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Summary

1 Dirichlet process mixtures (DPMs) are not consistent for the number
of components in a finite mixture.

2 However, there is a natural alternative that is consistent and exhibits
many of the attractive properties of DPMs.
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Dirichlet process mixture (DPM) model

Generic DPM model

Q ∼ DP(α,H)

β1, β2, . . .
iid∼ Q (given Q)

Xi ∼ pβi independent for i = 1, 2, . . . (given Q, β1, β2, . . . )

for some parametric family {pθ : θ ∈ Θ}.

n

Q

βi

Xi

Let Tn = #{β1, . . . , βn}.
That is, Tn is the number of distinct components so far
(i.e. the number of clusters).
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Mixture of finite mixtures (MFM)

Many authors have considered the following natural alternative to DPMs.

e.g. Nobile (1994, 2000, 2004, 2005, 2007), Richardson & Green (1997, 2001), Stephens (2000),

Zhang et al. (2004), Kruijer (2008), Rousseau (2010), Kruijer, Rousseau, & van der Vaart (2010).

Instead of Q ∼ DP(α,H), choose Q as follows:

A mixture over finite mixtures

S ∼ p(s), a p.m.f. on {1, 2, . . . }
π ∼ Dirichlet(γs1, . . . , γss) (given S = s)

θ1, . . . , θs
iid∼ H (given S = s)

Q =
∑S

i=1 πiδθi n

S π

θ Q Xi

For mathematical convenience, we suggest:

H as a conjugate prior for {pθ}
p(s) = Poisson(s− 1 |λ)
γij = γ > 0 for all i, j
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Questions of convergence

For data from a finite mixture, is the posterior consistent . . .
(and at what rate of convergence) . . .

DPMs MFMs

. . . for the density? Yes (optimal rate) Yes (optimal rate)

DPMs: Ghosal & van der Vaart (2001, 2007), and others.
MFMs: Doob’s theorem gives a.e. consistency. Kruijer et al. (2008, 2010) prove rates.

. . . for the mixing distribution? Yes (optimal rate) Yes

DPMs: Nguyen (2012)
MFMs: Doob’s theorem gives a.e. consistency. Optimal rate?

. . . for the number of components? Not consistent Yes

DPMs: This is our contribution.
MFMs: Doob’s theorem gives a.e. consistency (see e.g. Nobile (1994)).

(Note: Ignoring tiny clusters might fix this issue.)
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Toy example #1: One normal component

Prior (x) and estimated posterior (o) of the number of clusters

Data: N (0, 1). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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Toy example #2: Two normal components

Prior (x) and estimated posterior (o) of the number of clusters

Data: 1
2
N (0, 1) + 1

2
N (6, 1). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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Toy example #3: Five normal components
Prior (x) and estimated posterior (o) of the number of clusters

Data:
2∑

k=−2

1
5
N (4k, 1

2
). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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The wrong intuition

It is tempting to think that the prior on the number of clusters Tn is the culprit.
After all, when e.g. α = 1,

PDPM(Tn = t) =
1

n!

[
n
t

]
∼ 1

n

(log n)t−1

(t− 1)!
= Poisson(t− 1| log n)

where
[
n
t

]
is an (unsigned) Stirling number of the first kind, and an ∼ bn means

that an/bn → 1 as n→∞. Hence, PDPM(Tn = t)→ 0 for any t.

PDPM(Tn = t) for increasing n

However, this is not the fundamental reason why inconsistency occurs. Even if we

replace the prior on Tn by something that is not diverging, inconsistency remains!
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Comparing DPMs to MFMs

Similarities between DPMs to MFMs:
Efficient approximate inference (via Gibbs sampling)
Appealing equivalent formulations:

exchangeable distribution on partitions. . . e.g. when α = 1 and γ = 1:

PDPM(C) =
1

n!

∏
c∈C

(|c| − 1)! and PMFM(C) = κ(n, t)
∏
c∈C
|c|!

restaurant process
stick-breaking
random discrete measures

Consistent at any sufficiently smooth density (at optimal rate, in a certain sense)

Advantages of MFMs (for data from a finite mixture):

MFMs are a natural Bayesian extension of finite mixtures
Consistency (a.e.) for S, π, θ, and the density is automatically guaranteed

Disadvantages of MFMs:
More parameters (. . . you have to choose p(s))
(Slightly) more complicated sampling formulas
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Thank you!

Jeff Miller
Brown University

jeffrey miller@brown.edu

www.dam.brown.edu/people/jmiller/
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