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Background

Modern high-throughput sequencing yields large matrices of counts.

Copy ratio estimation in cancer genomics
I whole-exome or whole-genome sequencing data

Copy number variation in genetics
I whole-exome or whole-genome sequencing data

Gene expression analysis in biology/medicine
I RNA-seq data for transcript abundance

log counts for a whole-exome seq data set of 191 samples × 171523 loci
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Background

Latent factor models are widely used to discover and adjust for hidden
variation in these applications and many others.

Estimation and inference in latent factor models is challenging.

Consequently, most methods do not fully account for uncertainty in
the latent factors, which can lead to miscalibrated inferences such as
overconfident p-values.
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This talk

Generalized bilinear models (GBMs) are a flexible extension of
generalized linear models (GLMs) to include latent factors as well as
row covariates, column covariates, and interactions.

We propose fast and accurate methods for GBM estimation and
inference (i.e., uncertainty quantification).

We introduce delta propagation, a novel technique for propagating
uncertainty among model components using the delta method.

We present simulation studies assessing performance.

We apply GBMs to copy ratio estimation and RNA-seq analysis.
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Generalized bilinear models (GBMs)

Suppose the data matrix Y = (Yij) ∈ RI×J satisfies

g(E(Y )) = XAT +BZT +XCZT + UDV T

where the link function g is applied element-wise.

We refer to this as a generalized bilinear model (Choulakian, 1996).

The “bilinear” part UDV T is a low-rank matrix that captures latent
effects due, for example, to unobserved covariates such as batch.
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Identifiability of GBMs

For reliable results, it is important to ensure that the parameters are
uniquely determined by the data distribution.

We prove that identifiability holds under the following constraints:
I XTX and ZTZ are invertible,
I XTB = 0, ZTA = 0, XTU = 0, and ZTV = 0,
I UTU = I and V TV = I,
I D is a diagonal matrix such that d11 > d22 > · · · > dMM > 0, and
I the first nonzero entry of each column of U is positive.

More precisely, the function

η(A,B,C,D,U, V ) = XAT +BZT +XCZT + UDV T

is one-to-one on the set of parameters satisfying these constraints.
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Interpretation of GBM parameters

For interpretability, we also assume that in X and Z, the first column
is all ones and the rest of the columns have mean zero.

Then, the parameters for entry (i, j) can be interpreted as follows:
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Outcome distributions

We consider discrete exponential dispersion families (EDFs).

Specifically, we suppose Yij ∼ f(y | θij , rij) where

f(y | θ, r) = exp(θy − rκ(θ))h(y, r).

For any discrete EDF,

µ = E(Y ) = rκ′(θ)

σ2 = Var(Y ) = rκ′′(θ).

For sequencing data, we focus on negative binomial outcomes, which
is a special case of discrete EDF.

We parametrize the dispersions as 1/rij = exp(si + tj + ω).
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Previous work

There is an extensive literature on models involving an unknown
low-rank matrix UDV T.

We settle for covering only the most directly related previous work.
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Previous work: Normal bilinear models without covariates
Consider the following special case:

Yij = c+ ai + bj +

M∑
m=1

uimdmvjm + εij

where εij ∼ N (0, σ2ij).

Principal components analysis (PCA) is equivalent to maximum
likelihood estimation in this model with σ2ij = σ2.

Estimation for this model:
Gollob (1968), Mandel (1969), Gabriel (1978), Gabriel and Zamir (1979).

Hypothesis testing for which factors to include:
Gollob (1968), Mandel (1969), Freeman (1973), Gauch (1988, 2006).

Confidence regions for parameters:
Goodman and Haberman (1990), Chadoeuf and Denis (1991), Dorkenoo and

Mathieu (1993), Denis and Gower (1996).
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Previous work: Normal bilinear models with covariates

Consider the following special case:

Y = XAT +BZT +XCZT + UDV T + ε

where ε is a matrix of residuals with εij ∼ N (0, σ2ij).

Work on this model was inspired by Tukey (1962), who suggested
combining regression with factor analysis.

Estimation for this model, assuming σ2ij = σ2:

Gabriel (1978), Takane and Shibayama (1991).

Hypothesis testing and confidence regions, assuming σ2ij = σ2:

Perry and Pillai (2013) show how to perform inference for univariate
linear projections of A and B.
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Previous work: Going beyond normal outcomes

In many applications, it is unreasonable to assume normal outcomes.

A classical approach is to transform the data and then assume a
normal outcome model.

However, there is unlikely to be a transformation that simultaneously
achieves (a) approximate normality, (b) common variance, and (c)
additive effects.

More principled approach: Extend the generalized linear model (GLM)
framework to handle latent factors, as suggested by Gower (1989).
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Previous work: GBMs without covariates

Consider the following special case:

g(E(Yij)) = c+ ai + bj +

M∑
m=1

uimdmvjm.

This allows non-normal outcomes, but does not include covariates.

Estimation for this model:

Goodman (1979, 1981, 1986, 1991), Van Eeuwijk (1995).

Hypothesis testing for which factors to include:

Van Eeuwijk (1995).
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Previous work: GBMs with covariates

Now consider the general case:

g(E(Y )) = XAT +BZT +XCZT + UDV T.

Previous authors have considered models of this form:

Choulakian (1996), Gabriel (1998), de Falguerolles (2000), Townes (2019).

Townes (2019) develops a fast estimation algorithm using diagonal
approximations to Fisher scoring updates for `2-penalized estimation.

Limitations of previous work:
I uncertainty quantification is not addressed,
I a single common dispersion parameter is assumed, and
I identifiability constraints are not explicitly enforced during estimation.
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Estimation algorithm

We provide an algorithm for maximum a posteriori GBM estimation
that extends previous work by:

I estimating row- and column-specific dispersion parameters,
I improving numerical stability, and
I explicitly enforcing identifiability constraints during estimation.

Basic idea: Iteratively cycle through the components of the model,
updating each in turn using an optimization-projection step.

“Optimization-projection” = unconstrained optimization step and a
likelihood-preserving projection onto the constrained parameter space.
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Estimation: Challenges (1/2)

1 Estimating the dispersions is tricky due to nonobvious biases,
arithmetic underflow/overflow, and occasional lack of convergence.

2 Standard GLM methods are inapplicable. Even without UDV T,
vectorization of the linear terms is computationally prohibitive.

3 Optimizing UDV T is challenging due to the dependencies among U ,
D, and V and the orthonormality contraints UTU = I and V TV = I.

4 The singular value decomposition (SVD) doesn’t help estimate
UDV T since it implicitly assumes every entry has the same variance.
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Estimation: Challenges (2/2)

5 Computational efficiency is needed to handle large high-throughput
sequencing datasets.

6 A good initialization procedure is crucial for numerical stability.

7 Even with a good initialization, optimization methods occasionally
diverge. In a large GBM, there are so many parameters that even
occasional divergences lead to failure with high probability.

8 It is not obvious how to enforce the identifiability constraints without
compromising the algorithm convergence properties.

Jeff Miller, Harvard University Inference in generalized bilinear models



Estimation: Solutions to challenges

We provide an algorithm that deals with each of these challenges.

Some key aspects:
I Exploit the GBM structure to derive fast Fisher scoring updates.

I Initialize using least squares for A, B, and C, with UDV T = 0.

I Use bounded, regularized Fisher scoring steps for numerical stability.

I Derive likelihood-preserving projections to enforce constraints.

I Relax dependencies and constraints by optimizing UD and V D rather
than U and V .
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Estimation: Simulation study

We assess estimation performance in simulations with known true
parameters.

In each simulation run:
I covariates are generated using a copula model with Normal, Gamma, or

Binary marginals,
I true parameters are generated using a Normal or Gamma scheme, and
I outcomes are generated using the log link and a NB (negative binomial),

LNP (log-normal Poisson), Poisson, or Geometric distribution.

We abbreviate each combination of outcome/covariate/parameter
scheme, e.g., NB/Binary/Normal.
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Estimation: Typical example

Scatterplots of estimated versus true parameters for a typical simulated data matrix

(NB/Normal/Normal, 1000 rows, 100 cols, 4 feature covs, 2 samples covs, and 3 factors)
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Estimation: Error tends to zero with increasing data

Relative mean-squared error between estimated and true parameter values

(50 runs of NB/Normal/Normal, 100 cols, 4 feature covs, 2 samples covs, and 3 factors)
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Estimation: Theoretical computational complexity is linear

Computation time complexity of each update in the estimation algorithm
Operation Time complexity
Computing η O(IJ max{K,L,M})
Updating A O(IJK2)
Updating B O(IJL2)
Updating C O(IJ max{K2, L2})
Updating D, U , and V O(IJM2)
Updating S and T O(IJ)
Total per iteration O(IJ max{K2, L2,M2})

Notation:
I I = # of rows
I J = # of columns
I K = # of feature covariates
I L = # of sample covariates
I M = # of latent factors
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Estimation: Computation time is linear in size of matrix

Computation time of our GBM estimation algorithm

Computation time grows linearly with I (# rows) and J (# cols).

Each dot is the average over 10 runs of the NB/Normal/Normal

scheme with 4 feature covs, 2 samples covs, and 3 factors.

The empirical results agree with the theory.
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Inference (uncertainty quantification)

Most latent factor methods do not fully account for uncertainty.

To remove batch effects in gene expression, several methods estimate
UDV T and then treat V as known, handling uncertainty only in U .

Leek and Storey (2007, 2008), Sun et al. (2012), Risso et al. (2014)

CNV detection methods often fit UDV T and just subtract it off.

Fromer et al. (2012), Krumm et al. (2012), Jiang et al. (2015)

Bayesian inference provides full uncertainty quantification, but MCMC
is slow in large parameter spaces with strong dependencies.

Variational Bayes is faster, but relies on factorized approximations
that tend to underestimate uncertainty.

Stegle et al. (2010), Buettner et al. (2017), Babadi et al. (2018)
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Inference: Novel method – “delta propagation”

We provide a fast, accurate method for GBM uncertainty
quantification.

In particular, we introduce delta propagation, a general technique for
propagating uncertainty among model components using the delta
method.

Delta propagation can be done analytically using closed-form
expressions involving the gradient and the Fisher information.
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Inference: Delta propagation method

In fixed-dimension parametric models, the asymptotic covariance of
the MLE is equal to the inverse of the Fisher information matrix.

However, inverting the full Fisher info is intractable in large GBMs.

Inverting the Fisher info for each component (e.g., F−1a for A) is fast,
but underestimates uncertainty since it treats all else as known.

I Thus, it can be thought of as the conditional uncertainty.

Delta propagation is a general technique for approximating the
additional variance due to uncertainty in the other components.

Basic idea: Write the estimator for each component as a function of
the other components, and propagate the variance of the other
components through this function using a 1st order Taylor approx.
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Inference: Outline of GBM inference algorithm

Diagram of uncertainty propagation scheme for GBM inference

C

A U, V B

S T

Outline:

1 Compute conditional uncertainty for each parameter matrix/vector.

2 Compute joint uncertainty in (U, V ) accounting for constraints.

3 Propagate uncertainty between components using delta propagation.

4 Compute approximate standard errors.
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Inference: Simulation study

Next, to assess the accuracy of standard errors produced by our
algorithm, we consider the coverage of Wald-type confidence intervals.

Ideally, a 95% confidence interval would contain the true parameter
95% of the time.

However, even when the model is correct, this is not guaranteed since
intervals are usually based on an approximation to the distribution of
an estimator.

We generate covariates, true parameters, and outcomes using the
same simulation scheme as before.
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Inference: Typical example

Scatterplots of estimated versus true parameters for a typical simulated data matrix

(NB/Normal/Normal, 1000 rows, 100 cols, 4 feature covs, 2 samples covs, and 3 factors)
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Inference: Coverage is good for most params of interest

Coverage of confidence intervals for the entries of each parameter matrix/vector

(50 runs of NB/Normal/Normal, 100 cols, 4 feature covs, 2 samples covs, and 3 factors)
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Inference: Theoretical computational complexity

Computation time complexity of the inference algorithm
Operation Time complexity
Preprocessing O(IJ max{K,L,M})
Conditional uncertainty for each component O(IJ max{K2, L2,M2})
Joint uncertainty in (U, V ) O(IJ2M3)
Propagate uncertainty between components O(IJ max{K3, L3,M3})
Compute approximate standard errors O(IJ)
Total O(IJ max{K3, L3, JM3})

Notation:
I I = # of rows
I J = # of columns
I K = # of feature covariates
I L = # of sample covariates
I M = # of latent factors

We have experimented extensively but have not found a faster
alternative that provides well-calibrated standard errors.
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Inference: Empirical assessment of computation time

Computation time of our GBM inference algorithm

Theory indicates that computation time is linear in I (# rows) and
quadratic in J (# cols).

Thus, as I increases, the curves should become linear in I.

Each dot is the average over 10 runs of the NB/Normal/Normal

scheme with 4 feature covs, 2 samples covs, and 3 factors.
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Application: Copy ratio estimation in cancer genomics

We apply the GBM to estimate copy ratios for sequencing data.

Copy ratio estimation is an essential step in detecting somatic copy
number alterations (SCNAs), that is, duplications or deletions of
segments of the genome.

The input data is a matrix of counts where entry (i, j) is the number
of reads from sample j that map to target region i of the genome.

Goal: Estimate the copy ratio of each region, that is, the relative
concentration of copies of that region in the original DNA sample.

We illustrate on the 326 whole-exome sequencing samples from the
Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al., 2019).
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Copy ratio estimation: Example from CCLE data

x-axis = genomic position, blue = CR estimate, red = moving avg.

As a baseline, we show basic row- and column- normalized estimates.

Specifically, ρbasicij = Ỹij/(αiβj) where Ỹij = Yij + 0.125,

αi =
1
J

∑J
j=1 Ỹij , and βj =

1
I

∑I
i=1 Ỹij/αi.

These basic estimates are very noisy and are contaminated by
significant technical biases.
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Copy ratio estimation using a panel of normals

Leading methods employ a panel of normals (PoN) to estimate
technical biases using PCA.

Cancer samples are then de-noised by adjusting out the top PCs that
were estimated from the PoN.

GATK’s CreateReadCountPanelOfNormals and
DenoiseReadCounts tools provide CR estimates using this approach.

For reproducibility purposes, we use a pseudo-PoN from CCLE:
I Split the 326 CCLE samples into training and testing sets of equal size.
I On the training samples, segment the basic CR estimates and subtract

off the segment means (in log space).
I Run CreateReadCountPanelOfNormals on the adjusted training data.
I Run DenoiseReadCounts on the test data using the resulting PoN file.
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Copy ratio estimation: Example from CCLE data

GATK results on an illustrative sample, using a PoN with 5 factors.

The GATK estimates are less noisy and are more locally constant.

Jeff Miller, Harvard University Inference in generalized bilinear models



Copy ratio estimation with the GBM

For comparison, we run a negative binomial GBM on the adjusted
(pseudo-normal) training samples to estimate latent factors U .

Then we run a GBM on the test samples, using a feature covariate
matrix X that includes this estimated U matrix.

We use log(lengthi), gci, and (gci − gc)2 as region covariates, no
sample covariates, and 5 latent factors.

Model dimensions:
I On training set: I = 180,495, J = 163, K = 4, L = 1, and M = 5.

I On the test set: I = 180,495, J = 163, K = 9, L = 1, and M = 0.
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Copy ratio estimation: Example from CCLE data

(In the GBM plot, estimates with low relative precision are plotted in cyan.)
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Copy ratio estimation: Performance on CCLE test set

We compare the GBM and GATK using two performance metrics:
I Local RSE quantifies the variability of log CR estimates around a

weighted moving average, accounting for the precision of each estimate.
I Weighted MAD quantifies the typical magnitude of the slope of a

weighted moving average.

The performance gains appear to be due to using (a) model-based
uncertainty and (b) a robust probabilistic model for count data.
Jeff Miller, Harvard University Inference in generalized bilinear models



RNA-seq: Analyzing GTEx data for aging-related genes

We consider RNA-seq data from the Genotype-Tissue Expression
(GTEx) project (Melé et al., 2015).

8,551 samples from 30 tissues in the human body, from 544 subjects.

We apply the GBM to find genes whose expression changes with age,
adjusting for technical biases.
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RNA-seq: Visualizing GTEx data using a GBM

Similar to PCA, we can use the GBM to visualize high-dimensional
data by plotting the V matrix.

First, we take a random subset of 5,000 genes and fit a negative
binomial GBM with:

I two latent factors,
I no sample covariates, and
I log(lengthi), gci, and (gci − gc)2 as gene covariates.

Model dimensions: I = 5,000, J = 8,551, K = 4, L = 1, and M = 2.
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RNA-seq: Visualizing GTEx data using a GBM
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RNA-seq: PCA of GTEx data using log-transformed TPMs
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RNA-seq: Analyzing GTEx data for aging-related genes

To find aging-related genes, we add subject age as a sample covariate.

We analyze each subtissue separately, due to the heterogeneity of
tissues/subtissues.

We used a random subset of 108 subjects during an exploratory
model-building phase.

The remaining 436 subjects were used during a testing phase with the
selected model.
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RNA-seq: Analyzing GTEx data for aging-related genes

For illustration, we present results for the “Heart - Left Ventricle”
subtissue (Heart-LV).

We ran the GBM on the 176 Heart-LV samples in the test set, using:
I the 19,853 genes with nonzero median across these samples,
I gene covariates: log(lengthi), gci, and (gci − gc)2,
I sample covariates: smexncrt (exonic rate) and age (subject age),
I 3 latent factors.

This choice of subtissue and model was based on the exploratory
phase.

Jeff Miller, Harvard University Inference in generalized bilinear models



RNA-seq: Analyzing GTEx data for aging-related genes

In this GBM, each gene has a coefficient describing how its expression
changes with age.

Using our GBM inference algorithm, we compute a p-value for each
gene to test whether this coefficient is nonzero.

2,444 genes were significantly associated with age in Heart-LV,
controlling Type I error at 0.05 using Bonferroni.

For comparison, simple linear regression on the log-transformed TPMs
yields only 1 significant gene.

This indicates that the GBM has much greater power than a simple
standard approach.
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RNA-seq: Expression of the top aging-related gene

The top GBM hit for Heart-LV is PCMT1 (p-value = 1.1× 10−47).

PCMT1 is involved in the repair and degradation of damaged
proteins, and is a well-known aging gene (Tacutu et al., 2018).

GBM-estimated expression of PCMT1 exhibits a clear downward
linear trend with age.

The log TPMs for PCMT1 are noisier and the trend is much less clear.
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RNA-seq: Top age-related GO terms (Biological Process)

To test for enrichment of Gene Ontology (GO) term gene sets, we run
DAVID on the top 1000 GBM hits for Heart-LV.

These results are highly consistent with known aging biology
(López-Ot́ın et al., 2013).

GO term ID Description Count p-value Benjamini
GO:0098609 cell-cell adhesion 48 5.1e-12 1.5e-08
GO:0006418 tRNA aminoacylation for protein translation 16 1.4e-09 2.0e-06
GO:0006099 tricarboxylic acid cycle 12 3.7e-07 3.6e-04
GO:1904871 positive regulation of protein localization to Cajal body 7 1.1e-06 6.1e-04
GO:1904851 positive regulation of establishment of protein localization to telomere 7 1.1e-06 6.1e-04
GO:0006607 NLS-bearing protein import into nucleus 10 1.3e-06 6.2e-04
GO:0006914 autophagy 22 1.8e-05 7.6e-03
GO:0016192 vesicle-mediated transport 24 2.6e-05 8.3e-03
GO:0006511 ubiquitin-dependent protein catabolic process 24 2.6e-05 8.3e-03
GO:0006888 ER to Golgi vesicle-mediated transport 24 3.5e-05 1.0e-02
GO:0006886 intracellular protein transport 31 4.3e-05 1.1e-02
GO:1904874 positive regulation of telomerase RNA localization to Cajal body 7 8.3e-05 2.0e-02
GO:0006090 pyruvate metabolic process 8 9.6e-05 2.1e-02
GO:0070125 mitochondrial translational elongation 16 1.1e-04 2.2e-02
GO:0006446 regulation of translational initiation 10 1.5e-04 2.8e-02
GO:0043039 tRNA aminoacylation 5 1.6e-04 3.0e-02
GO:0018107 peptidyl-threonine phosphorylation 10 2.9e-04 4.9e-02
GO:0000462 maturation of SSU-rRNA from tricistronic rRNA transcript 9 3.3e-04 5.4e-02
GO:0006610 ribosomal protein import into nucleus 5 3.7e-04 5.6e-02
GO:0016236 macroautophagy 14 4.0e-04 5.9e-02
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RNA-seq: Top age-related GO terms (Cellular Component)

GO term ID Description Count p-value Benjamini
GO:0016020 membrane 220 9.8e-21 3.7e-18
GO:0005739 mitochondrion 157 1.2e-20 3.7e-18
GO:0070062 extracellular exosome 242 4.3e-16 9.1e-14
GO:0005829 cytosol 282 1.0e-15 1.6e-13
GO:0005913 cell-cell adherens junction 57 9.5e-15 1.2e-12
GO:0005737 cytoplasm 380 2.3e-13 2.4e-11
GO:0043209 myelin sheath 36 4.7e-13 4.2e-11
GO:0005759 mitochondrial matrix 47 5.7e-09 4.5e-07
GO:0005654 nucleoplasm 217 1.1e-08 7.8e-07
GO:0000502 proteasome complex 18 1.4e-08 8.0e-07
GO:0005743 mitochondrial inner membrane 56 1.4e-08 8.0e-07
GO:0042645 mitochondrial nucleoid 14 3.5e-07 1.8e-05
GO:0014704 intercalated disc 14 8.5e-07 4.2e-05
GO:0005832 chaperonin-containing T-complex 7 2.5e-06 1.1e-04
GO:0005643 nuclear pore 16 5.2e-06 2.2e-04
GO:0043231 intracellular membrane-bounded organelle 55 2.7e-05 1.1e-03
GO:0002199 zona pellucida receptor complex 6 2.9e-05 1.1e-03
GO:0043034 costamere 8 5.4e-05 1.9e-03
GO:0043234 protein complex 42 7.8e-05 2.6e-03
GO:0045254 pyruvate dehydrogenase complex 5 1.5e-04 4.6e-03

Jeff Miller, Harvard University Inference in generalized bilinear models



Conclusion

GBMs provide a flexible framework for the analysis of matrix data.

Delta propagation is a novel general technique for uncertainty
quantification.

Our algorithms enable accurate GBM estimation and inference in
modern applications.

Possible directions for future work:
I extend to more general bilinear model structures,
I seek theoretical guarantees for delta propagation, and
I try applying delta propagation to other models.

Preprint is on arXiv: https://arxiv.org/abs/2010.04896
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