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Abstract. Feature selection can greatly improve performance and interpretability in machine
learning problems. However, existing nonparametric feature selection methods either lack theoretical
error control or fail to accurately control errors in practice. Many methods are also slow, especially
in high dimensions. In this paper, we introduce a general feature selection method that applies
integrated path stability selection to thresholding to control false positives and the false discovery
rate. The method also estimates q-values, which are better suited to high-dimensional data than
p-values. We focus on two special cases of the general method based on gradient boosting (IPSSGB)
and random forests (IPSSRF). Extensive simulations with RNA sequencing data show that IPSSGB
and IPSSRF have better error control, detect more true positives, and are faster than existing
methods. We also use both methods to detect microRNAs and genes related to ovarian cancer,
finding that they make better predictions with fewer features than other methods.

1. Introduction

Identifying the important features in a dataset can greatly improve performance and interpretability
in machine learning problems (Theng and Bhoyar, 2024). For example, in genomics, often only
a small fraction of genes (features) are related to a disease of interest (response). By identifying
these genes, scientists can save time and resources while gaining insights that would be difficult to
uncover otherwise (Theng and Bhoyar, 2024). A common form of feature selection is thresholding :
Given a function Φ that assigns a degree of importance Φ(j) to each feature j in a dataset, one

seeks a value λ such that the selected set Ŝλ = {j : Φ(j) ≥ λ} contains important features and its

complement, Ŝc
λ = {j : Φ(j) < λ}, does not. Choosing λ can be challenging, and many methods for

doing so come with few theoretical guarantees (Huynh-Thu et al., 2012).

Stability selection is a popular technique for improving the performance of feature selection algorithms
(Meinshausen and Bühlmann, 2010). However, its implementation relies on relatively weak upper
bounds on the expected number of false positives, E(FP), that is, on the expected number of
unimportant features that are selected. Recently, Melikechi and Miller (2024) proved that much
stronger bounds hold for integrated path stability selection (IPSS), which consequently identifies
more true positives in practice than stability selection. Until now, IPSS has only been applied to
parametric linear models, and its generalization to more complex models has not been explored.

In this work, we extend IPSS to nonlinear, nonparametric models by applying it to thresholding.
The result is a feature selection method with tight upper bounds on E(FP) that are characterized
by novel quantities called efp scores. In addition to controlling E(FP), efp scores also approximately
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control the false discovery rate (FDR) and estimate the q-values for each feature, which are more
reliable and robust than p-values in genomics and other high-dimensional settings (Storey and
Tibshirani, 2003). Lastly, by integrating over threshold values, IPSS for thresholding replaces the
problem of specifying a single threshold λ with the simpler task of specifying either a target E(FP)
or a target FDR.

We develop two specific instances of the general method: IPSS for gradient boosting (IPSSGB) and
IPSS for random forests (IPSSRF). In simulations, we find that IPSSGB has better false positive
control and identifies more true positives than nine other feature selection methods, and that both
IPSSGB and IPSSRF outperform IPSS for linear models when the linearity assumptions of the latter
are violated. More generally, IPSSGB and IPSSRF control E(FP) and FDR more accurately than
other stability selection and knockoff-based methods with theoretical error control. In Section 5, we
find that IPSSGB and IPSSRF effectively identify microRNAs and genes related to ovarian cancer,
achieving better predictive performance than other feature selection methods while using fewer
features. Both also run faster than leading methods.

Organization. In Section 2, we introduce efp scores, IPSS for thresholding in general, and IPSS for
gradient boosting and random forests. In Section 3, we describe several leading feature selection
methods, which are compared to IPSSGB and IPSSRF in a simulation study in Section 4. In Section 5,
we analyze ovarian cancer data. We conclude in Section 6 with a discussion.

2. Methods

We introduce efp scores (Section 2.1), review IPSS (Section 2.2), introduce IPSS for thresholding
(Section 2.3), and apply IPSS to gradient boosting and random forests (Section 2.4).

Notation. Throughout this work, n and p are the number of samples and features, respectively, and
Z1:n = (Z1, . . . , Zn) is a collection of independent and identically distributed (iid) samples Zi. (The
iid assumption is required for existing stability selection and IPSS theorems to hold.) For example,
in the regression setting, Zi = (Xi, Yi) where Xi ∈ Rp is a vector of features and Yi ∈ R is a response
variable, for i ∈ {1, . . . , n}. Features are identified by their indices j ∈ {1, . . . , p}, 1 is the indicator
function, that is, 1(A) = 1 if A is true and 1(A) = 0 otherwise, ⌊·⌋ is the floor function, and E and
P are expectation and probability, respectively.

2.1. efp scores. Suppose S ⊆ {1, . . . , p} is an unknown subset of true important features that we
wish to estimate using Z1:n. An efp (expected false positive) score is a function efpZ1:n

: {1, . . . , p} →
[0,∞) that depends on Z1:n and satisfies the following:

For all t ≥ 0, if Ŝ(t) = {j : efpZ1:n
(j) ≤ t} then E(FP(t)) ≤ t,

where E(FP(t)) = E|Ŝ(t) ∩ Sc| is the expected number of false positives in Ŝ(t). That is, the

estimator Ŝ(t) of S selects at most t false positives on average. A trivial example of an efp score is
efpZ1:n

(j) = p for all j. This corresponds to selecting either no features or all features. Specifically,

if t ∈ [0, p), then Ŝ(t) = ∅ and E(FP(t)) = 0 ≤ t, while if t ∈ [p,∞), then Ŝ(t) = {1, . . . , p} and
E(FP(t)) ≤ t, since the number of false positives is at most p.

The quality of an efp score is measured by the tightness of its bounds E(FP(t)) ≤ t. Better efp scores
have tighter bounds because tight bounds enable accurate false positive control via the parameter t.
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Accurate control in turn leads to more true positives in Ŝ(t) since weak bounds overestimate the
number of false positives, reducing the total number of features selected.

E(FP) and efp scores are related to two other quantities of significant interest: the false discovery
rate (FDR) and q-values. Informally, the false discovery rate is the expected ratio between the
number of false positives and the total number of features selected, FDR = E(FP/(TP + FP)), and
the q-value of feature j is the smallest FDR when j is selected (Storey, 2003). When p is large, as is
often the case in genomics, Storey (2003) showed that

pFDR(t) ≈ FDR(t) ≈ E(FP(t))

E|Ŝ(t)|
≤ t

E|Ŝ(t)|
, (2.1)

where pFDR(t) = E(FP(t)/|Ŝ(t)| | |Ŝ(t)| > 0) is the positive false discovery rate, and the inequality
holds by the definition of an efp score. It follows that the q-value of feature j satisfies

qj = inf
{t:efp(j)≤t}

pFDR(t) ≲ inf
{t:efp(j)≤t}

t

E|Ŝ(t)|
, (2.2)

where the equality is the definition of the q-value (here, efp(j) denotes the observed value of the
test statistic efpZ1:n

(j)) (Storey, 2003), and the approximate inequality ≲ holds by Equation 2.1.
Thus, when the efp score has tight bounds, the q-value of feature j is well-approximated by the
rightmost term in Equation 2.2, which is easily estimated in practice by replacing E|Ŝ(t)| with |Ŝ(t)|.
Similarly, by Equation 2.1, FDR(t) is approximately bounded by t/|Ŝ(t)|. So, as an alternative to
specifying the target E(FP) parameter t, one can control the FDR at level α by choosing the largest

set Ŝ(t) such that t/|Ŝ(t)| ≤ α. The largest such set is chosen to maximize true positives.

2.2. Integrated path stability selection. In Section 2.1, we showed that efp scores can be used to
control E(FP), the FDR, and q-values. In this section, we review integrated path stability selection
(IPSS), which constructs efp scores from arbitrary feature selection algorithms. The advantage of
IPSS over other stability selection methods is that its efp scores have the tightest E(FP) bounds
(Melikechi and Miller, 2024).

Let S be the unknown subset of important features as before, and let Ŝλ ⊆ {1, . . . , p} be an estimator
of S that depends on the data and a parameter λ > 0, with larger values of λ corresponding to
fewer features being selected. Importantly, Ŝλ and Ŝ(t) are distinct estimators of S: The former is a
baseline selection algorithm whose parameter λ will always appear as a subscript, and the latter is
an estimator based on efp scores whose parameter t will always appear as a functional argument.

Stability selection uses subsampling to construct Ŝ(t) from Ŝλ (Meinshausen and Bühlmann, 2010;
Shah and Samworth, 2013). Specifically, rather than estimate S using all of the data at once,

one randomly draws disjoint subsets A1, A2 ⊆ {1, . . . , n} of size ⌊n/2⌋ and evaluates Ŝλ(ZA1) and

Ŝλ(ZA2) at all λ in some interval Λ ⊆ (0,∞), where ZA = (Zi : i ∈ A). After B subsampling
iterations, the estimated selection probability π̂j(λ) is the proportion of times feature j is selected

over all 2B subsets, π̂j(λ) =
1
2B

∑2B
b=1 1(j ∈ Ŝλ(ZAb

)).

Melikechi and Miller (2024) prove that for any Λ ⊆ (0,∞), any probability measure µ on Λ, and
certain functions f : [0, 1]→ R, the function efpZ1:n

: {1, . . . , p} → [0, p] defined by

efpZ1:n
(j) = min

{
I(Λ)∫

Λf(π̂j(λ))µ(dλ)
, p

}
, (2.3)
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is a valid efp score, where I(Λ) is a parameter that is described below and in Section S1. While
several choices of f are possible in Equation 2.3, we always use f(x) = (2x− 1)3 1(x ≥ 0.5) because
the resulting efp score bounds E(FP(t)) ≤ t are the tightest of any existing version of stability
selection (Melikechi and Miller, 2024).

Additional details about IPSS, including descriptions of Λ and µ, an explicit form of I(Λ), and
a derivation of its efp scores, are provided in Section S1. Notably, we show that IPSS is largely
independent of the choices of I(Λ) and µ; we always use I(Λ) = 0.05 and µ(dλ) = z−1λ−1dλ where
z =

∫
Λ λ−1dλ is a normalizing constant. The latter corresponds to averaging over Λ on a log scale,

as is common when working with regularization and threshold values. The choice of ⌊n/2⌋ samples
in the subsampling procedure is needed for existing stability selection theorems (not just ours)
to hold. Thus, I(Λ) and µ are always fixed as above, and f and ⌊n/2⌋ are determined by theory.
Finally, numerous works have noted that the number of subsamples B is inconsequential provided it
is sufficiently large; B = 50 or 100 are common choices (Meinshausen and Bühlmann, 2010; Shah
and Samworth, 2013). With the above choices fixed, the user only needs to specify the target E(FP)
or FDR when implementing IPSS.

2.3. IPSS for thresholding.An importance function is a (possibly random) map ΦZ1:n : {1, . . . , p} →
R that uses the data to assign an importance score ΦZ1:n(j) to each feature. The possible randomness,
which is additional to the randomness in Z1:n, can come from, for example, random subsampling in
tree-based algorithms. Suppressing Z1:n from the notation for now, assume that Φ(j) < Φ(k) means
j is less important than k according to Φ. For example, in linear regression where Zi = (Xi, Yi)
with Yi = βTXi + ϵi and ϵi ∼ N (0, σ2), a viable importance function is the magnitude of the

estimated regression coefficient, Φ(j) = |β̂j |. Another class of importance functions—the focus in
this work—come from tree ensemble methods such as gradient boosted trees and random forests,
where again we are in the supervised setting Zi = (Xi, Yi) (Friedman, 2001; Breiman, 2001). Given
a collection of binary decision trees, T , these importance functions take the form

Φ(j) =
1

|T |
∑
T∈T

∑
v∈T

∆φ(v)1(j = jv) (2.4)

where the outer sum is over all trees T ∈ T , the inner sum is over all nodes v ∈ T , jv is the feature
used to split node v, and φ(v) measures the impurity of v. For regression, we use the squared error
loss, φ(v) =

∑
i∈v(Yi − Y v)

2/|v|, where v ⊆ {1, . . . , n} is identified with the subset of samples in

node v, and Y v =
∑

i∈v Yi/|v| is the empirical mean of the responses in v. For binary classification,
we use the Gini index, φ(v) = 2p0(v)p1(v) where, for a ∈ {0, 1}, pa(v) =

∑
i∈v 1(Yi = a)/|v| is the

proportion of responses in v that equal a. The change in impurity

∆φ(v) = φ(v)−
(
|vL|
|v|

φ(vL) +
|vR|
|v|

φ(vR)

)
is the impurity difference between v and its children, vL and vR. Large positive values of ∆φ(v)
indicate that the feature jv used to split node v successfully partitions the data in a manner that is
consistent with the objective of the tree. Importance scores naturally lend themselves to thresholding:
Given a Φ and a threshold λ, the selected set of features is Ŝλ = {j : Φ(j) ≥ λ}.

Algorithm S1 outlines IPSS for thresholding. The main steps are as follows: First, features are
preselected according to the procedure described in Section S1.4. This is a common preliminary step in
many feature selection algorithms. Next, importance scores are evaluated for the preselected features
using random, disjoint halves of the data. This process is repeated B times, yielding 2B importance
scores for each feature. We then construct a grid of λ values. The largest, λmax, is the maximum
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importance score across all features and all 2B sets of scores (hence, Ŝλmax = ∅). Next, starting from
λmin = λmax, we decrease λmin one step at a time, usually on a log scale, iteratively updating the
integral I([λmin, λmax]) at each step in the form of a Riemann sum approximation until I([λmin, λmax])
surpasses the cutoff C = 0.05. Once C is surpassed, the while loop stops and the feature-specific
selection probabilities and integrals are evaluated. The algorithm outputs the efp scores for each
feature. Given a target E(FP), t, the set of selected features is Ŝ(t) = {j : efpZ1:n

(j) ≤ t}.

2.4. IPSSGB and IPSSRF.We consider two instances of the general method: IPSSGB uses gradient

boosting for the baseline algorithm Ŝλ, and IPSSRF uses random forests for Ŝλ. All other IPSS
parameters are identical, except we use B = 50 for IPSSRF and B = 100 for IPSSGB. The latter
led to slightly more stable results with hardly any increase in runtimes (no such improvement was
observed for IPSSRF).

In all that follows, random forests are implemented with scikit-learn (Pedregosa et al., 2011) and
gradient boosting with XGBoost (Chen and Guestrin, 2016). For random forests, all parameters are
set to their default settings except for the proportion of features considered when splitting each
node (called max features in scikit-learn and often mtry elsewhere), which we change from 1 to
1/3. This is a standard choice (Biau and Scornet, 2016) and led to an approximately 3-fold speedup
in IPSSRF without any discernible effect on the results. For gradient boosting, we also change the
proportion of features considered at each split from 1 to 1/3. Aside from this, the only non-default
parameter is the maximum depth of each tree, which we change from 6 to 1, making each tree a
stump. This significantly improved the performance of IPSSGB, both in terms of speed and feature
selection. Finally, while many different importance functions exist for gradient boosting and random
forests, we use mean decrease impurity, Equation 2.4, with the squared error loss for regression and
the Gini index for classification, as defined in Section 2.3. Experimentation with other importance
functions showed similar results, though a more detailed study of IPSS with different importance
functions is a potentially direction for future work.

2.4.1. Further background. The seminal work on gradient boosting is Friedman (2001). For random
forests, we refer to the original work of Breiman (2001), and to Biau and Scornet (2016) for an
excellent review with a detailed description of importance scores. Gradient boosting, random forests,
and their importance scores are also detailed in Hastie et al. (2009). Finally, our formulation of
tree-based scores partly follows Louppe et al. (2013), who provide a clear and concise formulation of
these quantities.

3. Other methods

We describe several feature selection methods that are compared to IPSSGB and IPSSRF in Sections 4
and 5. We selected these methods due to their popularity and superior performance relative to other
methods in several comparison studies (Degenhardt et al., 2019; Sanchez-Pinto et al., 2018; Speiser
et al., 2019).

3.1. Methods with error control.The closest method to IPSSGB in terms of its underlying
approach is that of Hofner et al. (2015), referred to here as SSBoost. Unlike IPSSGB—which uses
importance scores from gradient boosting—SSBoost applies stability selection to choose the number
of features used per boosting run. Furthermore, IPSSGB uses IPSS to construct efp scores, whereas
SSBoost uses a version of stability selection introduced by Shah and Samworth (2013). This is
perhaps the most significant difference since the efp scores for IPSS have much tighter bounds than
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those for other forms of stability selection (Melikechi and Miller, 2024). From a practical standpoint,
this causes other versions of stability selection to identify fewer important features than IPSS for
the same target E(FP).

IPSS has previously been used by Melikechi and Miller (2024) with lasso for regression and ℓ1-
regularized logistic regression for classification (Tibshirani, 1996; Lee et al., 2006). These methods,
abbreviated as IPSSL, are part of a more general class of ℓ1-regularized estimation techniques to
which stability selection is commonly applied (Meinshausen and Bühlmann, 2010), namely,

β̂ = argmin
β∈Rp

n∑
i=1

L(Yi, βTXi) + λ

p∑
j=1

|βj |,

where L is a log-likelihood function and λ > 0 controls the strength of the ℓ1 penalty. By contrast,
since decision trees are nonparametric, neither IPSSGB nor IPSSRF assume an underlying model.
Furthermore, unlike linear regression and logistic regression, decision trees can effectively capture
nonlinear relationships in data. The nonlinear and nonparametric nature of decision trees motivated
our extension of IPSS to gradient boosting and random forests. In Section 4, we find that both
methods significantly outperform IPSSL in the presence of nonlinearity.

Another method to which we compare is knockoff boosted trees (KOBT) (Jiang et al., 2021). KOBT
applies the model-X knockoff framework of Candes et al. (2018) to boosted trees to obtain a method
with theoretical FDR control. We use the R package KOBT, preselecting bound = 200 features and
generating num = 100 knockoff matrices. The knockoff type is shrunken Gaussian. These choices
were made to balance performance and runtime. Computation times were much longer for larger
values of bound or num, or when using a different version of KOBT that employs principal components
to avoid the Gaussian assumption. Moreover, we found that these computationally more expensive
choices did not noticeably improve performance or FDR control.

We also tested the method of Coleman et al. (2022), which achieves theoretical error control by using
random forests for hypothesis testing. However, one test run with default parameters on simulated
data with 500 samples, 500 features, and 20 true features took over 51 minutes, returning 15 true
positives and 43 false positives. By contrast, IPSSGB with a target E(FP) of 2 took 11 seconds and
returned 10 true positives and 0 false positives on the same data. This method is omitted from our
study because its performance does not appear to justify its excessive runtime.

3.2. Methods without error control.We also compare to several popular methods without
theoretical error control: Boruta (Kursa et al., 2010), random forests (RF) (Breiman, 2001), Vita
(Janitza et al., 2018), VSURF (Genuer et al., 2010), and XGBoost (Chen and Guestrin, 2016). Boruta,
Vita, and VSURF use random forests. In terms of performance, Speiser et al. (2019) found Boruta

and VSURF were among the best out of 13 random forest-based methods, and Degenhardt et al.
(2019) found Boruta and Vita outperformed 5 other methods on several metrics.

Table 1 summarizes the methods. Details regarding the implementation and choice of settings are
as follows. Hofner et al. (2015) provide code for SSBoost that combines the R packages mboost
(Hofner et al., 2014) and stabs (Hofner and Hothorn, 2017) in the form of a worked example, but
the mboost implementation of boosting was prohibitively slow in the dimensions we consider. By
adapting their code to use XGBoost in place of mboost for boosting and by preselecting features
exactly as we do for IPSSGB (Section S1.4), we were able to reduce SSBoost runtimes considerably
with no apparent change in results. The XGBoost parameters used for SSBoost are the same as
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Method Package Error control Base method Non-default settings
IPSSGB ipss (Python) ✓ Boosting —
IPSSRF ipss (Python) ✓ Random forest —
IPSSL ipss (Python) ✓ Lasso —

SSBoost
XGBoost (Python)

✓ Boosting τ = 0.75
with stabs (R)

KOBT KOBT (R) ✓ Boosting
num = 100, bound = 200,

type = shrink
Boruta Boruta (R) ✗ Random forest —
RF scikit-learn (Python) ✗ Random forest —
Vita vita (R) ✗ Random forest p-value threshold = 0
VSURF VSURF (R) ✗ Random forest VSURF pred

XGBoost XGBoost (Python) ✗ Boosting —

Table 1. Feature selection methods. Packages, when available, are listed with the
language used to implement them in parentheses. Non-default settings are elaborated
upon in Sections 3.1 and 3.2. For methods with no non-default settings, we use the
default settings in their respective packages.

those used for IPSSGB; specifically, all XGBoost parameters are set to their default values except the
proportion of features considered at each split (changed from 1 to 1/3) and the depth of each tree
(changed from 6 to 1). For the stability selection part of SSBoost we use the default parameters in
stabs, and the selection threshold is set to τ = 0.75, which is the middle of the interval (0.6, 0.9)
recommended by Meinshausen and Bühlmann (2010). For Vita, we set the p-value threshold to 0,
and for VSURF we use the function VSURF pred rather than VSRUF interp to select the final set of
features (Genuer et al., 2010); both choices correspond to as few features as possible being selected
under the constraints of the respective algorithms, a favorable quality due to the sparsity in our
forthcoming studies. For XGBoost and RF, we run the respective algorithms on the full dataset with
default parameters, then select the top ranked features by their importance scores.

4. Simulation study

In this section, we conduct a simulation study to evaluate the performance of the methods in Table 1
when the true set of important features is known. To make the simulations more realistic, we use
features from real data rather than generating them from known distributions. Specifically, given n
and p, in each trial we randomly select n samples and p features from RNA sequencing (RNA-seq)
data from 569 ovarian cancer patients (samples) and 6426 genes (features) (Vasaikar et al., 2018).
This publicly available dataset, part of The Cancer Genome Atlas (Weinstein et al., 2013), was
chosen because it is high dimensional and the features follow a variety of distributions. For instance,
Figure 2 shows the standardized empirical distributions of five randomly selected genes, which, from
left to right, are relatively flat, skewed left, approximately Gaussian, skewed right, and contain
outliers. Furthermore, the genes exhibit complex correlation structures, with maximum and average
absolute pairwise correlations of approximately 0.95 and 0.17 after standardization, respectively.

4.1. Simulation details.Algorithm S2 describes the simulation procedure, which is also illustrated
in Figure 1. In all steps, “randomly select” means select a parameter uniformly at random from
its domain. The general outline is as follows: First, randomly select an n-by-p submatrix X of the
full RNA-seq dataset and standardize its columns to have mean 0 and variance 1. Next, randomly
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Xfull X XS

XSc

XS1

XS2

XS3

ξ1

ξ2

ξ3

y =
∑3

g=1 fθg(ξg) + ϵ

fθ1
fθ2
fθ3

Figure 1. Simulating the response. Random rows and columns are selected from
the full RNA-seq dataset to create an n-by-p design matrix X, whose columns are
then split into important features, XS , and unimportant features, XSc . The columns
of XS are further partitioned into G groups; the above figure shows the case G = 3.
The features in each group are summed to obtain ξg, and a different realization fθg of
fθ is applied to ξg for each g. The response is the sum of the resulting group-specific
signals, plus noise.

Figure 2. Distributions of five genes from the RNA-seq dataset.

select a true subset of ptrue important features S, and partition it into G groups, S1, . . . , SG. A
different realization of a randomized nonlinear function fθg , defined in Equation S2.1, is applied to

the standardized sum ξg = (ξ̂g − ξ̄g)/σ̄g of the features in each group Sg, where ξ̄g and σ̄g are the

empirical mean and standard deviation of ξ̂g =
∑

j∈Sg
Xj . The resulting values are summed over

all groups to generate a signal η =
∑G

g=1 fθg(ξg), and noise is added to this signal to generate a
response y. This scheme produces data with highly complex interactions between features and the
response, going well beyond the additive setting y =

∑
j∈S fj(Xj) + ϵ.

Regression and classification data are simulated with p = 500, 2000, and 5000 features for a total of six
experiments. Each experiment consists of 100 trials, outlined in Algorithm S2. Each trial uses n = 500
samples and |S| = ptrue important features. For regression, the response is y =

∑G
g=1 fθ(ξg) + ϵ,

where ϵ ∼ N (0, σ2I) and the variance σ2 is selected according to a specified signal-to-noise ratio
(SNR). For classification, we draw yi ∼ Bernoulli(πi) where πi = 1/(1 + exp(−uηi)). A new ptrue
and SNR (or u), as well as new sets of samples, features, and important features, are drawn prior to
each trial, with ptrue, SNR, and u chosen according to Table S1. The many sources of randomness
in our setup are introduced so that the simulations cover a wide range of settings.

4.2. Simulation results. Figures 3, 4, and 5 show the results. The empirical false discovery and
true positive rates are FDR = FP/(TP + FP) and TPR = TP/(TP + FN), where FP, TP, and FN
are the number of false positives, true positives, and false negatives, respectively. The upper left
(high TP or TPR and low FP or FDR) corresponds to better performance in Figures 3 and 4. The
ability of the different methods to control E(FP) (Figure 3) and FDR (Figure 4) at their target
values is shown when applicable. Specifically, SSBoost and KOBT provide theoretical control of E(FP)
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and FDR, respectively, while the IPSS methods can be specified to control either E(FP) or FDR
(Section 2.2). In Figure 3, the dashed vertical line signifies a target E(FP) of 3, with ✖ symbols
showing the average FP and TP for the relevant methods at this target value. In particular, the ✖
for a method with perfect E(FP) control should lie on the dashed vertical line. Similarly, the ✖ and
★ symbols in Figure 4 correspond to target FDRs of 0.1 and 0.3, respectively.

IPSSGB has the best performance overall. Its curves are the farthest to the upper left in every plot in
Figures 3 and 4, and it has the best control of both E(FP) and FDR. In Figure 3, for example, the
✖ for IPSSGB is the closest to the vertical dashed line in all experiments, and similarly in Figure 4.
Furthermore, IPSSGB identifies the most true positives, both in terms of average TP and average
TPR. Notably, at a target E(FP) of 3 and a target FDR of 0.3, IPSSGB has the largest average TP
and highest TPR in nearly every setting, while having significantly fewer false positives than most
other methods. Figure 5 also shows that IPSSGB is one of the fastest methods, running in under 20
seconds in all settings.

Among the other methods with theoretical error control, IPSSRF performs well in terms of identifying
true positives while controlling false positives, though not as well as IPSSGB. IPSSL, whose model
assumptions are violated, performs poorly, neither controlling false positives at the target E(FP) or
FDR levels, nor identifying many true ones. SSBoost, whose curves are obtained by varying the
target E(FP) between 0 and 10, has few false positives but also few true positives. Observe, for
example, that the ✖ for SSBoost in Figure 3 is always significantly lower than those for IPSSGB
and IPSSRF, despite all three methods having the same target E(FP). This is due in part to the
weakness of the efp scores used by SSBoost relative to those used by IPSS (Melikechi and Miller,
2024). KOBT performs poorly in general; most notably, its actual FDRs far exceed its target FDRs of
0.1 and 0.3 in all of the simulation settings in Figure 4. KOBT also runs in around 90 seconds, making
it one of the slowest methods. With the exception of IPSSL for classification, all of the stability
selection-based methods run in at most 40 seconds, often less.

The absence of error control for Boruta and Vita is clearly apparent in Figures 3 and 4. Both
methods usually have FDRs over 0.75—often 20 or more false positives on average—far surpassing
IPSSGB and IPSSRF. Despite this, Boruta and Vita identify fewer true positives than IPSSGB with a
target E(FP) of 3 and, in many cases, IPSSGB with a target FDR of 0.3. The RF and XGBoost curves
are obtained by increasing the number of features selected, as ranked by their importance scores,
from 0 to 30; that is, the first nonzero point along the curve is obtained by keeping only the feature
with the highest importance score, the second point is obtained by keeping the features with the
two largest importance scores, and so on. Interestingly, RF and XGBoost significantly underperform
IPSSGB and IPSSRF in terms of true and false positives across the whole 0 to 30 range, indicating
that IPSS is able to identify important features that simple thresholding of the baseline algorithm
cannot, no matter how many features are kept. In terms of runtime, RF and XGBoost run quickly
except in the p = 5000 regression experiment. Boruta and Vita are typically slower than the IPSS
methods, and this disparity grows with the number of features.

5. Ovarian cancer

We apply IPSSGB, IPSSRF, and the other methods in Table 1 to microRNA (miRNA) data from
the cohort of ovarian cancer patients described in Section 4 (Vasaikar et al., 2018). We report two
studies here; see Section S3 for results from additional studies, including analyses of the RNA-seq
data from this cohort. In the first study, the features are the 588 miRNAs and the response variable
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Figure 3. TP versus FP for the six simulation experiments. Columns correspond
to the number of features, p, and the top and bottom rows correspond to regression
and classification, respectively. Curves for the three IPSS methods and SSBoost

are obtained by varying the target E(FP), with ✖ showing results when the target
E(FP) is 3. The KOBT curve is obtained by varying the target FDR, and the RF and
XGBoost curves are obtained by increasing the number of features selected (as ranked
by their importance scores) from 0 to 30. The remaining methods, indicated by the
● symbols, do not have curves because they select fixed sets of features.

is prognosis, which is defined as whether the patient was still alive at the time of last follow-up.
In the second study, the response is one of the miRNAs, miR-150, identified as important in the
first stage, and the features are the remaining miRNAs. Thus, since miRNA measurements are
continuous, the first study is a binary classification problem, and the second study is regression.

All analyses, both here and in Section S3, are conducted using 10-fold cross-validation (CV) as
follows. First, all patients with missing values are removed, resulting in n = 442 and n = 453 for the
first and second studies, respectively. The remaining patients are evenly partitioned into 10 groups.
In each of the 10 CV steps and for each selection method, one group of patients is set aside (the
test set), and a set of miRNAs is selected by applying the method to the data in the remaining
groups (the training set). For the IPSS methods, we also compute the efp scores and q-values of each
miRNA on the training set. Next, for each method we construct three predictive models—a linear
model (either lasso or ℓ1-regularized logistic regression), a random forest model, and a gradient
boosting model—using only the miRNAs selected by that method. Each model is then used to
predict responses from the test set, and the smallest of the three prediction errors is recorded. We
implement all three models so that no method has an inherent advantage over another. For example,
the miRNAs selected by IPSSL may be better suited to minimizing error in a linear model than
those selected by IPSSGB, while the miRNAs selected by IPSSGB may be better suited to minimizing
error in a gradient boosting model than those selected by IPSSL. The linear and random forest
predictive models are implemented with scikit-learn (Pedregosa et al., 2011) and gradient boosting
with XGBoost (Chen and Guestrin, 2016), always with default parameters. For continuous responses,
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Figure 4. TPR versus FDR for the six simulation experiments. Results are similar
to those in Figure 3, except now we show the FDR and TPR rather than E(FP) and
E(TP), and curves for the three IPSS methods and KOBT are obtained by varying
the target FDR, with ✖ and ★ showing results when the target FDR is 0.1 and 0.3.

Figure 5. Runtimes for the six experiments. Columns correspond to the number of
features, p, and the top and bottom rows correspond to regression and classification,
respectively. Orange lines denote median runtime and whiskers extend to 1.5 times
the interquartile range.

in each CV step we subtract the mean of the training responses from all responses, training and
test, and scale all responses by the empirical standard deviation of the training responses.
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Table 2 shows the top five miRNAs related to prognosis for each IPSS method, as ranked by their
median q-values over the 10 CV steps. In Section S3, we further investigate the findings in Table 2
via a literature review. Notably, we find numerous studies that link several of the top miRNAs
selected by IPSSGB and IPSSRF, namely miR-30d, miR-93, miR-96 and miR-150, to ovarian cancer
prognosis. Among these, IPSSL only ranks miR-96 in its top five, and we found little literature
identifying its top-ranked feature, miR-1-2, to ovarian cancer. The results of the second study,
identifying miRNAs that are related to miR-150, are shown in Figure 6. Here, IPSSGB achieves the
lowest average prediction error over the 10 cross-validation steps of any method, while using just 15
to 20 miRNAs, achieving lower prediction error than even the method that uses all 587 miRNAs to
predict miR-150 levels (the dashed gray line in Figure 6). Figure 7 is similar to Figure 6, except
now the response is tumor purity, the proportion of cancerous cells in a tissue sample. Here, we see
IPSSGB performs best with the fewest features, while the top 30 features selected by IPSSRF achieve
essentially identical predictive performance to the method that uses all 588 miRNAs.

IPSSGB IPSSRF IPSSL

miR-96(0.2) miR-1270(0.27) miR-1-2(0.07)
miR-150(0.28) miR-93(0.36) miR-1270(0.08)
miR-1270(0.43) miR-30d(0.36) miR-96(0.09)
miR-30d(0.43) miR-342(0.36) miR-342(0.09)
miR-1301(0.46) miR-150(0.41) miR-934(0.12)

Table 2. MicroRNA and prognosis. The top five miRNAs related to prognosis
according to each IPSS method, as ranked by their median q-values over the 10
cross-validation steps.

6. Discussion

We have demonstrated that IPSSRF and IPSSGB achieve superior results in terms of false positive
control, detecting true positives, and computation time. More broadly, IPSS for thresholding
is a general framework whose theory and implementation apply to arbitrary importance scores.
For instance, examples of other scores include p-values (with smaller p-values indicating greater
importance), Shapley values (used to quantify the contribution of individual features to neural
networks and other machine learning models), and loadings in principal components analysis (which
quantify the contribution of each feature to a given principal component). The main practical
limitation to consider is the cost of computing the relevant importance scores, since IPSS must
compute these scores on many random subsamples of the data.

We have also introduced efp scores and shown that, in addition to controlling E(FP), they can
control the FDR and estimate q-values. Storey (2003) showed that q-values admit a Bayesian
interpretation, suggesting a link between IPSS and Bayesian feature selection that could be an
interesting line of future work. It would also be interesting to study whether q-values estimated
from efp scores are more accurate than q-values estimated from other quantities, such as p-values
(Storey and Tibshirani, 2003).

Finally, a more ambitious goal is to extend IPSS to unsupervised feature selection problems (that
is, feature selection when there is no response variable) and non-iid data. The PCA-based scores
mentioned above provide at least one way to apply IPSS in an unsupervised setting. Developing a
rigorous approach to IPSS for non-iid data could provide novel methods for nonparametric feature
selection with error control for time series, networks, and longitudinal data.
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Figure 6. MicroRNA and miR-150. The horizontal and vertical axes show the
average number of features selected and the average prediction error over the 10
cross-validation steps, respectively. Curves for the IPSS methods and SSBoost are
obtained by varying the target E(FP) between 1/8 and 10. Points for these methods
correspond to target E(FP)s of 1/8, 1/4, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, with larger
target E(FP)s generally corresponding to more features selected and lower prediction
error. Similarly, points for KOBT correspond to target FDRs of 0.01, 0.025, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, and 0.4. The points for RF and XGBoost correspond to selecting
between 1 and 30 features (hence, the number of features selected by these two
methods is deterministic). Boruta and Vita do not have error control parameters
and are therefore indicated by single points rather than curves.

Data availability and code

All of the code and data used in this work are freely available at https://github.com/omelikechi/ipss.
A Python package for implementing integrated path stability selection, including IPSSGB and IPSSRF,
is freely available at https://pypi.org/project/ipss/
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Figure 7. MicroRNA and tumor purity. This is the same as Figure 6, except now
the response is tumor purity, the proportion of cancerous cells in a sample. We
again see the IPSS methods outperform other methods, achieving similar or better
predictive performance with relatively few features.
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SUPPLEMENTARY MATERIAL FOR “FAST NONPARAMETRIC FEATURE

SELECTION WITH ERROR CONTROL USING INTEGRATED PATH

STABILITY SELECTION”

OMAR MELIKECHI1,∗, DAVID B. DUNSON2, AND JEFFREY W. MILLER1

S1. Additional IPSS details

We provide an algorithm that implements integrated path stability selection (IPSS) for thresholding
(Section S1.1), elaborate on the theory of IPSS and its connection to efp scores (Section S1.2), and
describe and study the IPSS parameters in greater detail (Section S1.3).

S1.1. Algorithm.Algorithm S1, discussed in Section 2.3, implements IPSS for thresholding. The
number of grid points used to evaluate the integrals in Algorithm S1 is always K = 100. Like many
of the other IPSS parameters, K is inconsequential provided it is sufficiently large; in our experience,
values greater than 25 suffice. This is because the function f(x) = (2x− 1)3 1(x ≥ 0.5), the paths
λ 7→ π̂j(λ) (which are monotonically increasing functions of λ), the quantity I(Λ), and the measure
µ are all very numerically stable.

Algorithm S1 Integrated path stability selection for thresholding

Input: Data Z1:n, importance function Φ, number of grid points K, and number of iterations B.
1: (Optional) Preselect features, as described in Section S1.4.
2: for b = 1, . . . , B do
3: Randomly select A2b−1, A2b ⊆ {1, . . . , n} with A2b−1 ∩A2b = ∅ and |A2b−1| = |A2b| = ⌊n/2⌋.
4: Evaluate ΦZA2b−1

(j) and ΦZA2b
(j) for j = 1, . . . , p.

5: end for
6: Set λmax = max{ΦZAb

(j) : 1 ≤ b ≤ 2B, 1 ≤ j ≤ p}.
7: Define a λ grid with upper bound λmax, e.g., λmax = λ0 > λ1 > · · · > λK = λmax/10

8.
8: Initialize λmin ← λmax and k ← 0.
9: while I([λmin, λmax]) < 0.05 do

10: Ŝλ(ZAb
) = {j : ΦZAb

(j) ≥ λ} for b = 1, . . . , 2B.

11: λmin ← λk+1 followed by k ← k + 1.
12: end while
13: Λ← [λmin, λmax].

14: Evaluate estimated selection probability π̂j(λ) =
1
2B

∑2B
b=1 1

(
j ∈ Ŝλ(ZAb

)
)
for j = 1, . . . , p.

15: Evaluate the integral
∫
Λf(π̂j(λ))µ(dλ) for j = 1, . . . , p.

Output: efpZ1:n
(j) = I(Λ)/∫Λf(π̂j(λ))µ(dλ) for j = 1, . . . , p.

1Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
2Department of Statistical Science, Duke University, Durham, NC
∗Corresponding author: omar.melikechi@gmail.com
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S1.2. Theory: From IPSS to efp scores.Given the estimated selection probabilities π̂j , an
interval Λ ⊆ (0,∞), a probability measure µ on Λ, a function f : [0, 1] → R, and a threshold τ ,
Melikechi and Miller (2024) define the set of features selected by IPSS by

ŜIPSS(τ) =
{
j :

∫
Λf(π̂j(λ))µ(dλ) ≥ τ

}
. (S1.1)

The integral incorporates information about the selection probabilities over all of Λ, eliminating
the need to select features based on individual λ values. The function f transforms the selection
probabilities for better performance. Only certain choices of f are known to yield valid efp scores.
Melikechi and Miller (2024) prove the following result (see Theorem 4.1 therein). Let q(λ) =

E|Ŝλ(Z1:⌊n/2⌋)| be the expected number of features selected by Ŝλ on half the data and, for m ∈ N,
define hm(x) = (2x− 1)m 1(x ≥ 0.5). For any Λ and µ, if

max
j∈Sc

P
(
j ∈

m′⋂
b=1

(
Ŝλ(ZA2b−1

) ∩ Ŝλ(ZA2b
)
))
≤ (q(λ)/p)2m

′
, (S1.2)

for all λ ∈ Λ and m′ ∈ {1, . . . ,m}, then IPSS with f = hm satisfies

E|ŜIPSS(τ) ∩ Sc| ≤ Im(Λ)

τ
(S1.3)

for a constant Im(Λ) whose explicit form is given in Theorem 4.1 in Melikechi and Miller (2024).

Thus, setting efpZ1:n
(j) = Im(Λ)/

∫
Λ hm(π̂j(λ))µ(dλ) and Ŝ(t) = {j : efpZ1:n

(j) ≤ t}, we have

Ŝ(t) =

{
j :

Im(Λ)∫
Λ hm(π̂j(λ))µ(dλ)

≤ t

}
=

{
j :

∫
Λhm(π̂j(λ))µ(dλ) ≥

Im(Λ)

t

}
= ŜIPSS

(
Im(Λ)

t

)
and hence

E(FP(t)) = E|Ŝ(t) ∩ Sc| = E
∣∣ŜIPSS

(Im(Λ)
t

)
∩ Sc

∣∣ ≤ t,

where the inequality holds by Equation S1.3.

The above derivation shows how valid efp scores for IPSS with f = hm are obtained under the
conditions of Theorem 4.1 in Melikechi and Miller (2024). In particular, we see that by defining

efp scores as above, the set Ŝ(t) = {j : efpZ1:n
(j) ≤ t} is identical to ŜIPSS(τ) when τ = Im(Λ)/t.

The main condition of the theorem, Equation S1.2, upper bounds the maximum probability that an
unimportant feature is simultaneously selected on both halves of the data, ZA2b−1

and ZA2b
, in m′

independent tries; see Melikechi and Miller (2024) for details. The following result, part of Theorem
4.2 in Melikechi and Miller (2024), gives the form of I3(Λ), which corresponds to the function f = h3
that is used for IPSS throughout the main text.

Theorem S1.1. Let µ be a probability measure on Λ ⊆ (0,∞), let τ ∈ (0, 1], and define ŜIPSS(τ)
as in Equation S1.1 with f = h3. If Equation S1.2 holds for all λ ∈ Λ and m′ ∈ {1, 2, 3}, then

E(FP(τ)) ≤ 1

τ

∫
Λ

(
q(λ)2

B2p
+

3q(λ)4

Bp3
+

q(λ)6

p5

)
µ(dλ), (S1.4)

where E(FP(τ)) = E|ŜIPSS(τ) ∩ Sc| is the expected number of false positives selected by IPSS.

For some intuition about the bound in Equation S1.4, observe that taking B →∞ yields E(FP(τ)) ≤
τ−1

∫
Λ

(
q(λ)6/p5

)
µ(dλ). In comparison, other versions of stability selection upper bound E(FP(τ))

by q(λ)2/p (Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013), which is orders of
magnitude larger than q(λ)6/p5 when q(λ)≪ p, as is often the case for most values of λ in Λ. This
and the contribution of B in the denominators in Equation S1.4 largely explain the strength of
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the IPSS bound in Theorem S1.1 relative to previous bounds, and hence the tightness of the efp
scores of IPSS with f = h3 relative to the efp scores of other versions of stability selection. Further
theoretical and empirical comparisons between Equation S1.4 and other stability selection bounds
are available in Melikechi and Miller (2024).

S1.3. Parameters.As noted above, the function f(x) = (2x−1)3 1(x ≥ 0.5) used when implement-
ing IPSS in the main text is determined by the availability and strength of the theoretical bound in
Theorem S1.1. Similarly, the choice of ⌊n/2⌋ samples used to construct the selection probabilities
π̂j(λ) are required for stability selection theorems (not just Theorem S1.1) to hold, and it is unclear
how to adapt their proofs to accommodate other sample sizes. Thus, f and ⌊n/2⌋ are theoretical
necessities rather than free parameters.

The interval Λ = [λmin, λmax] is determined by setting λmax large enough that no features are
selected (see, for example, Line 6 in Algorithm S1), and setting λmin such that the integral

I(Λ) =
∫
Λ

(
q(λ)2

B2p
+

3q(λ)4

Bp3
+

q(λ)6

p5

)
µ(dλ),

in Equation S1.4 is equal to a fixed cutoff C. As noted in the main text, we always use C = 0.05,
but results are largely independent of this choice (Figures S1 and S2). Figures S3 and S4 show IPSS
is also indifferent to µ. Here, the parameter δ determines the measure µδ(dλ) = z−1

δ λ−δdλ, where
the normalizing constant zδ is easily computed in closed form (Melikechi and Miller, 2024). The
probability measure that we always use in the main text, µ1, averages over Λ on a log scale, while µ0

averages on a linear scale. The insignificance of C and µ is unsurprising: Intuitively, the efp scores
for IPSS depend primarily on f and the integrand in I(Λ). The actual value of I(Λ) is much less
important since the efp scores depend on the relative quantities I(Λ)/

∫
Λ f(π̂j(λ))µ(dλ) rather than

on I(Λ) itself. Since C and µ only affect the value of the bound, not the integrand, they contribute
little to the actual performance of IPSS.

Figure S1. Dependence on cutoff (regression). IPSSGB is applied to regression
data simulated as in Section 4 for cutoff values C ∈ {0.025, 0.05, 0.075, 0.1, 0.15},
averaged over 100 trials. There is little difference between the average true and false
positive values for different choices of C over a wide range of target E(FP) values.
Figures S2, S3, and S4 show similar results for classification and dependence on µ.

S3



Figure S2. Dependence on cutoff (classification). IPSSGB is applied to classification
data simulated as in Section 4 for cutoff values C ∈ {0.025, 0.05, 0.075, 0.1, 0.15},
averaged over 100 trials. There is little difference between the average true and false
positive values for different choices of C over a wide range of target E(FP) values.

Figure S3. Dependence on µ (regression). IPSSGB is applied to regression data
simulated as in Section 4 for cutoff values δ ∈ {0, 0.5, 1, 1.5, 2}, averaged over 100
trials, where δ determines to the measure µδ(dλ) = z−1

δ λ−δdλ. There is little difference
between the average true and false positive values for different choices of δ over a
wide range of target E(FP) values.

S1.4. Preselection.Many feature selection algorithms, including most in Section 3, employ some
form of screening, or preselection, as an initial step in the selection process. This can be especially
helpful in high dimensions for reducing noise and runtime. When p > 200, we preselect features for
IPSSGB, IPSSRF, and the other stability selection-based methods (IPSSL and SSBoost, detailed
below) by running their respective selection algorithms on the full dataset three times—that is,
computing ΦZ1:n three times—and keeping only the ppre = max{200, p/20} features with the largest
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Figure S4. Dependence on µ (classification). IPSSGB is applied to classification
data simulated as in Section 4 for cutoff values δ ∈ {0, 0.5, 1, 1.5, 2}, averaged over
100 trials, where δ determines to the measure µδ(dλ) = z−1

δ λ−δdλ. There is little
difference between the average true and false positive values for different choices of δ
over a wide range of target E(FP) values.

average scores across all three trials. Note that ΦZ1:n is stochastic, given Z1:n, due to randomness
in the gradient boosting and random forest algorithms. This preselection step does not affect the
theoretical control on E(FP) since |ŜIPSS,pre∩Sc| = |ŜIPSS,pre∩Sc

pre|, where ŜIPSS,pre are the features
selected by IPSS using only the preselected features, and Sc

pre are the preselected features in Sc.
Of course, preselection risks throwing away important features, potentially increasing the number
of false negatives. However, we have yet to observe a case in which an important feature that was
not in the top ppre preselected features was selected by IPSS when the full set of features was used
instead. In other words, a feature that does not make the top ppre is highly unlikely to be selected
by IPSS regardless of whether or not preselection is used.

S2. Simulation details and additional results

Algorithm S2 describes the procedure we use to generate data in the simulation study in Section 4.
See also Figure 1 in the main text for a diagrammatic representation of this process. In all steps,
“randomly select” means select a parameter uniformly at random from its domain, which are shown
in Table S1. The randomized function fθ : R→ [−1, 1] that links the features to the response is

fθ(x) =

{
δ1
2 (1 + tanh(α(δ2x− β))) with probability 1/2,

δ1 exp(−γx2) with probability 1/2,
(S2.1)

where each component of θ = (α, β, γ, δ1, δ2) is drawn uniformly at random prior to each trial
according to Table S1. The values of α and γ determine steepness of the curves, β shifts tanh
horizontally, and δ1 and δ2 reflect the functions about the horizontal and vertical axes, respectively.
Figure S7 shows five realizations of fθ, illustrating the many ways it can influence the response, y.
For example, if the function in the left-most panel of Figure S7 is applied to the genes in a given
partition of S, then those genes will only significantly affect y if their collective expression level is
positive, while collective expression levels less than −1 will have virtually no effect on y.
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Parameter α β γ δ1 δ2 ptrue SNR u
Range (0.5, 1.5) (−1, 1) (1, 3) {−1, 1} {−1, 1} {10, . . . , 30} (0.5, 2) (1, 3)

Table S1. Simulation parameters. Parameters are drawn uniformly at random from
their corresponding ranges prior to each simulation trial.

Algorithm S2 Data generation for simulation study (one trial)

Input: RNA-seq data Xfull ∈ R596×6426, number of samples n, number of features p, number of
true features ptrue, signal-to-noise ratio SNR, function parameter domain Θ.

1: Randomly select n rows and p columns of Xfull. Denote the resulting matrix by X ∈ Rn×p.
2: Standardize the columns of X to have mean 0 and variance 1.
3: Randomly select true features S ⊆ {1, . . . , p} with |S| = ptrue.

4: Randomly select G ∈ {⌊ptrue/2⌋, . . . , ptrue}. Partition S into G disjoint groups, S =
⊔G

g=1 Sg.

5: Initialize the signal, η ← (0, . . . , 0)T ∈ Rn.
6: for g = 1, . . . , G do
7: ξg ←

∑
j∈Sg

Xj where Xj ∈ Rn is the jth column of X.

8: Standardize ξg to have mean 0 and variance 1.
9: Randomly select a function parameter θ ∈ Θ.

10: η ← η + fθ(ξg) with fθ applied to ξg ∈ Rn componentwise.
11: end for
12: For regression: Draw ϵi ∼ N (0, σ2) with σ2 =

∑n
i=1 η

2
i /(n SNR) and set yi ← ηi + ϵi.

13: For classification: Draw u ∼ Uniform(1, 3), then yi ∼ Bernoulli(πi) where πi = 1/(1+exp(−uηi)).
Output: Features X ∈ Rn×p, responses y ∈ Rn, and important features S ⊆ {1, . . . , p}.

Figure S5. Regression simulation. Empirical E(FP) and E(TP) versus target E(FP)
for each IPSS method. The dotted black line shows where E(FP) = target E(FP).

One benefit of IPSS is that changing the target E(FP) does not require rerunning the algorithm.
Figures S5 and S6 show E(TP) and E(FP) as functions of the target E(FP). IPSSGB has the
best performance in terms of true positives across essentially all target E(FP) values. IPSSGB and
IPSSRF perform well in the regression setting, and both slightly overshoot the target E(FP) in
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Figure S6. Classification simulation. Empirical E(FP) and E(TP) versus target
E(FP) for each IPSS method. The dotted black line shows E(FP) = target E(FP).

Figure S7. Some realizations of the randomized function fθ.

classification for values less than 6. IPSSL performs poorly in general, having relatively few true
positives on average and false positives that exceed the target E(FP).

S3. Additional ovarian cancer results

In Section S3.1, we expand upon the ovarian cancer results presented in Section 5 of the main text,
namely identifying miRNAs related to prognosis, and miRNAs related to miR-150, respectively. In
Section S3.2, we perform a similar analysis but for RNA-seq data from the same cohort, identifying
genes related to ovarian cancer prognosis, and genes related to one of the genes, AKT2, that was
found to be related to prognosis.

S3.1. MicroRNA and ovarian cancer.We briefly summarize results from the literature that
link the miRNAs in Table 2 to ovarian cancer, with a specific focus on prognosis. For many of these
miRNAs, there are numerous studies connecting them to ovarian cancer beyond what we present.
Thus, to roughly quantify the relevance of the miRNAs in Table 2 to ovarian cancer, we searched the
specific miRNA together with “ovarian cancer” in the Web of Science database, and report both the
number of publications and the total number of citations across all returned results. We emphasize
that these metrics are less important than the papers themselves. For example, citation counts favor
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older publications, and our search criterion does not guarantee that the returned results are relevant
to the problem at hand (though the summaries below show that at least some of them are).

Table S2 is similar to Table 2, except that it shows the total number of publications and citations
from our Web of Science literature search and includes some q-values that were omitted from Table 2,
since Table 2 only reported the five miRNA with the lowest q-values for each method. Dashed lines
indicate that the feature was not identified by the corresponding method at all.

miRNA Citations Publications IPSSGB IPSSRF IPSSL
miR-150 1635 26 0.28 0.41 0.2
miR-93 1270 28 – 0.36 –
miR-30d 596 12 0.43 0.36 0.16
miR-96 338 10 0.2 0.53 0.09
miR-342 201 9 – 0.36 0.09
miR-1270 175 5 0.43 0.27 0.08
miR-934 27 2 – – 0.12
miR-1301 11 3 0.46 – –
miR-1-2 5 1 – – 0.07

Table S2. MicroRNA and prognosis. MiRNA are ordered by citations. A missing
q-value means that miRNA was not selected by the corresponding version of IPSS.

miR-1-2. Kandettu et al. (2022) found that miR-1-2 is differentially expressed between cancerous
and non-cancerous ovarian cancer cells, but we found no literature linking miR-1-2 to prognosis.

miR-30d. Ye et al. (2015) found that miR-30d suppresses ovarian cancer progression by reducing
the levels of Snail, a protein involved in making cancer cells more invasive. They concluded that
miR-30d could be used as a treatment for ovarian cancer. Lee et al. (2012) found that miR-30d is
associated with “significantly better disease-free or overall survival” in ovarian cancer patients.

miR-93. Fu et al. (2012) found that miR-93 is significantly upregulated in ovarian cancer cells that
are resistant to the chemotherapy drug cisplatin. They also found that miR-93 targets the tumor
suppressor gene PTEN and plays a role in the AKT signaling pathway. They concluded that further
study of miR-96 may yield therapeutic strategies for overcoming cisplatin-resistant ovarian cancer
cells. Meng et al. (2015) found that miR-93 is a potential biomarker of ovarian cancer.

miR-96. Liu et al. (2019) found that overexpression of miR-96 promotes cell proliferation and
migration in ovarian cancer cells. They conclude that targeting miR-96 is a potentially promising
strategy for treating ovarian cancer. They also report that miR-96 inhibits phosphorylation of AKT,
a gene identified by IPSSGB as being relevant to ovarian cancer prognosis (Section S3.2). Yang et al.
(2020) found that individuals with low-levels of miR-96 “suffered more advanced tumor staging and
a worse overall survival” and also identified miR-96 as a potential therapeutic target.

miR-150. Jin et al. (2014) found significant associations between miR-150 downregulation and
“aggressive clinicopathological features” in ovarian cancer patients, as well as reduced overall and
progression-free survival. They also identified miR-150 expression as a prognostic biomarker in
ovarian cancer. Kim et al. (2017) found that downregulation of miR-150 is associated with resistance
to paclitaxel, a chemotherapy drug used to treat ovarian cancer. They also report that treatment
with pre-miR-150 resensitized cancer cells to paclitaxel, making the drug more effective.
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miR-342. Dou et al. (2020) found that miR-342 inhibits the proliferation, invasion, and migration of
ovarian cancer cells, and promotes the death of these cells. The study also showed that miR-342
decreases the expression of key proteins involved in the Wnt/β-catenin signaling pathway, which
may explain its effects on reducing ovarian cancer cell viability and growth.

miR-934. Hu et al. (2019) found that miR-934 promotes ovarian cancer cell proliferation and inhibits
the death of ovarian cancer cells by targeting the gene BRMS1L, making it is a potential biomarker
or therapeutic target for ovarian cancer.

miR-1270. Ghafouri-Fard et al. (2022) found that miR-1270 plays a role in sensitivity to the
chemotherapy drug cisplatin.

miR-1301. Yu and Gao (2020) found that targeting miR-1301 can inhibit the proliferation of cells
that are resistant to the chemotherapy drug cisplatin, thus reducing the occurrence and development
of drug-resistant ovarian cancer.

Tables S3 and S4 show the top ten features for each IPSS method, ranked by their median q-values
over the 10 CV steps, when the features are miRNA and the responses are miR-150 (Table S3)
and tumor purity (Table S4), respectively. Tumor purity is the proportion of cancerous cells in a
sample. Observe that the q-values in Table S3 are much smaller than those in Table S2. This is to
be expected since the signal between miRNAs, in particular, between miR-150 and certain other
miRNAs, is likely much stronger than the signal between miRNAs and prognosis.

IPSSGB IPSSRF IPSSL
miR-142(0.031) miR-146a(0.016) miR-146a(0.028)
miR-146a(0.031) miR-142(0.016) miR-142(0.028)
miR-1247(0.031) miR-223(0.016) miR-1247(0.028)
miR-642(0.032) miR-642(0.016) miR-139(0.028)
miR-342(0.036) miR-155(0.016) miR-342(0.029)
miR-139(0.042) miR-1247(0.016) miR-642(0.029)
miR-1249(0.051) miR-766(0.016) miR-96(0.029)
miR-96(0.064) miR-342(0.017) miR-511-1(0.03)
miR-204(0.072) miR-1228(0.018) miR-34b(0.032)
miR-34b(0.074) miR-21(0.02) miR-184(0.033)

Table S3. MicroRNA and miR-150. Top ranked miRNAs for each method in terms
of their q-values, shown in parentheses.

S3.2. RNA-seq and ovarian cancer. In this section, we perform a similar analysis to the miRNA
study in Sections S3.1 and 5, but with the 6426 genes from the RNA-seq data described in Section 4.
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IPSSGB IPSSRF IPSSL
miR-150(0.05) miR-150(0.02) miR-150(0.05)
miR-22(0.05) miR-22(0.02) miR-22(0.05)
miR-140(0.08) miR-140(0.02) miR-142(0.05)
miR-142(0.08) miR-142(0.02) miR-140(0.05)
miR-1224(0.12) miR-146a(0.03) miR-25(0.06)
miR-103-2(0.16) miR-223(0.03) miR-1224(0.09)
miR-223(0.23) miR-214(0.04) miR-135a-2(0.1)
miR-181c(0.36) miR-132(0.04) miR-155(0.11)
miR-155(0.49) miR-642(0.05) miR-1247(0.12)
miR-25(0.52) miR-199b(0.05) miR-34c(0.13)

Table S4. MicroRNA and tumor purity. Top ranked miRNAs for each method in
terms of their q-values, shown in parentheses.

Gene Citations Publications IPSSGB IPSSRF IPSSL
AKT2 9088 118 0.25 – –
CD38 852 30 0.11 0.31 –
PPL 151 8 0.8 0.26 –

HOXB4 127 7 – – 0.36
ZFHX4 105 7 0.78 – 0.17
SLAMF7 101 2 0.38 0.36 –
WNK1 96 3 – 0.42 0.23
SLAMF1 58 5 – 0.38 –
PARD6B 61 1 0.28 0.33 –
UGT8 37 1 0.17 0.41 –
AP2A1 37 2 – 0.4 –
PROSC 0 0 0.33 0.46 0.2
MRAP2∗ 0 0 0.09 0.39 0.78
OR51A4 0 0 0.59 – 0.2
CCDC84 0 0 – – 0.2
SH3BGR 0 0 – – 0.07

Table S5. RNA-seq and prognosis. Genes are ordered by citations. A missing q-value
means that gene was not selected by the corresponding version of IPSS. *A literature
search revealed that the gene MRAP2 (also called C6orf117), while not directly
related to ovarian cancer, is very much related to obesity, which is linked to poor
prognosis and reduced survival times in cancer patients (Chan et al., 2009).
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Figure S8. RNA-seq and prognosis. No method does well at predicting prognosis
relative to the full dataset. This is unsurprising, given the many factors that can
contribute to poor outcomes which are unlikely to be captured by RNA-seq data
alone. Nevertheless, several of the genes identified by the various feature selection
methods do appear to be related to ovarian cancer prognosis; see Table S5.

Figure S9. RNA-seq and AKT2. As in several of the other studies, IPSSGB achieves
superior predictive performance with fewer features compared to other methods.
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IPSSGB IPSSRF IPSSL
SUPT5H(0.01) SUPT5H(0.01) SUPT5H(0.02)
EGLN2(0.01) PAK4(0.01) EGLN2(0.02)
PAK4(0.01) ADCK4(0.01) ADCK4(0.02)
ADCK4(0.01) EGLN2(0.01) BLVRB(0.02)
BLVRB(0.01) ZNF574(0.01) SPSB3(0.03)
ITPKC(0.02) GSK3A(0.01) HKR1(0.03)
HKR1(0.04) SARS2(0.01) CAV2(0.04)

ZMYND17(0.14) ITPKC(0.01) MAP3K10(0.07)
U2AF2(0.19) CLPTM1(0.01) ACRC(0.08)
SPSB3(0.2) ZNF526(0.01) ITPKC(0.09)

Table S6. RNA-seq and AKT2. Top ranked genes for each method in terms of their
q-values, shown in parentheses.

References

G. Biau and E. Scornet. A random forest guided tour. Test, 25:197–227, 2016.
L. Breiman. Random forests. Machine learning, 45:5–32, 2001.
E. Candes, Y. Fan, L. Janson, and J. Lv. Panning for gold: ‘model-x’ knockoffs for high dimen-
sional controlled variable selection. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 80(3):551–577, 2018.

L. F. Chan, T. R. Webb, T.-T. Chung, E. Meimaridou, S. N. Cooray, L. Guasti, J. P. Chapple,
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