mean. We assume a gamma prior on the

shape, say, a ∼ Gamma(shape = a0, rate = b0) where, if desired, a0 and b0 can depend

on µ. The following algorithm produces A and B such that

p(a | x1, . . . , xn, µ, a0, b0) ≈ Gamma(a | shape = A, rate = B).

We use ψ(x) and ψ′(x) to denote the digamma and trigamma functions, respectively, and

log(x) denotes the natural log.

Algorithm 1: Approximating the full conditional of the shape parameter

input : data x1, . . . , xn > 0, parameters µ, a0, b0 > 0, tolerance ε > 0, and

maximum number of iterations M .

output: A and B.

begin

R←
∑n

i=1 log(xi), S ←
∑n

i=1 xi, and T ← S/µ−R + n log(µ)− n

A← a0 + n/2 and B ← b0 + T

for j = 1, . . . ,M do

a← A/B

A← a0 − na+ na2ψ′(a)

B ← b0 + (A− a0)/a− n log(a) + nψ(a) + T

if |a/(A/B)− 1| < ε then return A,B

return A,B

We recommend setting ε = 10−8 and M = 10. Using ε = 10−8, the algorithm terminates

in four iterations or less in all of the simulations we have done, so M = 10 is conservative.

Most languages have routines for the digamma and trigamma functions, which are defined

by ψ(x) = ∂
∂x

log Γ(x) and ψ′(x) = ∂
∂x
ψ(x), where Γ(x) is the gamma function. See Section 5

for the derivation of the algorithm. See the supplement for a fixed point analysis.

To perform an approximate Gibbs update to a in an MCMC sampler, run Algorithm 1

to obtain A,B using the current values of x1:n, µ, a0, b0, and then sample a ∼ Gamma(A,B).

3

(For brevity, in the rest of the paper, we write x1:n to denote (x1, . . . , xn), and we write

Gamma(α, β) to denote the gamma distribution with shape α and rate β.)

Alternatively, to perform a Metropolis–Hastings move to update a, one can run Algo-

rithm 1 to obtain A,B using the current values of x1:n, µ, a0, b0, then sample a proposal

a′ ∼ Gamma(A,B), and accept with probability

min
{

1,
p(a′ | x1:n, µ, a0, b0)Gamma(a|A,B)

p(a | x1:n, µ, a0, b0)Gamma(a′|A,B)

}
,

where a is the current value of the shape parameter. Note that the normalization constant

of p(a | x1:n, µ, a0, b0) does not need to be known since it cancels.

To infer the mean µ, note that the inverse-gamma family is a conditionally conjugate

prior for µ given a. Therefore, Gibbs updates to µ can easily be performed when using an

inverse-gamma prior on µ, independently of a, given a0 and b0.

3 Performance assessment

To assess the performance of Algorithm 1, we evaluated its accuracy in approximating the

true full conditional distribution, and its speed in terms of the number of iterations until

convergence, across a wide range of simulated conditions.

Specifically, for each combination of n ∈ {1, 10, 100}, r ∈ {0.5, 1, 2}, atrue ∈

{10−6, 10−5, . . . , 105, 106}, µtrue ∈ {10−6, 10−5, . . . , 105, 106}, and a0 ∈ {1, 0.1, 0.01}, we

generated five independent data sets x1, . . . , xn ∼ Gamma(atrue, atrue/µtrue) i.i.d., ran Al-

gorithm 1 with inputs x1:n, µ = rµtrue, a0, and b0 = a0, and then compared the resulting

Gamma(a|A,B) approximation to the true full conditional distribution p(a | x1:n, µ, a0, b0).

For the prior parameters, we set b0 = a0 in each case so that the prior mean is 1. In

each case, we used ε = 10−8 for the convergence tolerance, and M = 10 for the maximum

number of iterations.

3.1 Approximation accuracy

First, to get a visual sense of the closeness of the approximation, Figure 1 shows the

cumulative distribution functions (CDFs) of the true and approximate full conditional

4

Figure 1: Cumulative distribution function (CDF) of the true full conditional p(a |

x1:n, µ, a0, b0) and approximate full conditional, on simulated data x1, . . . , xn ∼

Gamma(1, 1), when conditioning on µ = 1 and the prior is a ∼ Gamma(a0, a0).

distributions for a single simulated data set for each case with r = 1, atrue = 1, and µtrue = 1.

In each case, the approximation is close to the true distribution, and in most cases the

approximation is visually indistinguishable from the truth. These plots are representative

of the full range of cases considered.

To quantify the discrepancy between the truth and the approximation, for each simu-

lation run we computed:

1. the total variation distance, dTV(f, g) = 1
2

∫
|f(a)− g(a)|da,

2. the Kullback–Leibler divergence, dKL(f, g) =
∫
f(a) log(f(a)/g(a))da, and

3. the reverse Kullback–Leibler divergence, dKL(g, f) =
∫
g(a) log(g(a)/f(a))da,

where f(a) = p(a | x1:n, µ, a0, b0) is the true density and g(a) = Gamma(a|A,B) is the

approximate density. Numerical integration was performed to compute these integrals in

5

Figure 2: Largest observed discrepancy between the true full conditional f and the approx-

imate full conditional g, for the total variation distance dTV(f, g) and the Kullback–Leibler

divergences dKL(f, g) and dKL(g, f), for each a0 and n.

order to compare with the truth; see the supplementary material for details.

Figure 2 shows the largest observed value (that is, the worst-case value) of dTV(f, g),

dKL(f, g), and dKL(g, f) across all cases for each a0 and n, using the average discrepancy

over the five data sets for each case. This shows that the approximation is quite good across

a very wide range of cases. The approximation accuracy improves as n increases, and the

accuracy is decent even when n is small. The accuracy improves as a0 increases, presumably

because this makes the prior stronger and the prior is itself a gamma distribution, so it

makes sense that the fit of a gamma approximation would improve.

For a more fine-grained breakdown of the discrepancies, case-by-case, see the supple-

mentary material for heatmaps showing dTV(f, g), dKL(f, g), and dKL(g, f) across a range

of cases. The accuracy tends to be worst in the cases with atrue = 1, except that sometimes

when n = 1 it is worst when atrue is larger. The accuracy tends to level off as atrue grows

larger than 100 or smaller than 0.01. Across all cases, the approximation is particularly

good when atrue is 0.01 or smaller, or when n is large and µ = µtrue.

3.2 Speed of convergence

To evaluate the speed of Algorithm 1 in terms of the number of iterations required, Table 1

shows the number of runs in which the algorithm required k iterations to reach the termi-

nation condition, for each k. All runs terminated in four iterations or less. (For each a0,

6

Table 1: Number of runs that required k iterations before terminating.

k a0 = 1 a0 = 0.1 a0 = 0.01

1 iteration 0 0 0

2 iterations 0 318 631

3 iterations 5751 4699 4308

4 iterations 1854 2588 2666

≥ 5 iterations 0 0 0

these results are over all of the 1521 combinations of n, r, atrue, µtrue, times five replicates

each, as described above.) The algorithm terminates very rapidly in all cases considered.

4 Previous work

The original inspiration for Algorithm 1 was the generalized Newton algorithm of Minka

(2002) for maximum likelihood estimation of gamma parameters. That said, our algorithm

is significantly different since we are considering the full conditional distribution of the

shape, rather than finding the unconditional MLE of the shape. Further, we iteratively set

a to the mean rather than the mode of the approximating density. This is an important

difference since the mode can be at 0 when a0 < 1, but the derivatives blow up at 0,

making it incoherent to match the derivatives at 0. Meanwhile, our algorithm handles

a0 < 1 without difficulties. Also, empirical evidence suggests that even when the mode is

valid, using the mean tends to yield a more accurate approximation.

Damsleth (1975) found conjugate priors for the shape a in the case of known rate b, as

well as the case of unknown b. However, it seems that the distributions in these conjugate

families are not easy to work with, analytically. Consequently, Damsleth (1975) resorts to

numerical integration over a, for each value of b, in order to obtain p(b | x1:n) =
∫
p(a, b |

x1:n) da, the posterior density of b. Similarly, Miller (1980) numerically integrates over a to

obtain the posterior of b (or of the mean µ), but instead of doing so for each value of b, he

numerically computes the mean, variance, skewness, and kurtosis of p(b | x1:n), and then

constructs an approximation to p(b | x1:n) by using the method of moments to fit a member

7

of the Pearson family to it. Miller (1980) uses improper priors as well as the conjugate

priors of Damsleth (1975). These numerical integration approaches would be fine for a

small number of shape parameters with fixed data x1:n and fixed hyperparameters a0, b0.

However, modern applications involve hierarchical models with many shape parameters,

with latent x’s and unknown hyperparameters. In such cases, the numerical integration

approaches of Damsleth (1975) and Miller (1980) would be very computationally intensive.

Son and Oh (2006) propose to use the adaptive rejection sampling (ARS) method of

Gilks and Wild (1992) to sample from the full conditional for the shape a in a Gibbs

sampler for a and b. There are a few disadvantages to this approach. ARS is quite a bit

more complicated to implement than our procedure, and requires additional bookkeeping

that is burdensome when dealing with a large number of shape parameters. Further, ARS

requires the target distribution to be log-concave, but log-concavity of the full conditional

of a is not always guaranteed. For instance, when using a Gamma(a0, b0) prior on a, if

0 < a0 < 1 then the prior is not log-concave, which can cause the full conditional given

µ, x1:n to fail to be log-concave when a0 is sufficiently small and n = 1. In practice, it is

important to allow a0 to be small in order to obtain a less informative prior while holding

the prior mean a0/b0 fixed. Rejection sampling (RS) approaches have also been used by

other authors, for instance, Pradhan and Kundu (2011) use the log-concave RS method of

Devroye (1984), and Tsionas (2001) uses RS with a calibrated Gaussian proposal.

5 Derivation of the algorithm

Let f(a) = p(a | x1:n, µ, a0, b0) denote the true full conditional density, and let g(a) =

Gamma(a|A,B) for some A,B to be determined. The basic idea of the algorithm is to

choose A and B so that the first and second derivatives of log g match those of log f at a

point a near the mean of f . To find a point near the mean of f , the algorithm is initialized

with a choice of A and B based on an approximation of the gamma function (see the

supplementary material), and then iteratively, A and B are refined by matching the first

and second derivatives of log f at the mean A/B from the previous iteration.

It might seem like a better idea to use a point near the mode of f rather than the

mean, by analogy with the Laplace approximation. However, on this problem, empirical

8

evidence suggests that using the mean tends to provide better accuracy than the mode.

Using the mean also simplifies the algorithm since the mode of g is sometimes at 0, but

the derivatives of log f and log g blow up at 0. To interpret the limiting behavior of the

algorithm, we characterize its fixed points in the supplementary material.

5.1 Matching derivatives

First, to find the formulas for matching the first and second derivatives of log g to those of

log f at some point a > 0, note that

log g(a) = A log(B)− log Γ(A) + (A− 1) log(a)−Ba
∂

∂a
log g(a) =

A− 1

a
−B

∂2

∂a2
log g(a) = −A− 1

a2
.

Meanwhile, f(a) ∝ p(x1:n | a, µ, a0, b0) p(a | µ, a0, b0) and

p(x1:n | a, µ, a0, b0) =
n∏

i=1

(a/µ)a

Γ(a)
xa−1i exp

(
− (a/µ)xi

)
=

(a/µ)na

Γ(a)n
exp
(
(a− 1)R

)
exp
(
− (a/µ)S

)
=

ana

Γ(a)n
exp
(
−R− (T + n)a

)
(5.1)

where R =
∑n

i=1 log(xi), S =
∑n

i=1 xi, and T = S/µ−R + n log(µ)− n. Thus,

log f(a) = const + log p(x1:n | a, µ, a0, b0) + log p(a | µ, a0, b0)

= const + na log(a)− n log Γ(a)− (T + n)a+ (a0 − 1) log(a)− b0a
∂

∂a
log f(a) = n log(a) + n− nψ(a)− (T + n) +

a0 − 1

a
− b0 (5.2)

∂2

∂a2
log f(a) = n/a− nψ′(a)− a0 − 1

a2

since ψ(a) = ∂
∂a

log Γ(a) and ψ′(a) = ∂2

∂a2
log Γ(a). Setting ∂2

∂a2
log g(a) = ∂2

∂a2
log f(a) yields

A = a0 − na+ na2ψ′(a), (5.3)

and setting ∂
∂a

log g(a) = ∂
∂a

log f(a) yields

B = b0 +
A− a0
a

− n log(a) + nψ(a) + T. (5.4)

The updates to A and B in Algorithm 1 are defined by Equations 5.3 and 5.4.

9

5.2 Updating the matching point a

Given A and B such that Gamma(A,B) approximates f , we can choose a to approximate

the mean of f by setting it to the mean of Gamma(A,B), namely, a = A/B. By alternating

between updating a ← A/B, and updating A,B via Equations 5.3 and 5.4, we iteratively

refine the choice of a. This yields the loop in Algorithm 1. Convergence is assessed by

checking if the relative change in a is smaller than the tolerance ε, that is, if |aold− anew| <

εanew, or equivalently, |aold/anew − 1| < ε.

SUPPLEMENTARY MATERIAL

Gshape.jl: Source code implementing the algorithm described in the article, as well as

the code used to generate the figures in the article. (file type: Julia source code)

Supplement.pdf: Additional analysis and empirical results. (file type: PDF)

References

E. Damsleth. Conjugate classes for gamma distributions. Scandinavian Journal of Statis-
tics, pages 80–84, 1975.

L. Devroye. A simple algorithm for generating random variates with a log-concave density.
Computing, 33(3-4):247–257, 1984.

W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied Statis-
tics, 41(2):337–348, 1992.

R. B. Miller. Bayesian analysis of the two-parameter gamma distribution. Technometrics,
22(1):65–69, 1980.

T. P. Minka. Estimating a gamma distribution. Technical report, Microsoft Research, 2002.

B. Pradhan and D. Kundu. Bayes estimation and prediction of the two-parameter gamma
distribution. Journal of Statistical Computation and Simulation, 81(9):1187–1198, 2011.

Y. S. Son and M. Oh. Bayesian estimation of the two-parameter Gamma distribution.
Communications in Statistics—Simulation and Computation, 35(2):285–293, 2006.

E. G. Tsionas. Exact inference in four-parameter generalized gamma distributions. Com-
munications in Statistics—Theory and Methods, 30(4):747–756, 2001.

10

Supplementary material for “Fast and Accurate Approximation

of the Full Conditional for Gamma Shape Parameters”

Jeffrey W. Miller

S1 Fixed points of the algorithm

In this section, we analyze the limiting behavior of Algorithm 1 by characterizing its fixed

points. This provides a direct interpretation of the final point a at which we match the

first and second derivatives of log g to those of log f (in the notation of Section 5) in the

last iteration of the algorithm.

In Theorem S1.1, we show that a > 0 is a fixed point of Algorithm 1 if and only if

∂
∂a

log f(a) + 1/a = 0, and further, the algorithm is guaranteed to have a fixed point. It

might seem more natural to instead match derivatives at a point where ∂
∂a

log f(a) = 0,

however, empirical evidence indicates that this tends to yield a worse approximation.

To interpret this result, note that if f(a) were exactly equal to a gamma density, then

the mean of f would be the unique point a such that ∂
∂a

log f(a) + 1/a = 0. There is also a

natural interpretation of ∂
∂a

log f(a) + 1/a = 0 in terms of optimization with a logarithmic

barrier. Barrier functions are frequently used in optimization to deal with inequality con-

straints. Adding the logarithmic barrier function log a to the objective function log f(a)

allows one to smoothly enforce the constraint that a > 0. This leads to the penalized

objective function log f(a) + log a, and it turns out that the fixed points of Algorithm 1

coincide with the points where the derivative of this penalized objective equals 0.

Theorem S1.1. Let x1, . . . , xn > 0, where n ≥ 0, and let µ, a0, b0 > 0. For any a > 0,

∂
∂a

log f(a) + 1/a = 0 if and only if a is a fixed point of Algorithm 1. Further, there exists

a > 0 such that ∂
∂a

log f(a) + 1/a = 0.

Proof. First, we show that ∂
∂a

log f(a) + 1/a = 0 characterizes the fixed points. Define

d1(a) = ∂
∂a

log f(a) and d2(a) = ∂2

∂a2
log f(a). Recall from Section 5 that at each iteration,

S1

the algorithm updates a by setting a← A/B where A and B are defined such that d1(a) =

∂
∂a

log g(a) = (A−1)/a−B and d2(a) = ∂2

∂a2
log g(a) = −(A−1)/a2 for the current value of

a. Solving for A and B implies that A = −a2d2(a) + 1 and B = −ad2(a)− d1(a). Thus, a

is a fixed point of the algorithm precisely when a = A/B = (a2d2(a)− 1)/(ad2(a) + d1(a)),

or equivalently, by rearranging and canceling terms, when d1(a) + 1/a = 0.

To justify rearranging and cancelling, note that d1(a) and d2(a) are finite for all a ∈

(0,∞); see Equation 5.2. If a is a fixed point then ad2(a) + d1(a) 6= 0 since otherwise A/B

is infinite or undefined. On the other hand, if d1(a)+1/a = 0 then ad2(a)+d1(a) 6= 0, since

otherwise 1/a2 = d2(a) = n/a− nψ′(a)− a0−1
a2

, which would imply that n
(
ψ′(a)− 1/a

)
=

−a0/a2 < 0, but this is a contradiction since ψ′(a) − 1/a > 0 for all a > 0 (Qi and Guo,

2009, Eqn. 13).

Now, we show that there always exists a > 0 such that d1(a)+1/a = 0. By Equation 5.2,

d1(a) + 1/a = n log(a) + n− nψ(a)− (T + n) + a0/a− b0

= n
(

log(a)− ψ(a)
)

+ a0/a− b0 − T.

Below, we show that T ≥ 0. Assuming T ≥ 0 for the moment, it follows from the Inter-

mediate Value Theorem that d1(a) + 1/a = 0 for some a > 0, since log(a)− ψ(a)→∞ as

a→ 0 and log(a)− ψ(a)→ 0 as a→∞ (Alzer, 1997, Eqn. 2.2).

To verify that T ≥ 0, recall from Equation 5.2 that T = S/µ−R+ n log(µ)− n, where

S =
∑n

i=1 xi and R =
∑n

i=1 log(xi). By rearranging terms, T =
∑n

i=1

(
xi/µ−log(xi/µ)−1

)
,

and by straightforward calculus, one can check that x− log(x)− 1 ≥ 0 for all x > 0.

S2 Initializing via approximation of Γ(a)

To find good starting values of A and B, we consider approximations to the gamma function

Γ(a) in two regimes: (i) when a is large, and (ii) when a is small.

By Stirling’s approximation to Γ(a), we have that Γ(a)/aa ∼
√

2π a−1/2e−a as a→∞.

S2

(Here, h1(a) ∼ h2(a) as a → a∗ means that h1(a)/h2(a) → 1 as a → a∗.) Plugging this

into Equation 5.1, we get

p(x1:n | a, µ, a0, b0) ≈ (2π)−n/2an/2ena exp
(
−R− (T + n)a

)
∝ an/2 exp(−Ta),

and therefore, f(a) is approximately proportional to Gamma(a | a0 + n/2, b0 + T) when a

is large. This suggests initializing with A = a0 + n/2 and B = b0 + T , as in Algorithm 1.

As a → 0, we have Γ(a)/aa ∼ a−1, since aa → 1 and Γ(a)/a−1 = aΓ(a) = Γ(a + 1) →

Γ(1) = 1 as a→ 0. Plugging this into Equation 5.1, we see that

p(x1:n | a, µ, a0, b0) ≈ an exp
(
−R− (T + n)a

)
∝ an exp

(
− (T + n)a

)
,

and therefore, f(a) is approximately proportional to Gamma(a | a0 + n, b0 + T + n) when

a is small. This suggests initializing with A = a0 + n and B = b0 + T + n. While similar

to the large a version, empirically we find that this initialization tends to converge slightly

slower, by 1 iteration or so.

S3 Numerical integration for truth comparison

Since the true full conditional distribution is not analytically tractable, it is necessary

to approximate the integrals for the total variation distance and the Kullback–Leibler

divergences between the true and approximate distributions. To do this, we use a simple

adaptive numerical integration technique using an importance distribution to choose points

(basically, a deterministic importance sampler).

Specifically, suppose we want to approximate the integral
∫
h(a)g(a)da where g(a) is a

probability density on R, and h(a) is some function on R. Let G(a) be the CDF of g, and

let ai = G−1(ui) where ui = (i − 0.5)/N for i = 1, . . . , N . (If the inverse of G does not

exist, use the generalized inverse distribution function.) Then
∫
h(a)g(a)da ≈ 1

N

∑N
i=1 h(ai)

when N is large. This is similar to Monte Carlo, but is much more accurate due to using

equally-spaced points ui rather than random draws ui ∼ Uniform(0, 1).

S3

We apply this approximation with g(a) = Gamma(a|A,B), where A,B > 0 are the

output from Algorithm 1. Let f(a) = p(a | x1:n, µ, a0, b0) be the true full conditional. Since

the normalizing constant of f is unknown, write f(a) = f̃(a)/Z where f̃(a) can be easily

computed, and observe that

Z =

∫ ∞
−∞

f̃(a)da =

∫ ∞
0

f̃(a)

g(a)
g(a)da =

∫ ∞
−∞

w(a)g(a)da

where w(a) = f̃(a)/g(a) for a > 0 and w(a) = 0 for a ≤ 0, since g(a) > 0 when a > 0, and

f(a) = g(a) = 0 when a ≤ 0. Thus, Z ≈ 1
N

∑N
i=1w(ai).

Define f̂(a) = f̃(a)/
(

1
N

∑N
i=1w(ai)

)
, so that f̂(a) ≈ f(a). The integral for total varia-

tion distance can be written in the form
∫
h(a)g(a)da as follows:

dTV(f, g) =
1

2

∫ ∞
−∞
|f(a)− g(a)|da =

1

2

∫ ∞
0

∣∣∣f(a)

g(a)
− 1
∣∣∣g(a)da =

∫ ∞
−∞

h(a)g(a)da

where h(a) = 1
2
|f(a)/g(a)− 1| for a > 0 and h(a) = 0 for a ≤ 0. Thus, since ai > 0,

dTV(f, g) ≈ 1

N

N∑
i=1

1

2

∣∣∣ f̂(ai)

g(ai)
− 1
∣∣∣.

Similarly, dKL(f, g) ≈ 1

N

N∑
i=1

f̂(ai)

g(ai)
log

f̂(ai)

g(ai)
and dKL(g, f) ≈ 1

N

N∑
i=1

log
g(ai)

f̂(ai)
.

S4 Additional empirical results

Figures S1, S2, and S3 show the total variation distance for all the cases with a0 = 1,

a0 = 0.1, and a0 = 0.01, respectively. Figures S4 and S5 show the Kullback–Leibler

divergences for all the cases with a0 = 1.

References

H. Alzer. On some inequalities for the gamma and psi functions. Mathematics of Compu-

tation of the American Mathematical Society, 66(217):373–389, 1997.

F. Qi and B.-N. Guo. Refinements of lower bounds for polygamma functions.

arXiv:0903.1996, 2009.

S4

Figure S1: Total variation distance dTV(f, g) between the true full conditional f and the

approximate full conditional g, for every case with a0 = 1. The values shown are the

averages over the five independent data sets for each case. Note the scale at the right of

each plot.

S5

Figure S2: Total variation distance dTV(f, g) between the true full conditional f and the

approximate full conditional g, for every case with a0 = 0.1. The values shown are the

averages over the five independent data sets for each case. Note the scale at the right of

each plot.

S6

Figure S3: Total variation distance dTV(f, g) between the true full conditional f and the

approximate full conditional g, for every case with a0 = 0.01. The values shown are the

averages over the five independent data sets for each case. Note the scale at the right of

each plot.

S7

Figure S4: Kullback–Leibler divergence dKL(f, g) between the true full conditional f and

the approximate full conditional g, for every case with a0 = 1. The values shown are the

averages over the five independent data sets for each case. Note the scale at the right of

each plot.

S8

Figure S5: Kullback–Leibler divergence dKL(g, f) between the true full conditional f and

the approximate full conditional g, for every case with a0 = 1. The values shown are the

averages over the five independent data sets for each case. Note the scale at the right of

each plot.

S9

	Introduction
	Algorithm
	Performance assessment
	Approximation accuracy
	Speed of convergence

	Previous work
	Derivation of the algorithm
	Matching derivatives
	Updating the matching point a

	Fixed points of the algorithm
	Initializing via approximation of (a)
	Numerical integration for truth comparison
	Additional empirical results

