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Nonparametric Bayesian models have found many applications . . .

astronomy

epidemiology

gene expression profiling

haplotype inference

medical image analysis

survival analysis

extreme value analysis

meteorology

. . . . . .

econometrics

phylogenetics

species delimitation

computer vision

classification

document modeling

cognitive science

natural language processing

. . . . . .
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Variable-dimension models

Many nonparametric models arise as the infinite-dimensional limit of
a family of finite-dimensional models.

Another way to construct a flexible Bayesian model is to put a prior
on the dimension — i.e., to use a variable-dimension model.

For example, put a prior on the number of components in a finite
mixture.
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Dirichlet process mixture (DPM)

Ferguson (1983), Lo (1984), Sethuraman (1994),

West, Müller, and Escobar (1994), MacEachern (1994), . . .
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Mixture of finite mixtures (MFM)

Nobile (1994, 2007), Richardson & Green (1997, 2001), Stephens (2000), . . .
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Why use a variable-dimension model?

Control over the distribution of the number of clusters/topics/features

Control over the distribution of the relative sizes of clusters/topics

Cleaner clusters/topics/features (no tendency to make tiny superfluous
groups)

Interpretability and conceptual simplicity

Natural Bayesian approach for a data distribution of unknown complexity (if
something is unknown, put a prior on it)

Theory can be much simpler, since the parameter space is a countable union
of finite-dimensional spaces, rather than an infinite-dimensional space.

I For example, consistency typically holds “automatically” at Lebesgue
almost-all parameters, by Doob’s theorem (assuming identifiability).

There are some disadvantages also, as we will see.
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How to do inference in a variable-dimension model?

Reversible jump MCMC (Green, 1995) is the standard approach.

Reversible jump is very general and has been used in many
applications, but it is not a “black box”.

In contrast, a nice aspect of many of the nonparametric samplers is
that they are fairly generic.

I Green & Richardson (2001): “In view of the intimate correspondence
between DP and DMA models discussed above, it is interesting to
examine the possibilities of using either class of MCMC methods for
the other model class. We have been unsuccessful in our search for
incremental Gibbs samplers for the DMA models . . . ”

The key to such samplers is that the model can be characterized by a
nice distribution on combinatorial structures (e.g., the CRP).
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This talk

The main point of this talk is that similar distributions on
combinatorial structures exist for certain variable-dimension models:

I mixture of finite mixtures (compare with DPM)
I hierarchical mixture of finite mixtures (compare with HDP)
I mixture of finite feature models (compare with IBP)

This enables many of the inference algorithms developed for the
infinite-dimensional models to be directly applied to their
variable-dimension counterparts.
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Mixture of finite mixtures (MFM)

K ∼ p(k), a p.m.f. on {1, 2, . . . }
(π1, . . . , πk) ∼ Dirichlet(γ, . . . , γ), given K = k

θ1, . . . , θk
iid∼ H, given K = k

Z1, . . . , Zn
iid∼ π, given π

Xj ∼ pθZj
for j = 1, . . . , n, given θ, Z.

Nobile (1994, 2007), Richardson & Green (1997, 2001), Stephens (2000), . . .
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Partition distribution

Letting C denote the partition of [n] := {1, . . . , n} induced by Z1, . . . , Zn,
we have

p(C) = vn(t)

t∏
i=1

γ(ni)

where

t = |C| is the number of parts in the partition,

n1, . . . , nt are the sizes of the parts,

vn(t) =

∞∑
k=1

k(t)

(γk)(n)
p(k),

x(m) = x(x+ 1) · · · (x+m− 1), and x(m) = x(x− 1) · · · (x−m+ 1).

This is a special case of the family of Gibbs partition distributions studied
by Gnedin & Pitman (2006).
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Derivation of the partition distribution

p(z|k) =

∫
p(z|π)p(π|k)dπ =

1

(γk)(n)

t∏
i=1

γ(ni)

p(C|k) =
∑

z∈[k]n : C(z)=C

p(z|k)

= #
{
z ∈ [k]n : C(z) = C

} 1

(γk)(n)

t∏
i=1

γ(ni)

=
k(t)

(γk)(n)

t∏
i=1

γ(ni)

p(C) =

∞∑
k=1

p(C|k)p(k) =
( t∏
i=1

γ(ni)
) ∞∑
k=1

k(t)

(γk)(n)
p(k) = vn(t)

t∏
i=1

γ(ni)
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Some properties of vn(t)

Recall that vn(t) =

∞∑
k=1

k(t)

(γk)(n)
p(k).

For any 1 ≤ t ≤ n, these numbers satisfy the recursion:

vn+1(t+ 1) = vn(t)/γ − (n/γ + t)vn+1(t).

If p(k) = Poisson(k − 1|λ) then vn(0) = λ−n(1−
∑n

k=1 p(k)).

Note that k(t)/(γk)(n) ≤ kt/(γk)n, so the infinite series usually
converges rapidly. (It always converges for 1 ≤ t ≤ n.)

See Gnedin & Pitman (2006) for more general results.
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Computing vn(t)

To compute p(C), we need to evaluate vn(t).

Two methods:
1 Numerical approximation (my preferred method)

I Easy, fast, and generally applicable.
I In practice, the series can quickly be computed to within machine

precision.
I Note: The log-sum-exp trick must be used to avoid numerical

underflow.

2 If there is a simple expression for vn(0) (e.g. in the Poisson case), use
the recursion above.

Using either method, we can precompute vn(t) for each n, t that will be
needed — typically, n will be fixed and we only need t = 1, . . . , tmax for
some relatively small tmax.
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Marginalization/self-consistency property

For each n = 1, 2, . . . , let pn(C) denote the distribution on partitions
of [n] defined above.

This family of partition distributions has the property that pn−1
coincides with the “marginal” distribution on partitions of [n− 1]
induced by pn — in other words, sampling C ∼ pn and removing n
from C yields a sample from pn−1.

This is easily derived from the recursion for vn(t).
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Restaurant process

Further, the sequence of partition distributions p1, p2, . . . can be described
by a simple restaurant process.

Restaurant process for MFM

The first customer sits at a table. At this point C = {{1}}.
The nth customer sits . . .

at table c ∈ C with probability ∝ |c|+ γ

at a new table with probability ∝ γ vn(t+ 1)/vn(t)

where t = |C|.

Clearly, this bears a close resemblance to the Chinese restaurant process.
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Random discrete measures
The MFM can also be formulated starting from a distribution on discrete
mixing measures, analogous to the Dirichlet process.

Let

K ∼ pK(k)

(π1, . . . , πk) ∼ Dirichlet(γ, . . . , γ), given K = k

θ1, . . . , θk
iid∼ H, given K = k

G =
∑K

i=1 πiδθi
and denote the distribution of G by MF(γ,H, pK).

Then the MFM is obtained by taking X1, X2, . . . |G i.i.d. from the
resulting mixture, namely,

fG(x) :=

∫
pθ(x)G(dθ) =

K∑
i=1

πipθi(x).
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Stick-breaking representation in a special case

When p(k) = Poisson(k − 1|λ) and γ = 1, there is a nice stick-breaking
representation for the weights π1, . . . , πK :

Start with a unit-length stick, and
break off i.i.d. Exponential(λ) pieces until you run out of stick.

Note that this corresponds to a Poisson process on the unit interval.

This suggests a stick-breaking approach to constructing a variety of
variable-dimension mixtures: break off pieces according to any sequence of
random variables with sum almost surely greater than 1. It might be
interesting to see if the stick-based inference methods for
infinite-dimensional models can be applied to such models.
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Asymptotics — Density estimation

Supposing the data is X1, X2, . . .
iid∼ f0 from some true density f0, it

is desirable to establish posterior consistency and rates of
concentration for density estimation.

For DPMs, it has been shown that in many cases the posterior on f
concentrates at the true density f0, often at the minimax-optimal rate
(up to a logarithmic factor), for any sufficiently regular f0.
(Contributions by: Ghosal, van der Vaart, Scricciolo, Tokdar, Dunson,

Bhattacharya, Lijoi, Prünster, Walker, James, Wu, Ghosh, Ramamoorthi,

Ishwaran, and others.)

For variable-dimension mixtures, similar results have been established
by Kruijer (2008) and Kruijer, Rousseau, & van der Vaart (2010).

Jeff Miller, Brown University Combinatorial stochastic processes for variable-dimension models



Asymptotics — Mixing distribution

It is also desirable to establish posterior consistency (and rates of
concentration, perhaps) for the mixing distribution, if the true density
f0 is, in fact, a mixture from the assumed family {pθ : θ ∈ Θ}.

I Note: The mixture parameters are always non-identifiable in the usual
sense, however, in many cases the mixing distribution is identifiable.

I Note: In practice, of course, we cannot expect {pθ : θ ∈ Θ} to be
exactly correctly specified. The point of such results is that lack of
consistency under ideal conditions would be a red flag.

For DPMs, Nguyen (2013) has shown, in certain cases, that the
posterior on the mixing distribution concentrates in Wasserstein
distance at the true mixing distribution.

For variable-dimension mixtures, if f0 is a finite mixture from the
assumed family, then consistency for the mixing distribution holds
under very general conditions, for Lebesgue almost-all values of the
true parameters, by Doob’s theorem (Nobile, 1994).
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Asymptotics — Number of components

For DPMs, it is fairly common to see the posterior on the number of
clusters used for inference about the number of components.
However, we have shown that this is inconsistent under quite general
conditions (M. & Harrison, 2014).

For variable-dimension mixtures, Doob’s theorem also yields
consistency for the number of components in the mixture (Nobile,
1994), if f0 is a finite mixture from the assumed family.
However, misspecification of the family of component distributions
will often be inevitable in practice, and the estimated number of
components can be highly sensitive to such misspecification. One
must be wary of this issue when using the number of components (or
clusters) to assess the heterogeneity of the data.
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Inference algorithms

Reversible jump MCMC is the usual approach for inference in
variable-dimension mixtures (Richardson & Green, 1997).

However, now that we have established that MFMs have many of the
same attractive properties as DPMs, much of the extensive body of
work on DPM samplers can be directly applied to them.

One advantage of this is that these samplers tend to be more
generally applicable.

We will show how this works for two incremental Gibbs sampler
algorithms:

1 “Algorithm 3” for conjugate priors (Neal (1992, 2000), MacEachern
(1994)), and

2 “Algorithm 8” for non-conjugate priors (Neal (2000)).
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Incremental Gibbs with a conjugate prior

For c ⊂ {1, . . . , n}, let m(xc) =

∫ ∏
j∈c

pθ(xj)H(dθ).

m(xc) can be computed analytically when H is a conjugate prior.

Sampling from p(C|x1:n) ∝ p(x1:n|C)p(C) proceeds as follows.

Write C(j) for the current partition, excluding j.

“Algorithm 3” for MFM and DPM

For j = 1, . . . , n: Reseat customer j. . .
MFM DPM

at table c ∈ C(j) with probability ∝ (|c|+ γ)
m(xc∪j)

m(xc)
|c| m(xc∪j)

m(xc)

at a new table with probability ∝ γ vn(t+1)
vn(t)

m(xj) αm(xj)

where t = |C(j)| is the number of occupied tables, excluding customer j.
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Non-conjugate priors

Often, the selected family {pθ} will not have a conjugate prior.

Neal’s (2000) Algorithm 8, inspired by MacEachern & Müller (1998),
is a clever auxiliary variable method for non-conjugate H.

The state of the chain is (C, (ϕc : c ∈ C)), where ϕc ∈ Θ.

“Algorithm 8” (with one auxiliary variable) for MFM and DPM

1 For j = 1, . . . , n: If j is seated alone, set ϕ∗ = ϕ{j}; otherwise,
sample ϕ∗ ∼ H. Reseat j. . .

MFM DPM
at table c ∈ C(j) with probability ∝ (|c|+ γ) pϕc

(xj) |c| pϕc
(xj)

at a new table with probability ∝ γ vn(t+1)
vn(t)

pϕ∗(xj) αpϕ∗(xj)

where t = |C(j)| is the number of occupied tables, excluding j.

2 For each c ∈ C, sample ϕc ∼ p(ϕc|xc, C), or make a move for which
this distribution is invariant.
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Skew-Normal distribution

To make things interesting, we will use multivariate Skew-Normal
mixtures. (Experiments suggest that the results would be similar for
other families.)

Azzalini & Dalla Valle (1996) (see also Azzalini & Capitanio (1999))
introduced the multivariate Skew-Normal distribution, with density

SN (x | ξ,Q, α) = 2N (x | ξ,Q) Φ(αTS−1(x− ξ))

for x ∈ Rd, where S is diagonal with S2
ii = Qii, and Φ is the

univariate standard normal CDF. The parameters are:
I ξ ∈ Rd (location),
I Q positive definite (scale and correlation),
I α ∈ Rd (skew).

This family has some nice properties (e.g. preserved under linear
maps).
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Skew-Normal distribution

Basically, it’s a multivariate normal which has been skewed in a certain
direction, by a certain magnitude, according to the skew parameter
α ∈ Rd.
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Bivariate Skew-Normal mixture
We compare the MFM and the DPM (mixing over the skew-normal family)
on data from a bivariate skew-normal mixture with three components:
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Since we do not have a conjugate prior, Algorithm 8 as described
above was used for inference.

To define H, for convenience, we chose a parameterization of
θ = (ξ,Q, α) covering all of R7, and then used independent normal
priors.

I Note: Sensitivity to these choices should be investigated.

For the MFM parameters, we used γ = 1 and

p(k) ∝
{

1 if k ∈ {1, ..., 30}
1/(k − 30)2 if k > 30.

For the DPM, we used α = 1.
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Estimated densities
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Deviance
The deviance of an estimated density f̂ on data x1, . . . , xn is

D(f̂) = −2

n∑
i=1

log f̂(xi) + const.

As reported by Green and Richardson (2001), the MFM deviance tends to
be slightly lower, given t.

However, when averaged over t, this apparent advantage disappears.
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Deviance
The deviance of an estimated density f̂ on data x1, . . . , xn is

D(f̂) = −2

n∑
i=1

log f̂(xi) + const.

As reported by Green and Richardson (2001), the MFM deviance tends to
be slightly lower, given t.
However, when averaged over t, this apparent advantage disappears.
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Deviance

When averaged over t, the deviances are very similar. This is possible
since the DPM puts more weight on higher t values, for which the
deviance tends to be smaller.

Interesting example of Simpson’s paradox.
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Hellinger distance to the true density

H(f, g)2 =
1

2

∫ (√
f(x)−

√
g(x)

)2
dx ≈ 1

2N

N∑
i=1

(√f(Yi)

g(Yi)
− 1
)2

where Y1, . . . , YN
iid∼ g. Each distance was estimated with N = 103 samples from

the true density.
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Sample clusterings from the posterior
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Sample clusterings from the posterior
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Sample clusterings from the posterior
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Sample clusterings from the posterior
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Sample clusterings from the posterior
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Sample clusterings from the posterior

Jeff Miller, Brown University Combinatorial stochastic processes for variable-dimension models



Pairwise probability matrix

Entry i, j is the posterior probability that data points i and j are in
the same cluster.

Very similar results:
I Mean squared difference = 1

n2

∑
i,j(pij − qij)2 = 0.0003

I Max absolute difference = maxi,j |pij − qij | = 0.08
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Cluster sizes

(Data shown is for n = 50.)

As reported by Green & Richardson (2001), the MFM clusters tend to be
more equally sized (i.e. higher entropy), given t.

However, the difference is less pronounced (usually negligible) when
averaging over t.
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These results are the average over 5 runs.

Note: These posteriors can be sensitive to the prior, H.

Note: n = 2000 for MFM is unreliable due to poor mixing.
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Mixing issues with incremental Gibbs

Traceplot of the number of clusters t, with n = 50

For smallish n, MFM mixing seems somewhat worse than the DPM.
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Mixing issues with incremental Gibbs

Traceplot of the number of clusters t, with n = 2000

For larger n, the issue becomes severe. The MFM doesn’t like having
small clusters, so it’s difficult to make or destroy substantial clusters by
moving one point at a time.
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Solutions?

Richardson & Green (1997, 2001) used a split-merge sampler with
reversible jump (in the univariate Gaussian case).

Many split-merge samplers for the DPM have been developed (e.g.
Dahl (2003, 2005), Jain & Neal (2004, 2007)) for both the conjugate
and non-conjugate case.

I These can now be used for MFMs also, using the partition distribution
as derived above.

Alternatively, we can use importance sampling to take advantage of
good DPM samplers . . .
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Importance sampling

If f(y) = f̃(y)/Zf and g(y) = g̃(y)/Zg then

Efh(Y ) =
∑
y

h(y)f(y)

=
Zg
Zf

∑
y

h(y)
f̃(y)

g̃(y)
g(y)

≈ Zg
Zf

1

N

N∑
i=1

h(Yi)w̃(Yi)

and
Zf
Zg
≈ 1

N

N∑
i=1

w̃(Yi),

where w̃(y) = f̃(y)/g̃(y) and Y1, . . . , YN ∼ g.
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Importance sampling for the MFM

Denote p = MFM and q = DPM. Taking y = C (the partition) and

f̃(C) = p(x1:n|C)p(C),
g̃(C) = q(x1:n|C)q(C),

we can use samples C1, . . . , CN from the DPM posterior g(C) = q(C|x1:n)
to estimate posterior expectations under the MFM via

Ep(h(C)|x1:n) ≈
∑

i h(Ci)w̃(Ci)∑
i w̃(Ci)

.

The importance weights simplify:

w̃(C) =
p(x1:n|C)p(C)
q(x1:n|C)q(C)

=
p(C)
q(C)

,

making this a very easy and efficient technique.
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Importance sampling for the MFM

In principle, this allows us to take the output of any DPM sampler
and do inference for the corresponding MFM.

Can take advantage of all the advances made in DPM sampler
development.

This is only possible now that we have a simple expression for p(C).

For this to work, the importance weights need to be well-behaved . . .
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Distribution of the importance weights

The effective sample size (ESS) is usually over 50%, and ranges from 30%
to 75% in simulations so far.
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Example: Cluster sizes

The MFM and the DPM-based importance sampling approximation
(MFM-IS) are close in the range of t values of non-negligible posterior
probability (t = 2, . . . , 5).
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Somewhat more generally

This IS approach could also be used for other partition-based mixture
models, such as product partition models (as long as the importance
weights remain well-behaved).

Inference in multiple such models could be done easily and quickly —
all using the same set of samples — just by specifying the different
partition distributions.

Conveniently, the Bayes factors are already estimated as part of the
procedure.
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Bayes factors: MFM/DPM
The importance weights also give us an estimate of the ratio of the
normalizing constants, which equals the Bayes factor:

p(x1:n)

q(x1:n)
=
Zf
Zg
≈ 1

N

N∑
i=1

p(Ci)
q(Ci)

.

Bayes factors p(data|MFM)/p(data|DPM)

Clearly, the Bayes factors are favoring the MFM for larger n. This makes
some sense, since the MFM is correctly specified in this situation.
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So, what if there is misspecification, or outliers?

If the experiments are repeated with a single outlier at (100, 0), the Bayes
factors are in favor of the DPM:

Bayes factors p(data|MFM)/p(data|DPM)

This makes sense, since the DPM likes having tiny clusters, while the
MFM does not.
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Density estimation with an outlier

Hellinger distance to the “true” density

Still, as before, the density estimates appear to be very similar.

Jeff Miller, Brown University Combinatorial stochastic processes for variable-dimension models



Clustering with an outlier

And both the MFM and DPM put the outlier in a separate cluster:

Jeff Miller, Brown University Combinatorial stochastic processes for variable-dimension models



Outline

1 Mixture of finite mixtures (MFM)
Basic properties
Asymptotics
Inference algorithms (conjugate and non-conjugate cases)

2 Empirical comparison of MFMs with DPMs
Density estimation
Clustering
Mixing issues
Bayes factors
Outliers

3 Hierarchical mixture of finite mixtures (compare with HDP)

4 Mixture of finite feature models (compare with IBP)

Jeff Miller, Brown University Combinatorial stochastic processes for variable-dimension models



Hierarchical Dirichlet process (HDP) (Teh et al. 2006)
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Hierarchical MF (HMF)
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Hierarchical MFM (HMFM)

G0 ∼ MF(γ,H, pK)

G1, . . . , Gm
iid∼ MF(γ,G0, pK), given G0

Xij ∼ fGi
(x) independent for

j ∈ {1, . . . , ni}, i ∈ {1, . . . ,m}.
nim

G0 Gi Xij

We refer to the distribution of the G’s as a HMF,
and the distribution of the X’s as a HMFM.
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Hierarchical partition distribution (HDP vs HMF)

For i = 1, . . . ,m, let Ci be a partition of {1, . . . , ni}, and let ti = |Ci|. Let
C0 be a partition of {1, . . . , N} where N =

∑
ti, and let t0 = |C0|. Then

letting C = (C0, C1, . . . , Cm),

PHDP(C) = P
(N)
DP (C0)

m∏
i=1

P
(ni)

DP (Ci) PHMF(C) = P
(N)

MF (C0)
m∏
i=1

P
(ni)
MF (Ci)

where P
(n)

DP and P
(n)
MF are the DP and MF partition distributions on

{1, . . . , n}, respectively. (Note that C0 depends on C1, . . . , Cm through

N =
∑
ti.)

This leads to a simple “franchise process” very similar that of the HDP.

Gibbs sampling for HMFMs and HDPMs is nearly identical.

Since N is not fixed, caching vN (t0) is more efficient than precomputing.
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Preliminary results with a toy topic model

Typical posterior topic distributions Posterior on # of topics
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Mixture of finite feature models (MFFM)

An alternative to the Indian buffet process (IBP) of Griffiths &
Ghahramani (2005):
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Mixture of finite feature models (MFFM)

K ∼ p(k), a p.m.f. on {0, 1, 2, . . . }

π1, . . . , πk
iid∼ Beta(a, b) (given K = k)

For j ∈ {1, . . . , k} (given K = k and π):

Z1j, . . . , Znj
iid∼ Bernoulli(πj).

K π

Z X

We refer to the distribution on
the “feature matrix” Z as a MFFM.
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Equivalence class distribution (IBP vs MFFM)
Consider two binary matrices equivalent if they are the same after removing any

columns containing only zeros. The probability of obtaining Z ∈ {0, 1}n×t with

column sums m1, . . . ,mt > 0 after removing any zero columns from Z is

PIBP(Z ) =
αte−αHn

t!

t∏
i=1

(mi − 1)! (n−mi)!

n!

PMFFM(Z ) = v′n(t)

t∏
i=1

a(mi) b(n−mi)

(a+ b)(n)

where v′n(t) =

∞∑
k=0

(
k

t

)
ck−tn p(k), with cn =

b(n)

(a+ b)(n)
.

If p(k) = Poisson(k | λ) then v′n(t) = eλcn Poisson(t | λ).

In general, v′n(t) can be efficiently precomputed to arbitrary precision.

Gibbs sampling for MFFMs and IBPs is nearly identical.
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Preliminary results with a toy feature model
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Possible future work

Dealing with misspecification

Sensitivity to the prior

Posterior concentration rates

Split-merge samplers, variational methods

Jeff Miller, Brown University Combinatorial stochastic processes for variable-dimension models



Combinatorial stochastic processes for
variable-dimension models

Jeffrey W. Miller

Joint work with Matt Harrison

Brown University
Division of Applied Mathematics

Duke Statistical Science Seminar
Feb 7, 2014

This research was supported by DARPA and the NSF.


	Mixture of finite mixtures (MFM)
	Basic properties
	Asymptotics
	Inference algorithms (conjugate and non-conjugate cases)

	Empirical comparison of MFMs with DPMs
	Density estimation
	Clustering
	Mixing issues
	Bayes factors
	Outliers

	Hierarchical mixture of finite mixtures (compare with HDP)
	Mixture of finite feature models (compare with IBP)

