Posterior consistency for the number of components in a finite mixture

Jeffrey W. Miller and Matthew T. Harrison

Brown University Division of Applied Mathematics Providence, RI

NIPS, December 7, 2012

Dirichlet process mixtures (DPMs) are not consistent for the number of components in a finite mixture.

2 However, there is a natural alternative that is consistent and exhibits many of the attractive properties of DPMs.

Simulation

DPMs vs MFMs

Dirichlet process mixture (DPM) model

Generic DPM model

 $Q \sim \mathrm{DP}(\alpha, H)$

$$\beta_1, \beta_2, \dots \stackrel{\mathsf{iid}}{\sim} Q$$
 (given Q)

$$\begin{split} X_i \sim p_{\beta_i} \text{ independent for } i = 1, 2, \dots \text{ (given } Q, \beta_1, \beta_2, \dots \text{)} \\ \text{for some parametric family } \{ p_\theta : \theta \in \Theta \}. \end{split}$$

Let $T_n = \#\{\beta_1, \ldots, \beta_n\}$. That is, T_n is the number of distinct components so far (i.e. the number of clusters).

Image: Image:

3 / 15

Mixture of finite mixtures (MFM)

MFMs

Many authors have considered the following natural alternative to DPMs.

e.g. Nobile (1994, 2000, 2004, 2005, 2007), Richardson & Green (1997, 2001), Stephens (2000),

Zhang et al. (2004), Kruijer (2008), Rousseau (2010), Kruijer, Rousseau, & van der Vaart (2010).

Instead of $Q \sim \mathrm{DP}(\alpha, H),$ choose Q as follows:

A mixture over finite mixtures $S \sim p(s)$, a p.m.f. on $\{1, 2, ...\}$ $\pi \sim \text{Dirichlet}(\gamma_{s1}, ..., \gamma_{ss})$ (given S = s) $\theta_1, \ldots, \theta_s \stackrel{\text{iid}}{\sim} H$ (given S = s) $Q = \sum_{i=1}^{S} \pi_i \delta_{\theta_i}$

For mathematical convenience, we suggest:

- H as a conjugate prior for {p_θ}
- $p(s) = \text{Poisson}(s 1 \mid \lambda)$
- $\gamma_{ij} = \gamma > 0$ for all i, j

		Consistency							
Questio	ons of cor	ivergence							
For data from a finite mixture, is the posterior consistent									
(and at wh	at rate of conv	ergence)							
			DPMs	N	1FMs				
for t	he density?		Yes (optimal ra	te) Y	es (optimal rate)				
DPMs: Ghosal & van der Vaart (2001, 2007), and others. MFMs: Doob's theorem gives a.e. consistency. Kruijer et al. (2008, 2010) prove rates.									
for t	he mixing d	istribution?	Yes (optimal ra	te) Y	és				
DPMs: Nguyen (2012) MFMs: Doob's theorem gives a.e. consistency. Optimal rate?									
for t	he number	of components?	Not consister	nt Y	'es				
DPMs: This is our contribution. MFMs: Doob's theorem gives a.e. consistency (see e.g. Nobile (1994)).									
(Note: Ignoring tiny clusters might fix this issue.)									
			${}^{\scriptscriptstyle (1)} = {}^{\scriptscriptstyle (2)}$	< 🗗 > <	ヨト イヨト ヨー うくぐ				
leff Miller	(Brown University)	Posterior consisten	cv for # components	NIPS D	ecember 7 2012 5 / 15				

DPMs MFMs Consistency Simulations Intuition DPMs vs N Toy example #1: One normal component

Data: $\mathcal{N}(0,1)$. Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.

1s MFMs

Toy example #2: Two normal components

Jeff Miller (Brown University)

Posterior consistency for # components

DPMs MFMs Consistency Simulations Intuition

Toy example #3: Five normal components

DPMs MFMs Consistency Simulations Intuition DPMs vs MFMs

The wrong intuition

It is tempting to think that the prior on the number of clusters T_n is the culprit. After all, when e.g. $\alpha=1,$

$$P_{\mathsf{DPM}}(T_n = t) = \frac{1}{n!} \begin{bmatrix} n \\ t \end{bmatrix} \sim \frac{1}{n} \frac{(\log n)^{t-1}}{(t-1)!} = \text{Poisson}(t-1|\log n)$$

where $\begin{bmatrix} n \\ t \end{bmatrix}$ is an (unsigned) Stirling number of the first kind, and $a_n \sim b_n$ means that $a_n/b_n \to 1$ as $n \to \infty$. Hence, $P_{\text{DPM}}(T_n = t) \to 0$ for any t.

However, this is **not** the fundamental reason why inconsistency occurs. Even if we replace the prior on T_n by something that is not diverging, inconsistency remainslo

Jeff Miller (Brown University)

Posterior consistency for # components

9 / 15

DPMs MFMs Consistency Simulations Intuition DPMs vs MFMs

Comparing DPMs to MFMs

Similarities between DPMs to MFMs:

- Efficient approximate inference (via Gibbs sampling)
- Appealing equivalent formulations:
 - exchangeable distribution on partitions...e.g. when $\alpha = 1$ and $\gamma = 1$:

$$P_{\mathsf{DPM}}(\mathcal{C}) = \frac{1}{n!} \prod_{c \in \mathcal{C}} (|c| - 1)! \quad \text{and} \quad P_{\mathsf{MFM}}(\mathcal{C}) = \kappa(n, t) \prod_{c \in \mathcal{C}} |c|!$$

- restaurant process
- stick-breaking
- random discrete measures
- Consistent at any sufficiently smooth density (at optimal rate, in a certain sense)

Advantages of MFMs (for data from a finite mixture):

- MFMs are a natural Bayesian extension of finite mixtures
- Consistency (a.e.) for S, π , θ , and the density is automatically guaranteed

Disadvantages of MFMs:

- More parameters (. . . you have to choose p(s))
- (Slightly) more complicated sampling formulas

		DPMs vs MFMs

Thank you!

Jeff Miller Brown University

jeffrey_miller@brown.edu www.dam.brown.edu/people/jmiller/