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Abstract

This article establishes novel strong uniform laws of large numbers for randomly weighted
sums such as bootstrap means. By leveraging recent advances, these results extend previ-
ous work in their general applicability to a wide range of weighting procedures and in their
flexibility with respect to the effective bootstrap sample size. In addition to the standard
multinomial bootstrap and the m-out-of-n bootstrap, our results apply to a large class of
randomly weighted sums involving negatively orthant dependent (NOD) weights, including
the Bayesian bootstrap, jackknife, resampling without replacement, simple random sampling
with over-replacement, independent weights, and multivariate Gaussian weighting schemes.
Weights are permitted to be non-identically distributed and possibly even negative. Our
proof technique is based on extending a proof of the i.i.d. strong uniform law of large num-
bers to employ strong laws for randomly weighted sums; in particular, we exploit a recent
Marcinkiewicz–Zygmund strong law for NOD weighted sums.

Keywords: Empirical Processes, Generalized Bootstrap, Negatively Orthant Dependence,
Uniform Marcinkiewicz–Zygmund Strong Law, Resampling

1. Introduction

The bootstrap (Efron and Tibshirani, 1994) and related resampling procedures such as
bagging (Breiman, 1996), the Bayesian bootstrap (Rubin, 1981), and the jackknife (Efron,
1982) are widely used general-purpose tools for statistical inference. In addition to its original
purpose of approximating sampling distributions of estimators (Efron, 1979), the bootstrap
and its relatives have been applied to a variety of statistical tasks, including model averaging
(Breiman, 1996), approximate Bayesian inference (Newton and Raftery, 1994), outlier de-
tection (Singh and Xie, 2003), robust Bayesian inference (Huggins and Miller, 2019, 2022),
and causal inference (Little and Badawy, 2019).

Due to its versatility, extensions of the bootstrap are frequently proposed to address new
statistical questions. When establishing the properties of such methods, bootstrap versions
of classical asymptotic results play a key role, such as the weak law of large numbers (Athreya
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et al., 1984, Theorem 1), the strong law of large numbers (Athreya et al., 1984, Theorem 2),
and the central limit theorem (Singh, 1981) for bootstrap means.

Meanwhile, it is sometimes important to obtain convergence over an entire collection of
random variables simultaneously, thus guaranteeing convergence for even the worst case in
the collection. To this end, several authors have established uniform laws of large num-
bers for bootstrap means. Giné and Zinn (1990, Theorems 2.6 and 3.5) proved weak
uniform laws of large numbers for the standard multinomial bootstrap, that is, with
Multinomial

(
n, (1/n, . . . , 1/n)) weights. Vaart and Wellner (1996, Theorem 3.6.16) proved

an analogous result for exchangeably weighted sums such as the Bayesian bootstrap. As weak
laws, these show convergence in probability, but often one needs almost sure convergence,
that is, a strong law.

Strong uniform laws of large numbers for bootstrap means are provided by Kosorok
(2008, Section 10.2) for weighted sums with independent and identically distributed
(i.i.d.) weights, with weights obtained by normalizing n i.i.d. random variables, and with
Multinomial

(
n, (1/n, . . . , 1/n)) weights (Theorem 10.13, Corollary 10.14, and Theorem

10.15, respectively). However, these results do not apply to more general schemes such as
the jackknife, resampling without replacement, and Multinomial

(
mn, (pn1, . . . , pnn)) weights.

In this article, we present new strong uniform laws of large numbers for randomly weighted
sums, aiming to fill these gaps in the literature. Our first result applies to the case of
Multinomial

(
mn, (1/n, . . . , 1/n)) weights, known as the m-out-of-n bootstrap. Our second

and third results apply more generally to a large class of randomly weighted sums that
involve negatively orthant dependent (NOD) weights. This covers a wide range of weight-
ing schemes, including the Bayesian bootstrap (Rubin, 1981), various versions of the jack-
knife (Efron, 1982; Chatterjee and Bose, 2005), resampling without replacement (Bickel
et al., 2012), simple random sampling with over-replacement (Antal and Tillé, 2011b),
Multinomial

(
mn, (pn1, . . . , pnn)) weights (Antal and Tillé, 2011a, Section 3), independent

weights (Newton and Raftery, 1994), and even schemes involving negative weights such as
multivariate Gaussian weights with non-positive correlations (Patak and Beaumont, 2009).
All three theorems are flexible in terms of the effective bootstrap sample size mn (that is,
the sum of the weights), for instance, allowing mn = o(n) which is of particular interest for
certain applications (Bickel et al., 2012; Huggins and Miller, 2022).

The article is organized as follows. We present our main results in Section 2, provide
examples in Section 3, and the proofs of the main results are provided in Section 4.

2. Main results

We present three strong uniform laws of large numbers: Theorem 2.2 for the multinomial
bootstrap, Theorem 2.4 for more general randomly weighted sums, and Theorem 2.7 which
establishes faster convergence rates under stronger regularity and moment conditions than
Theorem 2.4. All three results are obtained via extensions of the proof of the i.i.d. strong
uniform law of large numbers presented by Ghosh and Ramamoorthi (2003). Specifically,
our proof of Theorem 2.2 involves replacing the traditional strong law of large numbers with
a strong law of large numbers for bootstrap means as presented by Arenal-Gutiérrez et al.
(1996). Similarly, Theorems 2.4 and 2.7 rely on a strong law of large numbers for randomly
weighted sums of random variables presented by Chen et al. (2019).
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Condition 2.1. Suppose Θ is a compact subset of a separable metric space. Let u ∈ N and
let H(θ, x) be a real-valued function on Θ× Ru such that

(i) for each x ∈ Ru, θ 7→ H(θ, x) is continuous on Θ, and

(ii) for each θ ∈ Θ, x 7→ H(θ, x) is a measurable function on Ru.

Theorem 2.2. Let X1, X2, . . . ∈ Ru i.i.d. and for n ∈ N independently, let

(Wn1, . . . ,Wnn) ∼ Multinomial
(
mn, (1/n, . . . , 1/n)

)
independently of (X1, X2, . . .), where mn is a positive integer for n ∈ N. Assume Condi-
tion 2.1 and suppose there exists β ≥ 1 such that

lim
n→∞

n1/β log(n)

mn

= 0 and E
(
sup
θ∈Θ

|H(θ,X1)|β
)

< ∞. (1)

Then

sup
θ∈Θ

∣∣∣∣ 1

mn

n∑
j=1

WnjH(θ,Xj)− E(H(θ,X1))

∣∣∣∣ a.s.−−−→
n→∞

0. (2)

In Theorems 2.4 and 2.7, we generalize beyond the standard multinomial bootstrap to
weighting schemes involving NOD random variables (Lehmann, 1966; Chen et al., 2019).

Definition 2.3. A finite collection of random variables X1, . . . , Xn ∈ R is said to be nega-
tively orthant dependent (NOD) if

P (X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏

i=1

P(Xi ≤ xi)

and

P (X1 > x1, . . . , Xn > xn) ≤
n∏

i=1

P(Xi > xi)

for all x1, . . . , xn ∈ R. An infinite collection of random variables is NOD if every finite
subcollection is NOD.

Any collection of independent random variables is NOD, and many commonly used mul-
tivariate distributions are NOD including the multinomial distribution, the Dirichlet distri-
bution, the Dirichlet-multinomial distribution, the multivariate hypergeometric distribution,
convolutions of multinomial distributions, and multivariate Gaussian distributions for which
the correlations are all non-positive (Joag-Dev and Proschan, 1983).

Theorem 2.4. Let X1, X2, . . . ∈ Ru i.i.d. and for n ∈ N independently, let Wn1, . . . ,Wnn ∈ R
be NOD random variables, independent of (X1, X2, . . .). Assume Condition 2.1 and suppose
E(supθ∈Θ |H(θ,X1)|β) < ∞,

∑n
j=1 E(|Wnj|α) = O(n), and

∑n
j=1 E(|Wnj|) = O(n1/p) where

p ∈ [1, 2) and α > 2p and β > 1 satisfy α−1 + β−1 = p−1. Then

sup
θ∈Θ

∣∣∣∣ 1

n1/p

n∑
j=1

(
WnjH(θ,Xj)− E(WnjH(θ,Xj))

)∣∣∣∣ a.s.−−−→
n→∞

0. (3)
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In particular, if n−1/p
∑n

j=1 E(Wnj) → 1, then Equation 3 is analogous to Equation 2

with n1/p in place of mn. While the moment condition on H(θ,X1) in Theorem 2.4 is
slightly more stringent than in Theorem 2.2, it applies to a more general class of resampling
procedures. For instance, the distribution of Wnj can be different for each n and j; in
particular, there is no assumption that Wn1, . . . ,Wnn are exchangeable or even identically
distributed. Further, the weights Wnj are not restricted to being non-negative; thus, random
weights taking positive and negative values are permitted.

The main limitation of Theorem 2.4 is that whenever p > 1, the condition that∑n
j=1 E(|Wnj|) = O(n1/p) requires the weights to be getting smaller as n increases. One

can scale the weights up by a factor of n1−1/p, but then the leading factor of 1/n1/p in
Equation 3 becomes 1/n, effectively reverting back to the standard rate of convergence. In
Theorem 2.7, we show that this condition can be dropped if we assume stronger regularity
and moment conditions.

Condition 2.5. Assume θ 7→ H(θ, x) is uniformly locally Hölder continuous, in the sense
that there exist a > 0, M > 0, and δ > 0 such that for all x ∈ Ru, θ, θ′ ∈ Θ, if d(θ, θ′) < δ
then |H(θ, x)−H(θ′, x)| ≤ Md(θ, θ′)a.

Condition 2.6. Assume N(r) ≤ c r−D for some c > 0 and D > 0, where N(r) is the
smallest number of open balls of radius r, centered at points in Θ, needed to cover Θ.

Condition 2.6 holds for any compact Θ ⊂ RD; indeed, by Shalev-Shwartz and Ben-David
(2014, Example 27.1), N1(r) ≤ c1r

−D where N1(r) is the number of r-balls needed to cover
Θ, centered at any points in RD, and it is straightforward to verify that N(r) ≤ N1(r/2).

Theorem 2.7. Let X1, X2, . . . ∈ Ru i.i.d. and for n ∈ N independently, let Wn1, . . . ,Wnn ∈ R
be NOD random variables, independent of (X1, X2, . . .). Assume Conditions 2.1, 2.5, and
2.6. Let p ∈ (1, 2) and suppose supθ∈Θ E(|H(θ,X1)|q) < ∞,

∑n
j=1 E(|Wnj|q) = O(n) for

some q > ((1− 1/p)D/a+ 1)/(1/p− 1/2). Then

sup
θ∈Θ

∣∣∣∣ 1

n1/p

n∑
j=1

(
WnjH(θ,Xj)− E(WnjH(θ,Xj))

)∣∣∣∣ a.s.−−−→
n→∞

0. (4)

Note that as p → 1 from above, the bound on the power q approaches 2.

3. Examples

A key condition of Theorems 2.4 and 2.7 is that the weights Wn1, . . . ,Wnn must be NOD.
It turns out that most popular resampling techniques satisfy this condition. For instance,
the m-out-of-n bootstrap corresponds to Multinomial

(
mn, (1/n, . . . , 1/n)) weights, unequal

probability with replacement corresponds to Multinomial
(
mn, (pn1, . . . , pnn)) weights (Antal

and Tillé, 2011a), the Bayesian bootstrap corresponds to Dirichlet weights, the delete-d
jackknife and resampling without replacement correspond to multivariate hypergeometric
weights (Chatterjee and Bose, 2005), the weighted likelihood bootstrap is equivalent to using
independent weights (Newton and Raftery, 1994), and the reweighting scheme of Patak and
Beaumont (2009) employs multivariate Gaussian weights with non-positive correlations. All
of these distributions satisfy the NOD requirement (Joag-Dev and Proschan, 1983).
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The NOD requirement is also satisfied by less standard reweighting schemes such as the
downweight-d jackknife (Chatterjee and Bose, 2005) and simple random sampling with over-
replacement (Antal and Tillé, 2011b). In the downweight-d jackknife, d indices i1, . . . , id
are selected uniformly at random to be downweighted such that Wni1 = · · · = Wnid = d/n,
whereas the remaining n−d indices are upweighted to 1+d/n. These weights can be viewed as
a monotonic transformation of the multivariate hypergeometric weights corresponding to the
delete-d jackknife, and thus are NOD (Chen et al., 2019). For simple random sampling with
over-replacement, the weights can be viewed as the conditional distribution of a sequence
of n independent geometric random variables, given that their sum equals n. Geometric
random variables satisfy the conditions of Theorem 2.6 from Joag-Dev and Proschan (1983)
according to Efron (1965, 3.1), implying that the resulting weights are NOD.

3.1. Farlie–Gumbel–Morgenstern (FGM) copula

A general family of applicable NOD reweighting schemes can also be derived from the
Farlie–Gumbel–Morgenstern (FGM) n-copula (Nelsen, 2006, page 108). An FGM copula is
a distribution on the n-dimensional unit cube [0, 1]n with cumulative distribution function

P(U1 ≤ x1, . . . , Un ≤ xn) =
( n∏

i=1

xi

)(
1 +

n∑
k=2

∑
1≤j1<j2<···<jk≤n

θj1,j2,...,jk

k∏
ℓ=1

(1− xjℓ)
)
,

for all x ∈ [0, 1]n, where the parameters θj1,j2,...,jk ∈ [−1, 1] must satisfy the constraints that

1 +
n∑

k=2

∑
1≤j1<j2<···<jk≤n

θj1,j2,...,jkϵj1ϵj2 · · · ϵjk ≥ 0

for all (ϵ1, . . . , ϵn) ∈ {−1, 1}n to ensure non-negativity of the density. There are 2n − n− 1
parameters—one for each subset of {1, . . . , n} containing at least two elements. Marginally,
each entry Ui is uniformly distributed on [0, 1], and thus,

∏n
i=1 P (Ui ≤ xi) =

∏n
i=1 xi and∏n

i=1 P (Ui > xi) =
∏n

i=1(1− xi) for all x ∈ [0, 1]n. Further, it can be shown that

P(U1 > x1, . . . , Un > xn) =
( n∏

i=1

(1− xi)
)(

1 +
n∑

k=2

∑
1≤j1<j2<···<jk≤n

θj1,j2,...,jk(−1)k
k∏

ℓ=1

xjℓ

)
for x ∈ [0, 1]n. Therefore, an FGM n-copula is NOD if and only if the inequalities

n∑
k=2

∑
1≤j1<j2<···<jk≤n

θj1,j2,...,jk

k∏
ℓ=1

(1− xjℓ) ≤ 0 (5)

n∑
k=2

∑
1≤j1<j2<···<jk≤n

θj1,j2,...,jk(−1)k
k∏

ℓ=1

xjℓ ≤ 0 (6)

hold for all x ∈ [0, 1]n. Since NOD is preserved under monotonic transformations, any
weights that can be written as (Wn1, . . . ,Wnn) = (g1(U1), . . . , gn(Un)) are NOD if g1, . . . , gn
are all monotone increasing (or all monotone decreasing) and U is distributed according to
an FGM copula satisfying Equations 5 and 6.
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3.2. Moment condition on the weights

The condition that
∑n

j=1 E(|Wnj|q) = O(n) in Theorem 2.7 holds for all of the aforemen-
tioned reweighting procedures without any additional assumptions, except for a few cases.
For the Multinomial

(
mn, (pn1, . . . , pnn)) case, it holds as long as there exists a constant κ > 0

such that pnj < κ/n for all j and n. For the Gaussian reweighting scheme (Patak and Beau-
mont, 2009), it holds as long as supn,j Var(Wnj) < ∞. For the independent weights and
FGM copula cases, it holds when supn,j E(|Wnj|q) < ∞.

4. Proofs

We begin by stating a strong law of large numbers for bootstrap means due to Arenal-
Gutiérrez et al. (1996, Theorem 2.1). This lemma plays a key role in our proof of Theorem 2.2.
In fact, Arenal-Gutiérrez et al. (1996) only assume pairwise independence of Z1, Z2, . . . rather
than mutual independence, but we do not require this additional generality.

Lemma 4.1. Let Z1, Z2, . . . ∈ R i.i.d. and for n ∈ N independently, let

(Wn1, . . . ,Wnn) ∼ Multinomial
(
mn, (1/n, . . . , 1/n)

)
independently of (Z1, Z2, . . .), where mn is a positive integer for n ∈ N. Suppose there exists
β ≥ 1 such that

lim
n→∞

n1/β log(n)

mn

= 0 and E
(
|Z1|β

)
< ∞.

Then

1

mn

n∑
j=1

WnjZj
a.s.−−−→

n→∞
E(Z1).

Proof. See Arenal-Gutiérrez et al. (1996, Theorem 2.1) for the proof.

Proof of Theorem 2.2. Our argument is based on the proof of Theorem 1.3.3 of Ghosh
and Ramamoorthi (2003), except that we use Lemma 4.1 in place of the strong law of large
numbers for i.i.d. random variables.

Condition 2.1 ensures that x 7→ supθ∈Θ |H(θ, x)| is measurable; this can be seen by
letting θ1, θ2, . . . be a countable dense subset of Θ, verifying that supj∈N |H(θj, x)| =
supθ∈Θ |H(θ, x)|, and using Folland (2013, Proposition 2.7). Define µ(θ) := E (H(θ,X1)),
and note that µ(θ) is continuous by the dominated convergence theorem. Let Br(θ0) := {θ ∈
Θ : d(θ, θ0) < r} denote the open ball of radius r at θ0, where d(·, ·) is the metric on Θ. For
θ ∈ Θ, x ∈ Ru, and r > 0, define

η(θ, x, r) := sup
θ′∈Br(θ)

∣∣∣(H(θ, x)− µ(θ)
)
−
(
H(θ′, x)− µ(θ′)

)∣∣∣, (7)

and observe that by continuity and compactness,

η(θ, x, r) ≤ 2 sup
θ∈Θ

|H(θ, x)|+ 2 sup
θ∈Θ

|µ(θ)| < ∞.
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Applying the dominated convergence theorem again, we have limr→0 E(η(θ,X1, r)) = 0 for
all θ ∈ Θ. Thus, for any ε > 0, by compactness of Θ there exist K ∈ N, θ1, . . . , θK ∈ Θ, and
r1, . . . , rK > 0 such that Θ =

⋃K
i=1Bri(θi) and E (η(θi, X1, ri)) < ε for all i ∈ {1, . . . , K}.

Choosing β ≥ 1 according to the statement of Theorem 2.2,

E
(
η(θi, X1, ri)

β
)
≤ E

((
2 sup

θ∈Θ
|H(θ,X1)|+ 2 sup

θ∈Θ
|µ(θ)|

)β)
(8)

≤ 4βE
(
sup
θ∈Θ

|H(θ,X1)|β
)
+ 4β sup

θ∈Θ
|µ(θ)|β < ∞ (9)

since (x + y)β ≤ (2max{|x|, |y|})β ≤ 2β(|x|β + |y|β). For all i ∈ {1, . . . , K}, by applying
Lemma 4.1 with Zj = η(θi, Xj, ri) we have that

1

mn

n∑
j=1

Wnjη(θi, Xj, ri)
a.s.−−−→

n→∞
E
(
η(θi, X1, ri)

)
< ε. (10)

Similarly, by Lemma 4.1 with Zj = H(θi, Xj),

1

mn

n∑
j=1

WnjH(θi, Xj)
a.s.−−−→

n→∞
µ(θi). (11)

Thus, for any θ ∈ Θ, by choosing i such that θ ∈ Bri(θi), we have∣∣∣∣ 1

mn

n∑
j=1

WnjH(θ,Xj)− µ(θ)

∣∣∣∣ (12)

≤ 1

mn

n∑
j=1

Wnjη(θi, Xj, ri) +

∣∣∣∣ 1

mn

n∑
j=1

WnjH(θi, Xj)− µ(θi)

∣∣∣∣
by the triangle inequality and Equation 7. Letting Vni denote the right-hand side of Equa-
tion 12, we have Vni → E

(
η(θi, X1, ri)

)
< ε a.s. by Equations 10 and 11. Therefore,

sup
θ∈Θ

∣∣∣∣ 1

mn

n∑
j=1

WnjH(θ,Xj)− µ(θ)

∣∣∣∣ ≤ max
1≤i≤K

Vni
a.s.−−−→

n→∞
max
1≤i≤K

E
(
η(θi, X1, ri)

)
< ε. (13)

Since ε > 0 is arbitrary, Equation 13 holds almost surely for ε = εk = 1/k for all k ∈ N,
completing the proof.

The following result, due to Chen et al. (2019), is a more general version of Lemma 4.1
that extends beyond the standard bootstrap to negatively orthant dependent (NOD) weights.

Lemma 4.2. Let Z1, Z2, . . . ∈ R be identically distributed NOD random variables. For
each n ∈ N independently, let Wn1, . . . ,Wnn be NOD random variables, independent of
(Z1, Z2, . . .). Suppose E(|Z1|β) < ∞ and

∑n
j=1 E(|Wnj|α) = O(n) where p ∈ [1, 2) and

either (a) α > 2p and β > 1 satisfy α−1 + β−1 = p−1, or (b) the weights Wnj are identically
distributed for all n, j, and α = β = 2p. Then

1

n1/p

n∑
j=1

(
WnjZj − E(WnjZj)

) a.s.−−−→
n→∞

0.
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Proof. See Chen et al. (2019, Theorem 1 and Corollary 1) for the proof.

Proof of Theorem 2.4. The proof is similar to the proof of Theorem 2.2, except that we
use Lemma 4.2 instead of Lemma 4.1, and some modifications are needed to handle more
general distributions of the weights Wnj.

As in the proof of Theorem 2.2, define η(θ, x, r) by Equation 7 and µ(θ) := E (H(θ,X1)).
As before, for any ε > 0, there exist K ∈ N, θ1, . . . , θK ∈ Θ, and r1, . . . , rK > 0 such that
Θ =

⋃K
i=1Bri(θi) and E (η(θi, X1, ri)) < ε for all i ∈ {1, . . . , K}. Just as in Equation 8,

E
(
η(θi, X1, ri)

β
)
≤ 4βE

(
sup
θ∈Θ

|H(θ,X1)|β
)
+ 4β sup

θ∈Θ
|µ(θ)|β < ∞.

For all i ∈ {1, . . . , K}, by applying Lemma 4.2 with Zj = 1 and Zj = H(θi, Xj), respectively,

1

n1/p

n∑
j=1

(
Wnj − E(Wnj)

) a.s.−−−→
n→∞

0, (14)

1

n1/p

n∑
j=1

(
WnjH(θi, Xj)− E (Wnj)µ(θi)

) a.s.−−−→
n→∞

0. (15)

LetW+
nj = max{Wnj, 0} andW−

nj = max{−Wnj, 0}. Then (W+
n1, . . . ,W

+
nn) and (W−

n1, . . . ,W
−
nn)

are each NOD because they are monotone transformations of the Wnj’s (Chen et al., 2019).
Thus, Lemma 4.2 applied to Zj = η(θi, Xj, ri) with W+

nj and W−
nj, respectively, yields

1

n1/p

n∑
j=1

(
W+

njη(θi, Xj, ri)− E(W+
nj)E

(
η(θi, X1, ri)

)) a.s.−−−→
n→∞

0, (16)

1

n1/p

n∑
j=1

(
W−

njη(θi, Xj, ri)− E(W−
nj)E

(
η(θi, X1, ri)

)) a.s.−−−→
n→∞

0. (17)

By adding Equations 16 and 17 and using the fact that |Wnj| = W+
nj +W−

nj, we have

1

n1/p

n∑
j=1

(
|Wnj|η(θi, Xj, ri)− E (|Wnj|)E

(
η(θi, X1, ri)

)) a.s.−−−→
n→∞

0, (18)

Since E(η(θi, X1, ri)) < ε, Equation 18 implies that, almost surely,

lim sup
n→∞

1

n1/p

n∑
j=1

|Wnj|η(θi, Xj, ri) ≤ lim sup
n→∞

1

n1/p

n∑
j=1

E(|Wnj|)E
(
η(θi, X1, ri)

)
≤ Cε (19)

where C := lim supn→∞ n−1/p
∑n

j=1 E(|Wnj|). Note that C < ∞ by the assumption that∑n
j=1 E(|Wnj|) = O(n1/p). For any θ ∈ Θ, choosing i such that θ ∈ Bri(θi), we can write

WnjH(θ,Xj)− E(Wnj)µ(θ) = Wnj

(
(H(θ,Xj)− µ(θ))− (H(θi, Xj)− µ(θi))

)
+ (Wnj − E(Wnj))(µ(θ)− µ(θi)) (20)
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+
(
WnjH(θi, Xj)− E(Wnj)µ(θi)

)
.

Summing Equation 20 over j, using the triangle inequality, and employing Equation 7,∣∣∣∣ 1

n1/p

n∑
j=1

(
WnjH(θ,Xj)− E(Wnj)µ(θ)

)∣∣∣∣ ≤ 1

n1/p

n∑
j=1

|Wnj| η(θi, Xj, ri) (21)

+
∣∣∣ 1

n1/p

n∑
j=1

(Wnj − E(Wnj))
∣∣∣ sup

θ∈Θ
|µ(θ)− µ(θi)|

+
∣∣∣ 1

n1/p

n∑
j=1

(
WnjH(θi, Xj)− E(Wnj)µ(θi)

)∣∣∣.
Letting Vni denote the right-hand side of Equation 21, we have lim supn Vni ≤ Cε a.s. by
Equations 19, 14, and 15, along with the fact that µ(θ) is continuous and Θ is compact.
Therefore, almost surely,

lim sup
n→∞

sup
θ∈Θ

∣∣∣∣ 1

n1/p

n∑
j=1

(
WnjH(θ,Xj)− E(Wnj)µ(θ)

)∣∣∣∣ ≤ lim sup
n→∞

max
1≤i≤K

Vni ≤ Cε. (22)

As before, since ε > 0 is arbitrary, Equation 22 holds almost surely for ε = εk = 1/k for all
k ∈ N, completing the proof.

Proof of Theorem 2.7. First, we may assume without loss of generality that Wnj and
H(θ,Xj) are nonnegative since we can write Wnj = W+

nj − W−
nj and H(θ,Xj) =

H(θ,Xj)
+−H(θ,Xj)

−, and apply the result in the nonnegative case to each ofW+
njH(θ,Xj)

+,
W+

njH(θ,Xj)
−, W−

njH(θ,Xj)
+, and W−

njH(θ,Xj)
− to obtain the result for WnjH(θ,Xj) in

the general case; see the proof of Theorem 1 from Chen et al. (2019) for a similar argument.
Let ε > 0. As before, define η(θ, x, r) by Equation 7 and µ(θ) := E (H(θ,X1)). For n ∈ N,

define rn = (ε/n(1−1/p))1/a and Kn = N(rn), where N(r) is defined in Condition 2.6. Let
θn1, . . . , θnKn ∈ Θ be the centers of Kn balls of radius rn that cover Θ, that is,

⋃Kn

i=1Brn(θni).
Let CW = 1 + supn

1
n

∑n
j=1 E(W

q
nj) < ∞. Note that q > 2p since p > 1. Thus, by

Lemma 4.2 with Zj = 1,

1

n

n∑
j=1

Wnj ≤ CW +
1

n

n∑
j=1

(Wnj − E(Wnj))
a.s.−−−→

n→∞
CW

For all n sufficiently large that rn < δ, we have η(θ, x, rn) ≤ 2Mran = 2Mε/n(1−1/p) by
Condition 2.5, and thus,

lim sup
n→∞

max
i∈[Kn]

1

n1/p

n∑
j=1

Wnjη(θni, Xj, rn) ≤ 2Mε lim sup
n→∞

1

n

n∑
j=1

Wnj

a.s.

≤ 2MCW ε (23)

where [Kn] = {1, . . . , Kn}. By another application of Lemma 4.2 with Zj = 1,

lim sup
n→∞

max
i∈[Kn]

∣∣∣ 1

n1/p

n∑
j=1

(Wnj − E(Wnj))
∣∣∣ sup
θ∈Θ

|µ(θ)− µ(θni)|
a.s.
= 0 (24)

9



since maxi∈[Kn] supθ |µ(θ) − µ(θni)| ≤ 2 supθ |µ(θ)| < ∞. Defining Ynij := WnjH(θni, Xj) −
E(Wnj)µ(θni), we claim that

lim sup
n→∞

max
i∈[Kn]

∣∣∣ 1

n1/p

n∑
j=1

Ynij

∣∣∣ a.s.

≤ ε. (25)

Assuming Equation 25 for the moment, we use the same decomposition as in Equation 21
and plug in Equations 23–25 to obtain

lim sup
n→∞

sup
θ∈Θ

∣∣∣∣ 1

n1/p

n∑
j=1

(
WnjH(θ,Xj)− E(Wnj)µ(θ)

)∣∣∣∣ ≤ 2MCW ε+ 0 + ε.

Since ε > 0 is arbitrarily small, this will yield the result of the theorem.
To complete the proof, we need to show Equation 25. For each n and i, by Chen et al.

(2019, Lemma 1), Yni1, . . . , Ynin is an NOD sequence since we have assumed without loss of
generality that Wnj and H(θ,Xj) are nonnegative, and adding constants preserves the NOD
property. Asadian et al. (2006) and Rivaz et al. (2007) provide moment inequalities that are
useful in this context. By Asadian et al. (2006, Corollary 2.2) (also see Rivaz et al., 2007,
Corollary 3), since E(Ynij) = 0 and q > 2,

E
(∣∣∣ n∑

j=1

Ynij

∣∣∣q) ≤ CA(q)
n∑

j=1

E(|Ynij|q) + CA(q)
( n∑

j=1

E(|Ynij|2)
)q/2

(26)

where CA(q) is a universal constant that depends only on q. Letting CH = 1 +
supθ∈Θ E(|H(θ,X1)|q) < ∞, we have

n∑
j=1

E(|Ynij|q) ≤
n∑

j=1

2q+1E
(
|Wnj|q|H(θni, Xj)|q

)
≤ 2q+1CHCWn. (27)

Likewise, since Var(X) ≤ E(X2) for any random variable X,

n∑
j=1

E(|Ynij|2) ≤
n∑

j=1

E
(
|Wnj|2|H(θni, Xj)|2

)
≤ CHCWn. (28)

Plugging Equations 27 and 28 into Equation 26, we have

E
(∣∣∣ n∑

j=1

Ynij

∣∣∣q) ≤ Cnq/2 (29)

where C = CA(q)2
q+1CHCW + CA(q)(CHCW )q/2. By Condition 2.6, Kn = N(rn) ≤ c r−D

n =
c n(1−1/p)D/a/εD/a. Along with Markov’s inequality and Equation 29, this implies

P
(
max
i∈[Kn]

∣∣∣ 1

n1/p

n∑
j=1

Ynij

∣∣∣ > ε
)
≤

Kn∑
i=1

P
(∣∣∣ 1

n1/p

n∑
j=1

Ynij

∣∣∣ > ε
)
≤ 1

εqnq/p

Kn∑
i=1

E
(∣∣∣ n∑

j=1

Ynij

∣∣∣q)
10



≤ KnCnq/2

εqnq/p
≤ cC

εqεD/a
n(1−1/p)D/a nq(1/2−1/p) =

cC

εqεD/a
n−γ

where γ := q(1/p − 1/2) − (1 − 1/p)D/a > 1 because q > ((1 − 1/p)D/a + 1)/(1/p − 1/2)
by assumption. Hence,

∞∑
n=1

P
(
max
i∈[Kn]

∣∣∣ 1

n1/p

n∑
j=1

Ynij

∣∣∣ > ε
)
≤ cC

εqεD/a

∞∑
n=1

n−γ < ∞.

Therefore, Equation 25 holds by the Borel–Cantelli lemma. This completes the proof.
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