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Abstract

This article establishes general conditions for posterior consistency of Bayesian finite
mixture models with a prior on the number of components. That is, we provide suffi-
cient conditions under which the posterior concentrates on neighborhoods of the true
parameter values when the data are generated from a finite mixture over the assumed
family of component distributions. Specifically, we establish almost sure consistency
for the number of components, the mixture weights, and the component parameters, up
to a permutation of the component labels. The approach taken here is based on Doob’s
theorem, which has the advantage of holding under extraordinarily general conditions,
and the disadvantage of only guaranteeing consistency at a set of parameter values
that has probability one under the prior. However, we show that in fact, for commonly
used choices of prior, this yields consistency at Lebesgue-almost all parameter values
— which is satisfactory for most practical purposes. We aim to formulate the results
in a way that maximizes clarity, generality, and ease of use.
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1 Introduction

Many theoretical advances have been made in establishing posterior consistency and con-
traction rates for density estimation when using nonparametric mixture models (see Ghosal
and Van der Vaart, 2017 and the many references therein) or finite mixture models with a
prior on the number of components (Kruijer et al., 2010; Shen et al., 2013). Elegant results
have also been provided showing posterior consistency and contraction rates for estimation
of the discrete mixing distribution (Nguyen, 2013) when using either class of models, as well
as consistency for the number of components (Guha et al., 2021).

Meanwhile, it has long been known that Doob’s theorem (Doob, 1949) can be used
to prove almost sure consistency for the number of components as well as the mixture
weights and the component parameters, up to a permutation (Nobile, 1994). Interestingly,
in contrast to the modern theory mentioned above, a Doob-type result can be extraordinarily

1



general, holding under very minimal conditions. Doob’s theorem has been criticized for only
guaranteeing consistency on a set of probability one under the prior, and thus, a poorly
chosen prior can lead to a useless result (Roeder and Wasserman, 1997); however, for many
models, this is a straw man argument since a well-chosen prior can lead to a consistency
guarantee at Lebesgue almost-all parameter values.

While the result of Nobile (1994) was prescient and general, it has some disadvantages.
First, Nobile (1994) assumes some conditions that are not needed, specifically, (i) that there
is a sigma-finite measure µ such that for all v, the component distribution Fv has a density
fv with respect to µ, (ii) that v 7→ fv(x) is continuous for all x, and (iii) employing a
somewhat complicated algorithm for mapping parameters into an identifiable space. Further,
it is difficult to use Nobile (1994) as a reference since the exposition is quite technical and
requires significant effort to unpack.

In this article, we present a Doob-type consistency result for mixtures, with the goal of
maximizing clarity, generality, and ease of use. Our result generalizes upon the work of Nobile
(1994) in that we do not require conditions (i)–(iii) above. We formulate the result directly
in terms of the original parameter space (rather than a transformed space as done by Nobile,
1994), reflecting the way these models are used in practice. Further, we provide conditions
under which consistency holds almost everywhere with respect to Lebesgue measure, rather
than just almost everywhere with respect to the prior as done by Nobile (1994).

Compared to the modern theory, the limitation of a Doob-type result is that for any given
true parameter value, the theorem cannot tell us whether it is in the measure zero set where
consistency may fail. Another important caveat is that the data are required to be generated
from the assumed class of finite mixture models. Most consistency results are based on an
assumption of model correctness, and the result we present is no different in that respect.
However, unfortunately, the posterior on the number of components in a mixture model is
especially sensitive to model misspecification (Miller and Dunson, 2018; Cai et al., 2021), so
any inferences about the number of components should be viewed with extreme skepticism.
On the other hand, Miller and Harrison (2013, 2014) show that popular nonparametric
mixture models (such as Dirichlet process mixtures) are not even consistent for the number of
components when the component family is correctly specified — and this lack of consistency
is an even more fundamental concern than sensitivity to misspecification. Thus, although
finite mixture models are rarely—if ever—exactly correct, having a consistency guarantee at
least provides an assurance that the methodology is coherent.

In practice, mixture models with a prior on the number of components often provide
useful insights into heterogeneous data and, as the saying goes, “all models are wrong but
some are useful” (Box, 1979). Mixtures are extensively used in a wide range of applications,
and modern algorithms facilitate posterior inference when placing a prior on the number of
components; see Miller and Harrison (2018) and references therein. Thus, it is important to
characterize the theoretical properties of these models as generally as possible.

The article is organized as follows. In Section 2, we describe the class of models under
consideration and we introduce the conditions to be assumed. In Section 3, we state our
main results, and Section 4 contains the proofs.
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2 Model

Let (Fv : v ∈ V) be a family of probability measures on X , where V ⊆ RD is measurable
and X is a Borel measurable subset of a complete separable metric space, equipped with the
Borel sigma-algebra. For all d, we give Rd the Euclidean topology and the resulting Borel
sigma-algebra. For k ∈ {1, 2, . . .}, define ∆k := {w ∈ (0, 1)k :

∑k
i=1 wi = 1} ⊆ Rk. For

w ∈ ∆k and v ∈ Vk, define a probability measure

Pw,v =
k∑

i=1

wiFvi (1)

on X . Thus, Pw,v is the mixture with weights wi and component parameters vi.
Let π, Dk, and Gk be probability measures on {1, 2, . . .}, ∆k, and Vk, respectively.

Consider the following model:

(number of components) K ∼ π

(mixture weights) W | K = k ∼ Dk where W = (W1, . . . ,Wk)

(component parameters) V | K = k ∼ Gk where V = (V1, . . . , Vk)

(observed data) X1, . . . , Xn | W,V ∼ PW,V i.i.d.

(2)

We use uppercase letters to denote random variables, such as K, and lowercase to denote
particular values, such as k.

2.1 Conditions

Condition 2.1 (Family of component distributions).

1. For all measurable A ⊆ X , the function v 7→ Fv(A) is measurable on V.

2. (Finite mixture identifiability) For all k, k′ ∈ {1, 2, . . .}, w ∈ ∆k, w
′ ∈ ∆k′, v ∈ Vk,

and v′ ∈ Vk′, if Pw,v = Pw′,v′ then
∑k

i=1wiδvi =
∑k′

i=1 w
′
iδv′i.

Here, δx denotes the unit point mass at x. Roughly, Condition 2.1(1) is that (Fv : v ∈ V) is
a measurable family and Condition 2.1(2) is that the discrete mixing distribution

∑k
i=1wiδvi

is uniquely determined by Pw,v. Let Sk denote the set of permutations of {1, . . . , k}.

Condition 2.2 (Prior). Under the model in Equation (2), for all k ∈ {1, 2, . . .},

1. P(K = k) > 0,

2. for all A ⊆ ∆k measurable, if P(W ∈ A | K = k) = 0 then {w1:k−1 : w ∈ A} has
Lebesgue measure zero,

3. for all A ⊆ Vk measurable, if
∑

σ∈Sk
P(Vσ ∈ A | K = k) = 0 then A has Lebesgue

measure zero,

4. P(Vi = Vj | K = k) = 0 for all 1 ≤ i < j ≤ k.
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Here, w1:k−1 = (w1, . . . , wk−1) and Vσ = (Vσ1 , . . . , Vσk
). Roughly, Conditions 2.2(1–3)

are that the prior gives positive mass to all k and all sets with nonzero Lebesgue measure,
for some permutation of the component labels. Condition 2.2(4) is that the component
parameters are distinct with prior probability 1. Note that we do not assume W |k and V |k
have densities with respect to Lebesgue measure.

2.2 Examples

The conditions in Section 2.1 hold for many commonly used mixture models. For Fv, the
family of component distributions, there are many commonly used choices that satisfy Con-
dition 2.1(2), including the multivariate normal (Yakowitz and Spragins, 1968) and, more
generally, many elliptical families such as the multivariate t distributions (Holzmann et al.,
2006). Several discrete families such as the Poisson, geometric, negative binomial, and many
other power-series distributions also satisfy Condition 2.1(2) (Sapatinas, 1995). In each of
these cases, Condition 2.1(1) can be easily verified using Folland (2013, Theorem 2.37).

For the prior on the mixture weights W |k, Condition 2.2(2) is satisfied by choosing
W |k ∼ Dirichlet(αk1, . . . , αkk) for any αk1, . . . , αkk > 0, since this has a density with respect
to (k − 1)-dimensional Lebesgue measure dw1 · · · dwk−1 and this density is strictly positive
on ∆k. More generally, for the same reason, Condition 2.2(2) is satisfied if W |k is defined as
follows: let Zi ∼ Beta(aki, bki) independently for i ∈ {1, . . . , k − 1} where aki, bki > 0, then
set Wi = Zi

∏i−1
j=1(1 − Zj) for i ∈ {1, . . . , k − 1} and Wk = 1 −

∑k−1
i=1 Wi; this is called the

generalized Dirichlet distribution (Ishwaran and James, 2001; Connor and Mosimann, 1969).
For the prior on the component parameters V |k, perhaps the most common situation

is that V1, . . . , Vk are i.i.d. from some distribution G0; in this case, Conditions 2.2(3) and
2.2(4) are satisfied if G0 has a density with respect to Lebesgue measure and this density
is strictly positive on V except for a set of Lebesgue measure zero. A more interesting
example is the case of repulsive mixtures, which use a non-independent prior on component
parameters to favor well-separated mixture components. For instance, Petralia et al. (2012)
propose defining V |k to have a density (with respect to Lebesgue measure) proportional to
h(v)

∏k
i=1 g0(vi) where g0 is a probability density on V and h : Vk → R is either h(v) =∏

1≤i<j≤k ρ(∥vi − vj∥) or h(v) = min1≤i<j≤k ρ(∥vi − vj∥), where ρ : [0,∞) → R is a strictly
increasing, bounded function with ρ(0) = 0. Then Conditions 2.2(3) and 2.2(4) are satisfied
as long as g0 is strictly positive on V except for a set of Lebesgue measure zero.

3 Main results

We show that for any model as in Equation (2) satisfying Conditions 2.1 and 2.2, the posterior
is consistent for k, w, and v up to a permutation of the component labels, except on a set of
Lebesgue measure zero. More generally, if only Conditions 2.1 and 2.2(4) are satisfied, then
the result holds except on a set of prior measure zero.

Define Θk := ∆k ×Vk and Θ :=
⋃∞

k=1 Θk, noting that Θ1,Θ2, . . . are disjoint sets. Thus,
for any θ ∈ Θ, we have θ = (w, v) for some unique w ∈ ∆k, v ∈ Vk, and k ∈ {1, 2, . . .}; let
k(θ) denote this value of k. In terms of θ, the data distribution is Pθ = Pw,v, where Pw,v is
defined in Equation (1).
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We define a metric on Θ as follows: for θ, θ′ ∈ Θ, let

dΘ(θ, θ
′) =

{
min{∥θ − θ′∥, 1} if k(θ) = k(θ′),
1 otherwise,

(3)

where ∥ · ∥ is the Euclidean norm on ∆k × Vk ⊆ Rk+kD. Propositions A.1 and A.2 show
that dΘ is indeed a metric and Θ is a Borel measurable subset of a complete separable
metric space; we give Θ the resulting Borel sigma-algebra. Recall that Sk denotes the set of
permutations of {1, . . . , k}. For σ ∈ Sk and θ ∈ Θk, let θ[σ] denote the transformation of
θ obtained by permuting the component labels, that is, if θ = (w, v) then θ[σ] := (wσ, vσ)
where wσ = (wσ1 , . . . , wσk

) and vσ = (vσ1 , . . . , vσk
). For θ0 ∈ Θk and ε > 0, define

B̃(θ0, ε) =
⋃
σ∈Sk

{
θ ∈ Θ : dΘ(θ, θ0[σ]) < ε

}
. (4)

Consider the model in Equation (2), and define the random variable θ := (W,V ).

Theorem 3.1. Assume Conditions 2.1 and 2.2(4) hold. There exists Θ∗ ⊆ Θ such that
P(θ ∈ Θ∗) = 1 and for all θ0 ∈ Θ∗, if X1, X2, . . . ∼ Pθ0 i.i.d. then for all ε > 0,

lim
n→∞

P(θ ∈ B̃(θ0, ε) | X1, . . . , Xn) = 1 a.s.[Pθ0 ] (5)

and

lim
n→∞

P(K = k(θ0) | X1, . . . , Xn) = 1 a.s.[Pθ0 ]. (6)

Here, the conditional probabilities are under the assumed model in Equation (2); note
that θ | X1, . . . , Xn has a regular conditional distribution by Durrett (1996, Theorems 1.4.12
and 4.1.6). Now, define a measure λ on Θ as follows. Let λVk denote Lebesgue measure on Vk,
and let λ∆k

denote the measure on ∆k such that, for all A ⊆ ∆k measurable, λ∆k
(A) equals

the Lebesgue measure of {w1:k−1 : w ∈ A} ⊆ Rk−1. Define λ(A) :=
∑∞

k=1(λ∆k
×λVk)(A∩Θk)

for all measurable A ⊆ Θ. In essence, λ can be thought of as Lebesgue measure on Θ.

Theorem 3.2. If Conditions 2.1 and 2.2 hold, then the set Θ∗ in Theorem 3.1 can be chosen
such that λ(Θ \Θ∗) = 0.

In other words, for λ-almost all values of θ0 in Θ, if X1, X2, . . . ∼ Pθ0 i.i.d. then for all
ε > 0, Equations (5) and (6) hold Pθ0-almost surely.

4 Proofs

Proof of Theorem 3.1. The basic idea of the proof is to use Doob’s theorem on posterior
consistency (Doob, 1949; Miller, 2018). However, Doob’s theorem cannot be directly applied
since it requires identifiability, and while we assume identifiability of

∑k
i=1 wiδvi in Condi-

tion 2.1(2), this does not imply identifiability of (w, v) due to (a) invariance of Pw,v with
respect to permutation of the component labels and (b) the existence of points in Θ where
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vi = vj. To handle this, we consider a certain restricted parameter space on which identi-
fiability holds for (w, v), we apply Doob’s theorem to a collapsed model on this restricted
space, and we then show that this implies the claimed result on all of Θ.

Identifiability constraints. We constrain the component parameters as follows to obtain
identifiability of (w, v). Putting the dictionary order (also known as lexicographic order) on
elements of V ⊆ RD, define

Vk :=
{
(v1, . . . , vk) ∈ Vk : v1 ≺ · · · ≺ vk

}
⊆ RkD.

Here, vi ≺ vj denotes that vi precedes vj and vi ̸= vj. Define Θ̃k := ∆k × Vk and Θ̃ :=⋃∞
k=1 Θ̃k. Then Θ̃ is a Borel measurable subset of a complete separable metric space under

the metric dΘ as defined in Equation (3); this follows from Propositions A.1 and A.2 by
taking Xk = Rk+kD, dk(x, y) = ∥x− y∥ for x, y ∈ Xk, and Ak = Θ̃k for k ∈ {1, 2, . . .}.

Collapsed model. For θ ∈ Θk, define T (θ) = θ[σ] where σ ∈ Sk is chosen such that
θ[σ] ∈ Θ̃k if possible, and otherwise θ[σ] = θ. Then P(T (θ) ∈ Θ̃) = 1 since the subset of Vk

where two or more vi’s coincide has prior probability zero, by Condition 2.2(4). Denoting
B[σ] = {θ[σ] : θ ∈ B}, note that by the definition of T , for all B ⊆ Θ̃k,

T−1(B) = {θ ∈ Θ : T (θ) ∈ B} =
⋃

σ∈Sk
B[σ]. (7)

Letting Q̃ denote the distribution of T (θ), restricted to Θ̃, we have

T (θ) ∼ Q̃

X1, . . . , Xn | T (θ) ∼ PT (θ) i.i.d.
(8)

by Dudley (2002, Theorem 10.2.1) since Pθ = PT (θ) and for all A ⊆ X n and B ⊆ Θ̃ mea-

surable, P(X1:n ∈ A, T (θ) ∈ B) = P(X1:n ∈ A, θ ∈ T−1(B)) =
∫
B
P

(n)
θ (A)dQ̃(θ), where

X1:n = (X1, . . . , Xn); measurability of θ 7→ P
(n)
θ (A) for A ⊆ X n follows from measurability

of θ 7→ Pθ(A) for A ⊆ X (shown below at Equation (9)) along with Miller (2018, Lemma
5.2). We refer to Equation (8) as the collapsed model.

Applying Doob’s theorem. We show that the collapsed model in Equation (8) satisfies the
conditions of Doob’s theorem (Miller, 2018). First, we check identifiability. Let θ, θ′ ∈ Θ̃ such

that Pθ = Pθ′ . By Condition 2.1(2),
∑k

i=1wiδvi =
∑k′

i=1w
′
iδv′i where θ = (w, v), θ′ = (w′, v′),

k = k(θ), and k′ = k(θ′). By the definition of Θ̃, v1, . . . , vk are all distinct, v′1, . . . , v
′
k′ are all

distinct, w1, . . . , wk > 0, and w′
1, . . . , w

′
k′ > 0. This implies that k = k′, w = w′

σ, and v = v′σ
for some σ ∈ Sk. Further, because v1 ≺ · · · ≺ vk and v′1 ≺ · · · ≺ v′k by the definition of Θ̃, it
must be the case that σ is the identity permutation, thus, w = w′ and v = v′, that is, θ = θ′.
Therefore, θ = (w, v) is identifiable on the restricted space Θ̃.

Next, we check measurability. Let A ⊆ X be measurable. Then for any k ∈ {1, 2, . . .},

θ 7→ Pθ(A) =
k∑

i=1

wiFvi(A) (9)

is measurable as a function on Θk = ∆k × Vk, since the projections (w, v) 7→ wi and
(w, v) 7→ vi are measurable, and vi 7→ Fvi(A) is measurable on V by Condition 2.1(1).
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Therefore, θ 7→ Pθ(A) is measurable as a function on Θ̃k = ∆k × Vk ⊆ ∆k × Vk. It follows
that it is measurable as a function on Θ̃ (since the pre-image of a measurable subset of
R is a union of measurable subsets of Θ̃1, Θ̃2, . . . respectively, and is thus measurable by
Proposition A.2 below).

Thus, by Doob’s theorem (Miller, 2018), there exists Θ̃∗ ⊆ Θ̃ such that P(T (θ) ∈ Θ̃∗) = 1
and the collapsed model is consistent at all T (θ0) ∈ Θ̃∗; that is, for any neighborhood B ⊆ Θ̃
of T (θ0), we have P(T (θ) ∈ B | X1:n) → 1 a.s.[PT (θ0)]. Define Θ∗ to be the set of all points

in Θ that can be obtained by permuting the mixture components of a point in Θ̃∗, that is,
Θ∗ :=

⋃∞
k=1

⋃
σ∈Sk

(Θ̃∗ ∩ Θ̃k)[σ]. Then by Equation (7),

P(θ ∈ Θ∗) = P(T (θ) ∈ Θ̃∗) = 1.

Putting the pieces together. Let θ0 ∈ Θ∗ and define k0 = k(θ0). Let X1, X2, . . . ∼ Pθ0

i.i.d., let ε ∈ (0, 1), and define B := {θ ∈ Θ̃ : dΘ(θ, T (θ0)) < ε} ⊆ Θ̃k0 . Referring to
Equation (4), observe that ∪σ∈Sk0

B[σ] ⊆ B̃(θ0, ε). Hence, by Equation (7),

P(θ ∈ B̃(θ0, ε) | X1:n) ≥ P(θ ∈ ∪σ∈Sk0
B[σ] | X1:n) = P(T (θ) ∈ B | X1:n)

a.s.−−−→
n→∞

1 (10)

since Pθ0 = PT (θ0) and the collapsed model is consistent at all T (θ0) ∈ Θ̃∗. This proves

Equation (5). Equation (6) follows directly from Equation (10), since ε < 1 implies B̃(θ0, ε) ⊆
Θk0 , and therefore,

P(K = k0 | X1:n) = P(θ ∈ Θk0 | X1:n) ≥ P(θ ∈ B̃(θ0, ε) | X1:n)
a.s.−−−→

n→∞
1.

Proof of Theorem 3.2. Define Θ∗ as in the proof of Theorem 3.1. Since P(θ ∈ Θ∗) = 1,

0 = P(θ ∈ Θ \Θ∗) =
∞∑
k=1

P(θ ∈ Θk \Θ∗ | K = k)P(K = k).

Since P(K = k) > 0 for all k by Condition 2.2(1), P(θ ∈ Θk \Θ∗ | K = k) = 0 for all k.
For σ ∈ Sk, let D

σ
k and Gσ

k denote the distributions of Wσ|k and Vσ|k, respectively, under
the model. Note that for all σ ∈ Sk, (Θk \Θ∗)[σ] = Θk \Θ∗. Thus,

(Dσ
k ×Gσ

k)(Θk \Θ∗) = (Dk ×Gk)(Θk \Θ∗) = P(θ ∈ Θk \Θ∗ | K = k) = 0. (11)

Note that λ∆k
is invariant under permutations σ ∈ Sk, since by Folland (2013, Theorem

2.47), Lebesgue measure dw1 · · · dwk−1 on {w1:k−1 ∈ (0, 1)k−1 :
∑k−1

i=1 wi < 1} is invariant

under transformations of the form g(w1:k−1) = (wσ1 , . . . , wσk−1
) where wk = 1 −

∑k−1
i=1 wi,

because the Jacobian determinant is ±1. Conditions 2.2(2) and 2.2(3) are that λ∆k
≪ Dk

and λVk ≪
∑

σ∈Sk
Gσ

k , respectively, where ≪ denotes absolute continuity. Thus, by Folland
(2013, Exercise 3.2.12),

λ∆k
× λVk ≪ λ∆k

×
∑
σ∈Sk

Gσ
k =

∑
σ∈Sk

λσ
∆k

×Gσ
k ≪

∑
σ∈Sk

Dσ
k ×Gσ

k . (12)

By Equation (11), (Dσ
k ×Gσ

k)(Θk \Θ∗) = 0 for all σ ∈ Sk, and thus, (λ∆k
×λVk)(Θk \Θ∗) = 0

by Equation (12). Therefore, λ(Θ \Θ∗) =
∑∞

k=1(λ∆k
× λVk)(Θk \Θ∗) = 0.
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A Supporting results

Proposition A.1. If X1,X2, . . . is a sequence of disjoint, complete separable metric spaces
with metrics d1, d2, . . . respectively, then X =

⋃∞
i=1Xi is a complete separable metric space

under the metric

d(x, y) =

{
min{di(x, y), 1} if x, y ∈ Xi for some i,
1 if x ∈ Xi, y ∈ Xj, and i ̸= j,

and the topology induced by this metric coincides with the disjoint union topology.

The disjoint union topology is the smallest topology that contains all the open sets of all
the Xi’s. Equivalently, it is the topology consisting of all unions of the form

⋃∞
i=1 Ai where

Ai is open in Xi for i ∈ {1, 2, . . .}.

Proof. First, we show that d is a metric on X . It is easy to see that d(x, y) = d(y, x),
d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y. To prove the triangle inequality, let x, y, z ∈ X
and suppose x ∈ Xi, y ∈ Xj, z ∈ Xk. Using the fact that d̄(x, y) := min{d(x, y), 1} is a
metric (Munkres, 2000, Theorem 20.1), it is simple to check that d(x, y) ≤ d(x, z) + d(z, y)
in each of the following cases: (1) i = j = k, (2) i = j ̸= k, and (3) i ̸= j.

Next, we show that X is complete under d. Let x1, x2, . . . ∈ X be a Cauchy sequence.
Choose N such that for all n,m ≥ N , d(xn, xm) ≤ 1/2. Suppose i is the index such that
xN ∈ Xi. Then xn ∈ Xi for all n ≥ N , and d(xn, xm) = di(xn, xm) for all n,m ≥ N . Thus,
(xN , xN+1, . . .) is a Cauchy sequence in Xi under di, so it converges (under di) to some x ∈ Xi

since Xi is complete. Hence, it also converges to x under d. Therefore, X is complete.
Further, X is separable, since if Ci ⊆ Xi is a countable dense subset of Xi under di then

it is also dense in Xi under d, so
⋃∞

i=1Ci is a countable dense subset of X under d.
Finally, d induces the disjoint union topology on X , since the collection of open balls

{Bε(x) : ε ∈ (0, 1), x ∈ Xi, i = 1, 2, . . .}

where Bε(x) = {y ∈ X : d(x, y) < ε} is a base for both the disjoint union topology and the
d-metric topology.

Proposition A.2. Suppose X1,X2, . . . and X are defined as in Proposition A.1. If A1, A2, . . .
are Borel measurable subsets of X1,X2, . . ., respectively, then

⋃∞
i=1Ai is a Borel measurable

subset of X .

Proof. For a topological space Y , let TY denote its topology and let BY = σ(TY ) denote its
Borel sigma-algebra. Since TXi

⊆ TX (by the definition of the disjoint union topology) then
BXi

⊆ BX , and therefore Ai ∈ BXi
⊆ BX for all i = 1, 2, . . .. Hence,

⋃∞
i=1 Ai ∈ BX .
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