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Motivation

Standard Bayesian inference is known to be sensitive to model
misspecification.

This leads to unreliable uncertainty quantification and poor predictive
performance.

Several methods exist for robust Bayesian inference under
misspecification.

However, finding generally applicable and computationally feasible
methods is a difficult challenge.
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Toy Bernoulli example
Suppose X1, . . . , XN ∼ Bernoulli(p) i.i.d.

Consider the (yes, contrived!) situation in which we only consider two
models: (1) p = 0.2 and (2) p = 0.8, but the true value is p = 0.501.
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Example: Phylogenetic tree inference for whale species

This is not just a contrived issue – it frequently occurs in practice in
phylogenetic inference.

▶ Alfaro et al. (2003), Douady et al. (2003), Wilcox et al. (2002).

Bayesian phylogenetic inference is very widely used, however, it often
yields self-contradictory results due to misspecification.

Overlap between posteriors from two subsets of a whale genetics data set
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Example: Variable selection in linear regression
Similarly, variable selection is unstable when there is misspecification.
Posterior inclusion probabilities (pips) often flip-flop as N grows.
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Background

P0 = true distribution of the observed data.

{Pθ : θ ∈ Θ} is the assumed model.

Suppose P0 is not in the assumed model.

The pseudo-true parameter θ∗ is the nearest point to P0 in terms of
Kullback–Leibler divergence.

In this talk, we take the usual perspective that θ∗ is of interest.

The posterior concentrates at θ∗ (under regularity conditions), but . . .
▶ It is typically miscalibrated: credible sets do not have correct coverage.

⋆ Kleijn & van der Vaart (2012)
⋆ Can recalibrate using sandwich covariance (Müller, 2013, and others)

▶ Slow concentration can occur, causing poor prediction performance.
⋆ Grünwald & van Ommen (2014)
⋆ Can fix this using a power posterior ∝ p(x|θ)ζp(θ) for certain ζ ∈ (0, 1)
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Background

Many methods have been proposed for improving robustness to model
misspecification.

Fitting/prediction, focus on pseudo-true parameter θ∗.
▶ Robust adjusted likelihood (Royall & Tsou, 2003)
▶ SafeBayes (Grünwald & van Ommen, 2014)
▶ Modular posteriors (Jacob et al., 2017)
▶ Sandwich covariance adjustment (Müller, 2013)
▶ Holmes & Walker (2017)

. . . and many others.

Inference/understanding, focus on ideal parameter θI .
▶ Coarsened posterior (M. & Dunson, 2019)
▶ Nonparametric perturbation models (M., forthcoming)
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Bagged posterior (BayesBag)

Basic idea: Use bagging on the posterior, that is, average the
posterior over many bootstrapped datasets.

More precisely:
▶ Original data set: x = (x1, . . . , xN ).
▶ Bootstrapped copy of original data set: x∗ = (x∗

1, . . . , x
∗
M ).

▶ Posterior obtained by treating x∗ as the original data set:

π(θ | x∗) ∝ π0(θ)
M∏

m=1

pθ(x
∗
m).

▶ The bagged posterior is defined by averaging these posteriors:

π∗(θ | x) := 1

NM

∑
x∗

π(θ | x∗),

where the sum is over all NM possible bootstrap datasets of M
samples drawn with replacement from the original dataset.
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Bagged posterior (BayesBag): Practical considerations

In practice, we approximate π∗(θ | x) by generating B bootstrap
datasets x∗(1), . . . , x

∗
(B) and forming the simple Monte Carlo

approximation

π∗(θ | x) ≈ 1

B

B∑
b=1

π(θ | x∗(b)).

Any posterior computation technique for the standard posterior can
be used to compute each term π(θ | x∗(b)).

▶ For example, a closed-form solution, MCMC, or quadrature.

How to choose the number of bootstrap datasets B?
▶ As a default, B ≈ 50 to 100 often suffices.
▶ Formally, the Monte Carlo error can easily be estimated, since the

bootstrap datasets x∗
(b) are i.i.d. given the original dataset.
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Bagged posterior (BayesBag): Practical considerations

How to choose the bootstrap dataset size M?
▶ The choice of M is connected to calibration of uncertainty.
▶ As M/N increases, the bagged posterior becomes more concentrated.

Recommended choice of M for model selection:
▶ Our theory suggests choosing M = o(N) or M = cN with c ∈ (0, 1].
▶ As a default, M = N0.95 works well in theory and practice.
▶ When M/N is large, the bagged posterior behaves like the standard

posterior.

Recommended choice of M for parameter inference:
▶ As a default, M = N is a conservative choice that is robust to

misspecification.
▶ If the model is correct, then M = 2N coincides with the standard

posterior, asymptotically.
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Previous work on bagged posteriors (BayesBag)

Suggested by Waddell et al. (2002) and Douady et al. (2003).
▶ Limited empirical study of BayesBag on phylogenetic inference.

Independently proposed by Bühlmann (2014).
▶ Limited empirical/theoretical study on a simple univariate Gaussian

location model.
▶ Coined the name “BayesBag”, which we adopt here.

Surprisingly, there seems to have been little empirical or theoretical
investigation of bagged posteriors.

Bagging the posterior is very different than Bayesian Bagging (Clyde
& Lee, 2001) and the Bayesian Bootstrap (Rubin, 1981), which are
Bayesian ways of doing bagging and bootstrap, respectively.
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Principled justification via Jeffrey conditionalization
Jeffrey conditionalization (Diaconis & Zabell, 1982; Jeffrey, 1968):

▶ Assume we have a model p(x, y) for some variables x and y.
▶ Suppose we are informed that p0(x) is the true distribution of x.
▶ Then, Jeffrey says to quantify uncertainty in y using

q(y) :=

∫
p(y|x)p0(x)dx.

Now, to connect this to the bagged posterior:
▶ Take x = x1:N and y = θ.
▶ If we are informed that the true distribution is p

(N)
0 (x1:N ), then

q(θ) :=

∫
p(θ | x1:N )p

(N)
0 (x1:N )dx1:N .

▶ Plugging in the empirical distribution 1
N

∑N
i=1 δxi

for p0, we obtain

q(θ) ≈ 1

NN

∑
x∗
1:N

p(θ | x∗
1:N ),

which is precisely the bagged posterior with M = N .
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Overview of theoretical results

We consider the setting of i.i.d. data X1, . . . , XN ∼ P0.

Model selection. We show that if two models provide a nearly
equally good fit to the data distribution P0, then:

▶ the standard posterior oscillates randomly, strongly favoring one model
or the other at random.

▶ the bagged posterior stabilizes the probabilities probabilities of the two
models, improving reproducibility.

Parameter inference. We derive the mean and covariance of the
bagged posterior, and prove a Bernstein–von Mises result
characterizing the asymptotic normal distribution.
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Theoretical results: Model selection

Asymptotically, we know the posterior concentrates on the model that
is nearest in Kullback–Leibler (KL) divergence to the true distribution.

To study the non-asymptotic regime via an asymptotic analysis, we
consider sequences of models m1,N and m2,N .

Letting ΛN = log
p(X1:N |m1,N )

p(X1:N |m2,N )
(the log-likelihood ratio), suppose:

1 m1,N and m2,N are asymptotically comparable in the sense that

lim
N→∞

EP0
(ΛN/

√
N) = µ∞ ∈ R,

2 VarP0
(ΛN/

√
N) = σ2

∞ ∈ (0,∞) for all N , and

3 M/N → c ∈ [0,∞) as N → ∞, where M = M(N) → ∞.

The effect size µ∞/σ∞ is the evidence in favor of model 1.
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Theoretical results: Model selection
Then as N → ∞, the standard posterior probability of model 1
concentrates at 0 and 1, that is, it converges to a Bernoulli r.v.:

π(m1,N | X1:N )
D−→ Bernoulli(Φ(µ∞/σ∞)).

The bagged posterior probability of model 1 converges to a r.v.:

π∗(m1,N | X1:N )
D−→ Φ(c1/2Z)

where Z ∼ N (µ∞/σ∞, 1).

In particular, if µ∞ = 0 and c > 0, then

π(m1,N | X1:N )
D−→ Bernoulli(1/2)

π∗(m1,N | X1:N )
D−→ Uniform(0, 1).

Meanwhile, if c = 0 then

π∗(m1,N | X1:N )
D−→ 1/2.
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Theoretical results: Model selection

The standard posterior overwhelmingly favors the wrong model
with non-negligible probability. The bagged posterior does much better.

Standard posterior probability of model 1 converges to U .

Bagged posterior probability of model 1 converges to U∗.

δ∞ := µ∞/σ∞ = mean effect size in favor of model 1.
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Theoretical results: Model selection

The bagged posterior converges to a continuous r.v. U∗ on [0, 1],
avoiding misleading extreme probabilities close to 0 or 1. (Shown: c = 1.)

U∗ = Φ(c1/2Z) where Z ∼ N (µ∞/σ∞, 1)

δ∞ := µ∞/σ∞ = mean effect size in favor of model 1.
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Theoretical results: Model selection

Choosing M smaller makes the bagged posterior tend to be
more uniform over the set of plausible models.

c = limN→∞M/N , where M = M(N).
▶ For instance, c ∈ {0.5, 1, 2} when M ∈ {0.5N,N, 2N}, respectively.

δ∞ := µ∞/σ∞ = mean effect size in favor of model 1.
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Application: Variable selection

We consider a standard Bayesian variable selection model for linear
regression.

Specifically, under the prior, each variable is included with probability
q0, independently, and we integrate out Normal and InverseGamma
priors on the coefficients and variance, respectively.

First, we simulate datasets from (1) the assumed model and (2) a
model with nonlinearly transformed covariates.

In both scenarios, the true coefficient vector is sparse.

We consider using M = Nα for α ∈ {1, 0.95, 0.75, 0.55} to compute
the bagged posterior.
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Application: Variable selection

When the model is correct, the bagged posterior with M = Nα is similar
to the standard posterior when α = 1 and more stable as α decreases.
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Application: Variable selection

When the model is incorrect, the bagged posterior avoids the
self-contradictory results produced by the standard posterior.
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Application: Variable selection

On real datasets, the bagged posterior yields greater reproducibility across
subsets of the data.
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Application: Phylogenetic tree inference

We use a standard Bayesian package for phylogenetic inference
(MrBayes 3.2, Ronquist et al., 2012).

We used the whale dataset from Yang (2008), consisting of
mitochondrial DNA from 13 whale species.

To compute the posterior on trees, MrBayes was run using five
different models for the evolutionary process (JC, HKY, GTR, mixed,
and mtmam).

For the bagged posterior, we used M ∈ {N,N0.95} and B = 100.

To assess reproducibility, we computed the overlap of 99% highest
posterior density regions for selected pairs of posteriors.
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Application: Phylogenetic tree inference

First, we consider the posterior overlap for each pair of evolutionary
models.

The standard posteriors sometimes have extremely low overlap,
suggesting poor reproducibility.

Meanwhile, the bagged posteriors exhibit more reasonable overlaps for
each pair.
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Application: Phylogenetic tree inference

Then, we split the genetic data into two parts, and compute the
overlap for (1) the posteriors of the two splits, and (2) the posteriors
for each split and the full data.

Again, the standard posterior exhibits poor reproducibility, while the
bagged posterior is more self-consistent.
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Application: Hierarchical mixed effects logistic regression

Finally, we consider a mixed effects model from Browne and Draper
(2006), applied to prenatal care data from Guatemalan communities.

We compare the predictive performance of the standard posterior, the
bagged posterior, and four methods based on maximum likelihood
estimation (with the random effects integrated out):

▶ the standard MLE,
▶ the bootstrapped MLE,
▶ the weighted likelihood bootstrap (Newton and Raftery, 1994), and
▶ the posterior bootstrap (Lyddon, Walker and Holmes, 2018).
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Application: Hierarchical mixed effects logistic regression

The bagged posterior performs favorably compared to the other methods
in terms of mean log predictive density (MLPD).
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Conclusion

Bagging the posterior is an easy-to-use and widely applicable method
that improves upon standard Bayesian inference by making it more
stable, accurate, and reproducible.

Directions for future work or improvements:
▶ Extensions to non-i.i.d. settings such as time-series and spatial data.
▶ Improved computation of bagged posteriors.
▶ Finite-sample theory for bagged posteriors.
▶ Improved model assessment/criticism techniques and theory.
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