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“It ain't what you don’t know that gets you into trouble.
It's what you know for sure that just ain't so.”
— attributed to Mark Twain
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Motivation

@ In standard Bayesian inference, it is assumed that the model is correct.

@ However, small violations of this assumption can have a large impact,
and unfortunately, “all models are wrong."
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Motivation

@ In standard Bayesian inference, it is assumed that the model is correct.

@ However, small violations of this assumption can have a large impact,
and unfortunately, “all models are wrong."

@ Is it possible to draw coherent inferences from a misspecified model?
@ Can this be done in a computationally-tractable way?

@ In the context of model averaging and Bayesian nonparametrics, can
we be tolerant of models that are “close enough”?
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Example: Perturbed mixture of Gaussians

Data distribution (k) =2)
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@ Mixtures are often used for clustering.

@ But if the data distribution is not exactly a mixture from the assumed

family, the posterior will tend to introduce more and more clusters as
n grows, in order to fit the data.

@ As a result, the interpretability of the clusters may break down.
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Example: Flow cytometry clustering

Each sample has 3 to 20-dim measurements on 10K's of cells.
Manual clustering is time-consuming and subjective.
Multivariate Gaussian mixture yields too many clusters.
Example: GvHD data from FLOWCAP-I.

FL2.H vs FL3.H (Manual) FL2.H vs FL3.H (Standard)
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Wait, if the model is wrong, why not just fix it?

@ This is often impractical for a number of reasons.

» insufficient insight into the data generating process

» time and effort to design model + algorithms, and develop theory
» slower and more complicated to do inference

» complex models are less likely to be used in practice
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Wait, if the model is wrong, why not just fix it?

@ This is often impractical for a number of reasons.
» insufficient insight into the data generating process
time and effort to design model + algorithms, and develop theory
» slower and more complicated to do inference
» complex models are less likely to be used in practice
@ Further, a simple model may be more appropriate, even if wrong.
> If there is a lack of fit, it may be due to contamination.
» Many models are idealizations that are known to be inexact, but have
interpretable parameters that provide insight into the questions of
interest.

v

There are many reasons to prefer simple, interpretable, efficient models.
But we need a way to do inference that is robust to misspecification.
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Our proposal: Coarsened posterior

@ Assume a model {Py : 6 € ©} and a prior 7(0).
@ Suppose 07 € O represents the idealized distribution of the data.
The interpretation here is that 6; is the “true” state of nature about
which one is interested in making inferences.
@ Suppose X1,..., X, i.i.d. ~ Py, are unobserved idealized data.
@ However, the observed data x4, ..., x, are actually a slightly
corrupted version of X1, ..., X, in the sense that d(Px,. , P, ) <R
for some statistical distance d(-, ).
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Our proposal: Coarsened posterior
@ If there were no corruption, then we should use the standard posterior
77(6 | Xim = 5171:77,)-

@ However, due to the corruption this would clearly be incorrect.

@ Instead, a natural Bayesian approach would be to condition on what
is known, giving us the coarsened posterior or c-posterior,

(0] d(Px,,., Pry.,) < R).

@ Since R may be difficult to choose a priori, put a prior on it: R ~ H.

@ More generally, consider
77(9 ’ dn(Xl:naxlzn) < R)

where dp,(X1.n, 1.n) > 0 is some measure of the discrepancy between
X1 and z1.p.
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Relative entropy c-posterior ~ Power posterior
@ There are many possible choices of statistical distance ...
> e.g., Kolmogorov—Smirnov, Wasserstein, maximum mean discrepancy,
various divergences
@ ... but relative entropy works out exceptionally nicely.
@ Suppose dp(X1.n, T1.n) is a consistent estimator of D(p,||ps) when

X; % pg and ;% p,.
e When R ~ Exp(«), we have the power posterior approximation,

n

7T(9 | dn(Xlzn, -Tl:n) < R) x 7r(9) Hpa(xi)Cn

i=1

where ¢, = a/(a +n).
@ The power posterior enables inference using standard techniques:
» analytical solutions in the case of conjugate priors
» Gibbs sampling when using conditionally-conjugate priors
» Metropolis—Hastings MCMC, more generally
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Previous work on power likelihoods

Power likelihoods of the form T[], pa(x;)¢ have been used previously.
Usually, this is done for reasons completely unrelated to robustness.
» marginal likelihood approximation (Friel and Pettitt, 2008)
» improved MCMC mixing (Geyer, 1991)
» consistency in nonparametrics (Walker and Hjort, 2001; Zhang, 2006a)
» discounting historical data (Ibrahim and Chen, 2000)
» objective Bayesian model selection (O'Hagan, 1995)

Recently, Griinwald and van Ommen (2014) found that a power
posterior improves robustness.

@ However, the form of power we use, and its theoretical justification,
seem novel.
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Recent work on Bayesian robustness

Gibbs posteriors (Jiang and Tanner, 2008)

nonparametric approaches (Rodriguez and Walker, 2014)
disparity-based posteriors (Hooker and Vidyashankar, 2014)
learning rate adjustment (Griinwald and van Ommen, 2014)
restricted posteriors (Lewis, MacEachern, and Lee, 2014)
neighborhood methods (Liu and Lindsay, 2009)

There are interesting connections between these methods and ours, but
our approach seems to be novel.
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How to choose the “precision” «?

@ ldeally, use prior knowledge:
> Set the mean neighborhood size ER = 1/« to match the amount of
misspecification we expect.
» Or, to be robust to perturbations that would require at least N
samples to distinguish, set o ~ N.

@ If no prior knowledge, can either:
» Consider a range of « values, for sensitivity analysis or exploratory

analysis.
» Or, use our calibration curve technique — data-driven choice of «.
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© Examples
@ Toy example: Bernoulli trials
@ Mixture models and clustering
@ Autoregressive models of unknown order
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Toy example: Bernoulli trials

e Model: X,...,X,|0 i.id. ~ Bernoulli()
@ Interested in testing Hy : 6 = 1/2 versus Hy : 6 # 1/2.
e Prior: m(Hp) = n(H;) = 1/2, and 6|H; ~ Uniform(0, 1).

@ Standard posterior:
7(Ho | X1 = 21:) = 1/(1+2"B(1 +nz, 1+ n(1 - 7))

@ Suppose, however, the observed data z1, ..., x, is slightly corrupted.

o Coarsened posterior:
m(Ho | D(pellpx) < R) = 1/(1 42 B(1 + anT, 1 + an(1 - 7))

where a,, =1/(1/n+1/a) and R ~ Exp(a).

@ What to choose for a?
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Choosing a? Prior knowledge approach

@ Set the mean neighborhood size ER = 1/« to match the amount of
misspecification we expect.

@ Suppose we expect the misspecification to affect Z by no more than,
say, € = 0.02 when 6 = 1/2.

@ By the chi-squared approximation to relative entropy, we have
D(p.||px) = 2|Z — X|?> when Z and X are near 1/2.
@ This suggests choosing a = 1/(2e%) = 1/(2 - 0.022) = 1250.
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Choosing a? Calibration curve technique
o f(a) = posterior expected log likelihood (fit to data).
@ g(a)) = posterior expected model complexity (effective complexity).

o (g(a), f()) traces out a curve in R2.
@ Choose a point on this curve with good fit and low complexity.
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Toy example: Bernoulli trials

Suppose Hy is true, but z1,...,z, are corrupted and behave like Bernoulli(0.51)
samples. The c-posterior is robust to this, but the standard posterior is not.
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What if the departure from Hy is significantly larger than our a priori tolerance of
e =0.02, eg., if 21,...,2, are Bernoulli(0.56) samples? Does the c-posterior
more strongly favor H; in such cases, as it should? Indeed, it does.

Posterior (6°=0.56, a=1250)
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Mixture models

e Model: Xi,..., X, |w,piid. ~ Zfil w; f o ()
o Prior: w ~ DiriChlet(Vl)' .. 7’7K) and @ly--, PK ll\(j H.

o Relative entropy c-posterior is approximated by the power posterior,

n K
T(w, ¢ | dn(X1m, 1) < R) X 7(w, @) H (Zwif%(xj»%
j=1 =1

where ¢, = a/(a+ n).

e Could use Antoniano-Villalobos and Walker (2013) algorithm or
RIJMCMC (Green, 1995).

@ We found a simple approximate algorithm that works well.
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Algorithm: Conditional coarsening for mixtures

Same as standard data augmentation algorithm, except updates to w and
 use power likelihood.

o Input: z1,...,xy.
@ Output: Samples of w, ¢, and component assignments z1, ..., 2.

e For iterationt=1,...,T":
© Forj=1,...,n: sample z; ~ Categorical(w) where w; oc w; fo, ().

@ Sample w ~ Dirichlet(71, ..., 5x) where 3; = v; + ¢ D5, 1(25 = 1)
Q@ Fori=1,...,K:

Sample @; ~ q where g(¢;) x 7(p;) Hj:zj:i fo: ()%, or make some
other update to ¢; that leaves ¢ invariant.
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Algorithm: Conditional coarsening for mixtures

@ Scales well to large datasets.
o Easy to implement.

@ Yields results similar to (but not exactly the same as) the power
posterior.
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Example: Perturbed mixture of Gaussians

Data distribution (ko = 2)

Standard posterior (kg =2) Standard posterior
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Calibration curve for perturbed mixture of Gaussians

Calibration of a (kg =2)
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e f(a) = posterior expected log likelihood (fit to data).
@ g(a) = posterior expected model complexity (effective complexity).

e (g(a), f(a)) traces out a curve in R,
@ Choose a point on this curve with good fit and low complexity.

@ Suggests choosing a = 800.

Robust Bayesian inference via coarsening
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Example: Perturbed mixture of Gaussians

Data distribution (kg = 2)
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Example: Perturbed mixture of Gaussians

Data distribution (kg =4)
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Calibration curve for perturbed mixture of Gaussians
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e f(a) = posterior expected log likelihood (fit to data).
@ g(a) = posterior expected model complexity (effective complexity).

e (g(a), f(a)) traces out a curve in R,
@ Choose a point on this curve with good fit and low complexity.

@ Suggests choosing a = 2000.
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Application: Flow cytometry clustering

Each sample has 3 to 20-dim measurements on 10K's of cells.
Manual clustering is time-consuming and subjective.
Multivariate Gaussian mixture yields too many clusters.
Example: GvHD data from FLOWCAP-I.

FL2.H vs FL3.H (Manual) FL2.H vs FL3.H (Standard)
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Calibration for flow cytometry

Calibration of « using training datasets
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o Calibrate « using performance on GvHD datasets 1-6 for “training”.
@ Best performance is at & = 200 on training datasets.
@ Use F-measure to quantify similarity of partitions A and B:

Z |A| 2|AmB\
N Bes |A] + |B|
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Results: Flow cytometry clustering

Clustering on test datasets closely matches manual ground truth.

FL2.H vs FL3.H (Manual) FL2.H vs FL3.H (Standard) FL2.H vs FL3.H (Coarsened, a = 200)
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Results: Flow cytometry clustering

Table 1: Average F-measures on the flow cytometry test set (GvHD datasets 7-12).

7 8 9 10 11 12

Standard | 0.532 | 0.478 | 0.619 | 0.453 | 0.542 | 0.585
Coarsened | 0.667 | 0.875 | 0.931 | 0.998 | 0.989 | 0.993

o Clustering on test datasets closely matches manual ground truth.

@ Use F-measure to quantify similarity of partitions A and B:

Z 4 2140 B
N BEB [A|+ B[
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Example: Autoregressive AR(k) model with a prior on k

o Model: X; = Z?Zl 0vX:_¢+ ¢ where & " N(0,0?%).

. iid
o Prior (k) on k, and 0y, ..., 0|k ~ N(0,02). Assume o known.
@ For time series, a natural choice of distance is relative entropy rate.

@ The c-posterior based on relative entropy rate estimates
dp(X1.n, T1.n) is again approximated by a power posterior,

o p(x1.0|0, k)7 (0]k)m (k).
@ This leads to the coarsened marginal likelihood for k,
Lo(k: 210 = / (@10, k) 7 (0])d0
Rk
where ¢, = o/ (o +n).

@ This can be computed analytically, since 8|k has been given a
conjugate prior.
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Suppose the data is close to AR(4) but has time-varying noise:

Ty = ;11(:ct_1 ‘@9 —xp-3+T—g) tEr+ %sint

where &, S A7(0,1). Calibration curve suggests a = 250.
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Example: Autoregressive AR(k) model a prior on k

Calibration of «
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@ Theory
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Theory

We establish three main theoretical results:

@ large-sample asymptotics of c-posteriors as n — o0,
@ small-sample behaviour of c-posteriors, and

© robustness of c-posteriors to perturbations of the data distribution.

Consider the model

6~ 11
Xi,...,Xn|0 iid. ~ Pp
R € [0,00) independently of 8, X1.,,.

Suppose the observed data x1,...,x, are sampled i.i.d. from some P,.

Jeff Miller, Harvard University
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Theory: Large-sample asymptotics
Let G(r) =P(R > r).
Assume P(d(Py, P,) = R) =0 and P(d(FPp, P,) < R) > 0

Theorem (Asymptotic form of c-posteriors)
If dp(X1m, 1) —2 d(Pp, P,) as n — 0o, then
I1(df | dn(X1in, %1:m) < R) — I1(d6 | d(Ps, P») < R)
x G(d(Py, P,))T1(d6),
and in fact,

E(h’(e) | dn( X1y T1:m) < R) m E(h(e) | d(Pg, P,) < R)

_ Eh(0)G(d(Py, P,))
~ EG(d(Py, P,))

for any h € L'(I1).

v,
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Theory: Small-sample behaviour

@ When n is small, the c-posterior tends to be well-approximated by the
standard posterior.

@ To study this, we consider the limit as the distribution of R converges
to 0, while holding n fixed.

Theorem

Under regularity conditions, there exists c, € (0,00), not depending on 0,
such that

n
Co P (dn(Xlznywlzn) < R/Ol | 6) m ]_;[1]39(931)

@ In particular, since ¢, = 1 when n < «, the power posterior is a good
approximation to the relative entropy c-posterior in this regime.

Jeff Miller, Harvard University
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Theory: Lack of robustness of the standard posterior

@ The standard posterior can be strongly affected by small changes to
the observed data distribution P,, particularly when doing model
inference. This is because

p(0 | 1) o< exp (D log po(ws) )p(0)

i=1
= exp (n[polog pg)p(9)

x exp(—nD(pol||pe))p(0).

where = denotes agreement to first order in the exponent, i.e.,
an = b, means (1/n)log(ay,/b,) — 0.

@ Due to the n in the exponent, even a slight change to P, can
dramatically change the posterior.
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Theory: Lack of robustness of the standard posterior
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Theory: Robustness

@ Roughly, robustness means that small changes to the data
distribution result in small changes to the resulting inferences.

@ This is formalized in terms of continuity with respect to P,.

@ The asymptotic c-posterior inherits the continuity properties of
whatever distance d(-,-) is used to define it.

Theorem (Robustness of c-posteriors)
If P1, Py, ... such that d(Py, Py,) — d(Py, P,) for II-almost all § € ©,
then for any h € L(I),

E(h(8) | d(Ps, Pr) < R) — E(h(8) | d(Ps, P») < R)

as m — 0o, and in particular,

T1(df | d(Pg, Pr) < R) = T1(d6 | d(Ps, P,) < R).
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Conclusion

The coarsened posterior (c-posterior) seems promising as a general
approach to robust Bayesian inference.

Pros

@ Robustness to small departures from the model.

> Inherits the continuity properties of the chosen statistical distance.
@ Coherent Bayesian inference based on limited information.

» Use the same model, but conditioned on a different event than usual
o Efficient computation in the case of relative entropy.

» C-posterior can be approximated by simply tempering the likelihood.
@ Simple asymptotic form, facilitating computation and analysis.
Cons

@ Sometimes less concentrated than one would like.

> e.g., if there is less misspecification than expected.

Jeff Miller, Harvard University
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Somewhat more generally

Suppose we have a nested sequence of models My C My C ---, but the
distribution of the observed data, P,, doesn't belong to any Mj.

Py

M,

We seek an approach that tolerates models that are “close enough” to P,.
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Connection with ABC

@ The c-posterior 7r(9 | dp( X1, T1:0) < R) is mathematically
equivalent to the approximate posterior resulting from approximate
Bayesian computation (ABC).

e Tavaré et al. (1997), Marjoram et al. (2003), Beaumont et al.
(2002), Wilkinson (2013)
@ However, there are some crucial distinctions:

» ABC is for intractable likelihoods, not robustness.
» We assume the likelihood is tractable, facilitating computation.
» For us, the c-posterior is an asset, not a liability.

Jeff Miller, Harvard University
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Velocities of galaxies in the Shapley supercluster

016 Data ghstrlbutloq
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@ Velocities of 4215 galaxies in a large concentration of
gravitationally-interacting galaxies (Drinkwater et al., 2004).

@ Gaussian mixture assumption is probably wrong.

@ Use strategy #3: By considering a range of o values, we can explore
the data at varying levels of precision.
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Velocities of galaxies in the Shapley supercluster
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Example: Variable selection in linear regression

@ Spike-and-slab model:

W ~ Beta(1, 2p)
Bj ~ N(0,02) with probability T, otherwise Bj =0, forj=1,....,p
o? ~ InvGamma(a, b)
Y;|B,0% ~ N(B%z;, %) independently for i = 1,...,n.
@ For regression, a natural choice of statistical distance is conditional

relative entropy. Again, this leads to a power posterior approximation
to the c-posterior:

n

W(ﬁyaz ‘ dn(}/i:nyyl:n) < R) X 7['(67 02) Hp(yz‘xuﬂu UZ)Cn-

=1

@ Since we are using conditionally-conjugate priors, the full conditionals
can be derived in closed-form, and we can use Gibbs sampling.
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Simulation example for variable selection
o Covariates: x;; = 1 to accomodate constant offset, and x;0, ..., X
distributed according to a multivariate skew-normal distribution.
iid
oy =—1+4(xp0 + 1—1633222) + ¢; where ¢; ~ N(O, 1).
@ Set a = 50, using knowledge of the true amount of misspecification.

Data distribution
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1 2 3 4 5 6
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Simulation example for variable selection

Posterior c.d.f. for each coefficient (blue), and 95% credible interval (red)
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Modeling birthweight of infants

@ Pregnancy data from the Collaborative Perinatal Project.

@ We use a subset with n = 2379 subjects, and p = 72 covariates that
are potentially predictive of birthweight.

» e.g., body length, mother's weight, gestation time, cigarettes/day
smoked by mother, previous pregnancy, etc.

@ Not sure how much misspecification there is, so we explore a range of
“precision” values «:

a € {100, 500, 1000, 2000, oo}
which corresponds roughly to contamination of magnitude
0 € {0.045,0.02,0.015,0.01,0} kilograms

by the formula for the relative entropy between Gaussians.
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Modeling birthweight of infants

7 1.0
6 08 —e— prior
™ .
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Top variables: 1. Body length, 2. Mother's weight at delivery,
3. Gestation time, 4. African-American, etc.
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