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“It ain’t what you don’t know that gets you into trouble.
It’s what you know for sure that just ain’t so.”

– attributed to Mark Twain
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Decision theoretic approaches to robust Bayes

Standard Bayesian decision theory framework (Savage, 1954):

min
action

E(loss|data).

Various minimax approaches are possible . . .

Robustness to the choice of prior (Berger 1984 and others):

min
action

max
prior∈set

E(loss|data).

Robustness with respect to the posterior (Watson & Holmes 2016):

min
action

max
posterior∈set

E(loss|data).

Robustness to the choice of likelihood (anyone? seems interesting. . . ):

min
action

max
likelihood∈set

E(loss|data).

This talk focuses on robustness to misspecification of the likelihood.
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What do we mean by misspecification? Two scenarios

Notation:
I Po = distribution of the observed data
I θ∗ = pseudo-true parameter (nearest point in model to Po)
I θI = ideal parameter (the truth before perturbation)
I We think of Po as a perturbation of PθI .

Scenario A: Po is not in the model class.

Scenario B: Po is in the model class, but Po 6= PθI .

If there is no perturbation, then Po = Pθ∗ = PθI .
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Example: Mixture models

PθI is a two-component normal mixture, and Po is a perturbation.

The posterior introduces more and more components as n grows, in
order to fit the data.

Po is approximable by a BNP mixture. . . but maybe we wanted θI !
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Example: Flow cytometry

Low-dim data with cell type clusters that are sort of Gaussian.

Example: Graft versus Host Disease, n = 13773 blood cells, d = 4
flourescence signals, K = 5 manually labeled clusters of cell types.

(figure from Lee and McLachlan, Statistics and Computing, 2014)
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What is the quantity of interest?

The choice of method depends on the quantity of interest.

Two main perspectives:
1 Fitting: Model is a tool for approximating Po.

F Want to predict future observations.
F Pseudo-true parameter θ∗ is of interest.

2 Finding: Model is an idealization of a true process.
F Want to recover unknown true parameters.
F Ideal parameter θI is of interest.
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Perspective 1: Model is a tool for approximating Po

Pseudo-true parameter θ∗ is of interest.

Common when doing prediction using classification or regression.

Examples:
I Will person X get disease Y ?
I Will person X buy product Y ?
I How long will this person live?
I What sentence was spoken in this recording?
I What object is in this image?
I Where are the tumors in this image?
I What behavior is being exhibited by the mouse in this video?
I Hot dog or no hot dog?
I etc., etc., etc.
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Issues with using standard posterior to infer θ∗

The posterior concentrates at θ∗ (under regularity conditions), but . . .

Miscalibrated: credible sets do not have correct coverage
I Kleijn & van der Vaart (2012)
I Can recalibrate using sandwich covariance

Slow concentration at the model containing θ∗ can occur, leading to
poor prediction performance

I Grünwald & van Ommen (2014)
I Can fix this using a power posterior ∝ p(x|θ)ζp(θ) for certain ζ ∈ (0, 1)

(figures from Grünwald & van Ommen, 2014)
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Perspective 2: Model is an idealization of a true process

Model is interpretable scientifically, but not exactly right of course.

Ideal parameter θI is of interest.

Data is from Po, which we think of as a perturbation of PθI .

The objective is to understand — not to fit.

This perspective is ubiquitous in science & medicine.
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Perspective 2: Model is an idealization of a true process

Examples:
I Phylogenetics

F What is the evolutionary tree relating a given set of organisms?

I Ecology
F What factors affect which species live in which habitats?

I Epidemiology
F Does exposure X cause disease Y ?

I Cancer
F What mutations occurred, and in what order?

I Genomics / Genetics
F Which genes are involved in causing disease Y ?

I Infectious diseases
F How do infectious diseases spread?
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Issues with using standard posterior to infer θI
Lack of robustness

I Small perturbations from PθI can lead to large changes in the
posterior. (e.g., mixture example)

Miscalibration — too concentrated
I If Po 6= PθI , the posterior doesn’t properly quantify uncertainty in θI .

“It ain’t what you don’t know that gets you into trouble. It’s what
you know for sure that just ain’t so.”
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A BNP way to deal with perturbations
Model Po|θI using BNP.

I Let’s call this a NonParametric Perturbation (NPP) model
Example: Perturbation of a finite mixture

θI ∼ prior on finite mixtures
Po|θI ∼ DP mixture with base measure PθI
X1, . . . , Xn|Po ∼ Po
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A BNP way to deal with this

Example (continued): Perturbation of a finite mixture.

More detailed model description

π ∼ Dirichlet(γ1, . . . , γK)

µ1, . . . , µK ∼ N (µ0, σ
2
0)

σ21, . . . , σ
2
K ∼ InvGamma(a0, b0)

G|π, µ, σ2 ∼ DP
(
α,
∑K

k=1 πkN (µk, σ
2
k)
)

X1, . . . , Xn|G ∼
∫
N (x|y, s2)dG(y)

Disadvantages:
I More computationally burdensome

F Have to introduce a bunch of auxiliary variables

I More complicated
F Scientists & doctors prefer methods they can understand

Is there a simpler way to handle small perturbations?
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Lack of robustness of the standard posterior

The standard posterior is not robust, especially for model inference.
Why? Very roughly, if xi ∼ Po then when n is large,

p(θ)

n∏
i=1

pθ(xi) ∝∼ exp(−nD(po‖pθ))p(θ).

where ∝∼ denotes approximate proportionality.

Due to the n in the exponent, even a slight change to Po can
dramatically change the posterior when n is large.
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Intuition for how using a power posterior helps

Raising the likelihood to a power ζn ∈ (0, 1), we get (very roughly)

p(θ)

n∏
i=1

pθ(xi)
ζn ∝∼ exp(−nζnD(po‖pθ))p(θ).

Suppose nζn → α and D(po‖pθ) is close to D(pθI‖pθ) as a function
of θ.

Then the power posterior given data from Po will be close to the
power posterior given data from PθI , even as n→∞.
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Interpretation 1: Changing the sample size

The power posterior is only as concentrated as if we had nζn samples.

⇒ Can be viewed as changing n to nζn, in this sense.
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Gaussian mixture applied to skew-normal mixture data
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Interpretation 2: Balancing fit and model complexity

By the Laplace approximation (under regularity conditions),

log

∫
p(x1:n|θk)ζnp(θk|k)dθk ≈ nζn`n(k)− 1

2Dk log n+ ck

where Dk is the dimension of θk and

`n(k) =
1

n
log p(x1:n|θ̂k) −→ −D(po‖pθ∗k) +

∫
po log po.

−1
2Dk log n penalizes model complexity

nζn`n(k) penalizes poor model fit to the data

ζn allows one to balance these two penalties
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Suppose the data is close to AR(4) but has time-varying noise:

xt = 1
4(xt−1 + xt−2 − xt−3 + xt−4) + εt + 1

2 sin t

where εt
iid∼ N (0, 1). Choose ζn = α/(α+ n) where α = 500.

Log marginal likelihood vs model complexity k
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Interpretation 3: Approximation to coarsened posterior

Instead of the standard posterior p(θ | X1:n = x1:n), M. & Dunson
(2016) proposed the “coarsened posterior” (c-posterior)

p
(
θ | dn(X1:n, x1:n) < R

)
to obtain robustness to perturbations.

Here, dn(X1:n, x1:n) ≥ 0 is a user-specified measure of the
discrepancy between the empirical distributions P̂X1:n and P̂x1:n .

Jeff Miller, Harvard University Interpretations of the Power Posterior



Interpretation 3: Approximation to coarsened posterior

Suppose dn(X1:n, x1:n) is a consistent estimator of D(po‖pθ) when

Xi
iid∼ pθ and xi

iid∼ po.
If R ∼ Exp(α) then we have the approximation

p
(
θ
∣∣ dn(X1:n, x1:n) < R

)
∝∼ p(θ)

n∏
i=1

pθ(xi)
ζn

where ζn = α/(α+ n).

This approximation is good when either n� α or n� α, under mild
conditions.
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Toy example: Hypothesis testing with Bernoulli trials
Suppose PθI = Bernoulli(0.5) and Po = Bernoulli(0.51). Consider H0 : θ = 1/2
versus H1 : θ 6= 1/2. Pick α to tolerate perturbations from θI of magnitude 0.02.

If Po = Bernoulli(0.56), the perturbation is significantly larger than our chosen
tolerance. In both cases, the power posterior closely approximates the c-posterior.
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Theory: Large-sample asymptotics
Let G(r) = P(R > r).
Assume P(d(Pθ, Po) = R) = 0 and P(d(Pθ, Po) < R) > 0.

Theorem (Asymptotic form of c-posteriors)

If dn(X1:n, x1:n)
a.s.−−→ d(Pθ, Po) as n→∞, then

Π
(
dθ | dn(X1:n, x1:n) < R

)
====⇒
n→∞

Π
(
dθ | d(Pθ, Po) < R

)
∝ G

(
d(Pθ, Po)

)
Π(dθ),

and in fact,

E
(
h(θ) | dn(X1:n, x1:n) < R

)
−−−→
n→∞

E
(
h(θ) | d(Pθ, Po) < R

)
=

Eh(θ)G
(
d(Pθ, Po)

)
EG
(
d(Pθ, Po)

)
for any h ∈ L1(Π).
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Theory: Small-sample behaviour

When n is small, the c-posterior tends to be well-approximated by the
standard posterior.

To study this, we consider the limit as the distribution of R converges
to 0, while holding n fixed.

Theorem

Under regularity conditions, there exists cα ∈ (0,∞), not depending on θ,
such that

cα P
(
dn(X1:n, x1:n) < R/α

∣∣ θ) −−−→
α→∞

n∏
i=1

pθ(xi).

In particular, since ζn ≈ 1 when n� α, the power posterior is a good
approximation to the relative entropy c-posterior in this regime.
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Interpretation 4: Approximation to convolving the model

The c-posterior can be expressed as:

p
(
θ | dn(X1:n, x1:n) < R

)
∝ p(θ) P

(
dn(X1:n, x1:n) < R | θ

)
= p(θ)

∫
G(dn(x′1:n, x1:n))dPnθ (x′1:n),

where G(r) = P(R > r), e.g., if R ∼ Exp(α) then G(r) = e−αr.

This integral can be viewed as a convolution of the model distribution
Pnθ with the “kernel” G(dn(x′1:n, x1:n)).

In cases where G(dn(x′1:n, x1:n)) defines a distribution on x1:n given
x′1:n, the c-posterior is equivalent to integrating out this error
distribution. However, even then, it will not necessarily be projective.
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Other uses of power posteriors

improving model selection & prediction performance under
misspecification (Grünwald and van Ommen, 2014)

discounting historical data (Ibrahim and Chen, 2000)

obtaining consistency in BNP models (Walker & Hjort, 2001)

marginal likelihood approximation (Friel and Pettitt, 2008)

objective Bayesian model selection (O’Hagan, 1995)

improved MCMC mixing (Geyer, 1991)
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